New paper: A Sampling Algorithm for Diffusion Networks

Conference paper presented on the 28th European Signal Processing Conference (EUSIPCO) in which we propose an adaptive sampling method for the diffusion networks.

Read More

New paper: A Low-Cost Algorithm for Adaptive Sampling and Censoring in Diffusion Networks

This paper summarizes the results obtained by Daniel G. Tiglea during the period he was working to obtain the M.S. Degree.

Read More

A Brief Introduction to GANs – SciPy Meetup Talk

On the 15th of August, I presented a talk on SciPy Meetup – Coders Hub Powered by Giant Steps. Here are the summary of the presentation, slides and code (in portuguese).

Read More

New paper: An Adaptive Sampling Technique for Graph Diffusion LMS Algorithm

Conference paper presented on the 27th European Signal Processing Conference (EUSIPCO) in which we propose an adaptive sampling method for the diffusion algorithm for adaptively learning from streaming graphs signals.

Read More

Setting Up Python for Machine Learning on Windows

This Post Was Originally Published on Real Python on Oct 31st, 2018 by Renato Candido.

Python has been largely used for numerical and scientific applications in the last years. However, to perform numerical computations in an efficient manner, Python relies on external libraries, sometimes implemented in other languages, such as the NumPy library, which is partly implemented using the Fortran language.

Due to these dependencies, sometimes it isn’t trivial to set up an environment for numerical computations, linking all the necessary libraries. It’s common for people to struggle to get things working in workshops involving the use of Python for machine learning, especially when they are using an operating system that lacks a package management system, such as Windows.

In this article, you’ll:

  • Walk through the details for setting up a Python environment for numerical computations on a Windows operating system
  • Be introduced to Anaconda, a Python distribution proposed to circumvent these setup problems
  • See how to install the distribution on a Windows machine and use its tools to manage packages and environments
  • Use the installed Python stack to build a neural network and train it to solve a classic classification problem
Read More