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Abstract—In this paper, we analyze the effects of random sam-
pling on adaptive diffusion networks. These networks consist in
a collection of nodes that can measure and process data, and that
can communicate with each other to pursue a common goal of
estimating an unknown system. In particular, we consider in our
theoretical analysis the diffusion least-mean-squares algorithm
in a scenario in which the nodes are randomly sampled. Hence,
each node may or may not adapt its local estimate at a certain
iteration. Our model shows that a reduction in the sampling
probability leads to a noticeable deterioration in the convergence
rate, and, if the nodes cooperate, to a slight decrease in the steady-
state Network Mean-Square Deviation (NMSD), assuming that
the environment is stationary and that all other parameters of
the algorithm are kept fixed. Furthermore, we also investigate the
effects of the random node sampling on the network stability.

Index Terms—Adaptive diffusion networks, distributed signal
processing, sampling, stability, asynchronous networks.

I. INTRODUCTION

DAPTIVE diffusion networks have attracted widespread
attention in the distributed signal processing literature
over the past decade and a half, and have become consolidated
tools in the area [1]-[10]. They consist in a set of connected
agents, or nodes, that are able to measure and process data
locally, and that can communicate with other nodes in their
vicinity. The network formed by these agents has a collective
goal to estimate a parameter vector of interest, without the
need for a central processing unit [1]-[10]. Hence, they present
better flexibility, scalability, and robustness than centralized
approaches, whose central unit represents a critical point of
failure, and limits the area where the nodes can be deployed.
In order to enable the distributed learning of the parameters,
each node usually computes its own local estimate in what is
known as the adaptation step. Then, the neighboring nodes
cooperate to reach a global estimate of the vector of interest.
This stage is usually referred to as the combination step [1]-
[11]. Due to their advantages in comparison with other
distributed settings, such as the incremental [12], [13] and
consensus [14], [15] strategies, adaptive diffusion networks
have branched out into many different research topics. Exam-
ples include multitask networks [16]—[19], nonlinear adaptive
networks [20]-[23], among others. Moreover, the field of
graph signal processing (GSP) has drawn inspiration from
these techniques, since its applications are usually distributed
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in nature [9], [10], [24], [25]. Hence, many graph adaptive
filtering algorithms can be seen as an extension of adaptive
diffusion networks to domains where space, as well as time,
plays a role in the development of the signals of interest [26].

For the feasibility of these solutions, it is oftentimes desir-
able to restrict the amount of data measured and processed
by the nodes. However, this process can have a negative
effect on the network performance. For this purpose, we
proposed in [26] and [28] adaptive mechanisms that control
the amount of data measured and processed by the nodes
according to the estimation error, so as to mitigate the impacts
on the performance. In both papers, we adopted a random
sampling technique as a benchmark to compare the proposed
solutions with. In this scheme, a node that is sampled adapts
its estimates normally, while a node that is not sampled is
exempt from performing certain calculations. When using this
random sampling method, two things occur as we decrease
the number of nodes sampled per iteration. In the steady state,
the Network Mean-Square Deviation (NMSD), a performance
indicator, slightly decreases, so long as the environment is
stationary and the nodes cooperate, but the convergence rate
deteriorates noticeably in the transient phase. Next, we provide
some preliminary simulation results to illustrate this. The
discussion on the results presented will help us motivate the
present work.

A. Introductory Simulations and Motivation

We show in Fig. 1 simulation results obtained with
the adapt-then-combine diffusion Least-Mean-Squares (ATC
dLMS) algorithm [1]-[5] with a random sampling technique.
In this setup, each node is sampled with probability p¢, or not
sampled with probability 1 — p¢. This algorithm will be revis-
ited in detail in Sec. II. We consider the Scenario 1 described
in Sec. V, and compare the NMSD of the algorithm along the
iterations for different values of p € {0.1,0.25,0.5,0.75,1}.

From Fig. 1, we can clearly see that as we decrease the
sampling probability, the convergence rate becomes evidently
slower, while the steady-state NMSD is slightly reduced. In
relation to the case in which every node is sampled, i.e., p; =
1, the curve obtained with p; = 0.1 achieves a steady-state
NMSD that is approximately 3.5 dB lower, but this comes at
the expense of a noticeably impaired convergence rate. In order
to better understand these phenomena, our goal in this paper
is to investigate the effects of random sampling on adaptive
diffusion networks.
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Fig. 1: Performance of the ATC dLMS algorithm with a

random sampling technique, considering different sampling
probabilities p¢, in the Scenario 1 described in Sec. V.

B. Relations with Other Works and Major Contributions

To the best of our knowledge, interpretations for these phe-
nomena have not been provided in the literature. For example,
in [29]-[31], a scenario was considered in which some of
the nodes are not capable of performing the adaptation step.
These are referred to as “uninformed” nodes, in contrast with
the “informed” nodes, which can perform it. In those works,
it was shown that, in comparison with a network in which
every node is informed, the convergence rate is deteriorated,
but the steady-state NMSD can decrease, increase, or remain
unchanged, as we turn some of the nodes into uninformed
ones. However, differently from the scenario considered in the
simulations of Fig. 1, informed nodes carry out the adaptation
step at every time instant, whereas uninformed nodes never do
so. This differs from the behavior observed in Fig. 1, in which
the nodes are sampled randomly. Furthermore, in [32]-[34],
the authors study networks in which the adaptation and com-
bination steps are not necessarily carried out simultaneously
by all the nodes at every iteration. These networks are referred
to as “asynchronous”, in contrast with the “synchronous” ones
that appear, e.g., in [1]-[5]. From this perspective, the random-
sampling network used in the simulations of Fig. 1 can be
deemed as a type of asynchronous network. However, in those
papers, the phenomena seen in Fig. 1 were not illustrated.

Next, we provide a list of the most relevant contributions
of this paper in comparison with previous works:

» We obtain theoretical results that describe the effects of
the random sampling of the nodes on the transient and
steady-state behaviors of the dLMS algorithm observed
in Fig. 1. Furthermore, and perhaps more importantly, our
analysis helps us explain why these effects occur, and to
what we may attribute them;

« Different from the studies conducted in [32]-[34], which
are based on the Energy Conservation Argument — a
powerful tool for the analysis of adaptive algorithms [35]
—, ours analysis utilizes a traditional statistical frame-
work [36], [37], which facilitates the interpretation of

some results;

« Several simulation results are presented considering dif-
ferent scenarios, therefore abundantly illustrating the
phenomena of interest and the theoretical results. In
particular, we present simulation results that showcase
the effects of the sampling of the nodes on the stability
of the algorithm, which depends on the selection of the
combination weights and on the network topology;

« We study the impact of the random node sampling on the
computational cost.

We remark that our goal in this paper is not to motivate
the usage of the random sampling technique of Fig. 1, but
just to study the effects of the sampling of the nodes. As
our analysis will show, the random sampling hinders the
performance of the network in comparison with the case in
which every node is sampled, if the step sizes are adjusted
to obtain the same convergence rate with both versions of the
algorithm. Regardless, we believe that a better understanding
of the effects of sampling can lead to some insights into the
inner workings of adaptive diffusion networks.

C. Organization of the Paper and Notation

The remainder of this paper is organized as follows. In
Sec. II, we present the problem formulation. In Sec. III, we
conduct a theoretical analysis on the behavior of adaptive
diffusion networks, and on the effects of sampling on them.
In Sec. IV, the impact of sampling on the computational cost
is analyzed. Finally, in Secs. V and VI, we present simulation
results and the main conclusions of our work, respectively.
Notation. We use normal font letters for scalars, boldface
lowercase letters for vectors, and boldface uppercase letters
for matrices. Moreover, ()T denotes transposition, E{-} the
mathematical expectation, [-]gr the element of a matrix at
its ¢-th row and k-th column, rank[-] the rank of a matrix,
Tr[-] its trace, d;; the Kronecker delta function of ¢ and
js || the Euclidean norm, |-| the absolute value, / the
difference between two sets, ® the Kronecker product, and
© the Hadamard product. We denote the L x L identity matrix
by Iy, an L by M matrix of zeros by Orxas, and an L
by M matrix of ones by 17xas/. When referring to L-length
column vectors of zeros or ones, we respectively write Op,
and 1;. We denote by vec{-} the vectorization of a matrix by
stacking all of its columns to form a column vector. Lastly,
we denote by diag{-} the aggregation of the arguments into
a diagonal matrix. To simplify the arguments, we assume real
data throughout the paper.

II. PROBLEM FORMULATION

Let us consider a network consisting of V' nodes, with labels
ke {l,---,V}. For each node k, we call the set of nodes
with which it can communicate, including node k itself, its
neighborhood, and we denote it by Ay. We assume that each
node k has access at each iteration n to an input signal uy(n)
and to a desired signal di(n), which we model as [1]-[5]

(D

d(n) = ui (n)w° + vi(n),
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where w° is an M-length column vector that represents
an unknown system, oftentimes referred to as the optimal
system in the adaptive filtering literature [1]-[5], and ug(n) =
[ur(n) ug(n—1) -+ up(n — M +1)]T is a regressor vector
formed by the last M samples of the input signal. Finally,
v (n) is the measurement noise at node k.

The goal of the network is to obtain an estimate w of w°
in a distributed manner by solving [1]-[5]

%
mvin Jglobal (W) = H‘l"i,n Z Jr(w), ()
k=1

where Ji(w) are local cost functions at each node k. A
common choice for the Jy(w), k = 1,---,V is the mean
squared error (MSE) [35], [36], in which case each node k
should seek, at every iteration n, to minimize [1]-[5]

Je(w) £ E{[di(n) —ug (n)w]*}. 3)

To this end, each node k£ computes a local estimate of w©°
in order to minimize its individual cost function Jy(w). For
this purpose, it uses the data available locally, as well as
the estimates by neighboring nodes. This is known as the
adaptation step. Then, the node k cooperates with its neighbors
to form a combined estimate in what is called the combination
step. Depending on how the adaptation step is carried out,
different algorithms can be obtained. Examples include the
dLMS algorithm [1]-[5], the diffusion recursive least squares
(dRLS) [6], diffusion Normalized LMS (dNLMS) [26], [28],
[38], diffusion Affine Projection Algorithm (dAPA) [7], among
others [39], [40]. For simplicity, we focus our analysis in this
paper on the dLMS algorithm, which is obtained by adopting
an LMS-type of strategy [35], [36] for the update of the local
estimates. Considering a scenario in which each node k& may
or may not update its local estimate at each iteration n, the
adaptation and combination steps of the dLMS algorithm are
respectively given by [1]-[5]

Y (n)=wi(n — 1) +prCe(n)up(ner(n)  (4a)
wi(n) = Y. cirp;(n), (4b)
€N

where 1, and wy, are the local and combined estimates of w,
at node k, respectively, u; > 0 is a step size,

er(n) = dp(n) — ug (R)wy(n — 1) )

is the estimation error at node k, and ((n)€ {0, 1} is a binary
variable such that i (n) =1 if node k is sampled, and (x(n)=
0 otherwise. In the former case, 1, (n) is updated as usual
in the dLMS algorithm [1]-[5]. In contrast, when node k is
not sampled, ul (n)wy(n — 1) and ex(n) do not need to be
computed, as (4a) becomes simply 0, (n) =wi(n—1). Lastly,
c;i, are combination weights satisfying [1]-[5]

cik(n) =0, 2 cik(n)=1, and c;x(n)=0 for i¢ N}. (6)
€N

There are several possible rules for the selection of the

combination weights. For instance, if we adopt c;; = 1 if

1 = k and c¢;; = 0 otherwise, this corresponds to a setup in

which the nodes do not exchange their local estimates. This
is oftentimes referred to as the non-cooperative approach in
the literature [1]-[5], and can be seen as a scenario in which
V' adaptive filters try to solve (2) isolated from each other.
Cooperative strategies include the Uniform, Metropolis, and
Hastings rules, among others [1]-[3]. Moreover, several adap-
tive schemes have been proposed in the literature [8], [41]-
[43], in which the combination weights c;x(n) are adjusted
along the iterations. For simplicity, in our analysis we only
consider static combination weights. In Table I, we provide a
summary of the static rules considered in the simulations.

TABLE I: Summary of some static rules for the selection of
the combination weights most widely adopted in the literature.

Name Equations
1, ifi=k
Non-coop. [1]-[5 ik =1
on-coop. [1]-{5] Cik 0, otherwise
1
——, ifie N
Uniform [1]-[5] cik =1 Nl ' g
0, otherwise
1
oy if € Ni/{k}
Metropolis [11-15] e — max{|Ng|, N[}
i 1_ZiENkCik’ ifi==k
0, otherwise

When (4a) and (4b) are performed in this order at each
iteration, this corresponds to a configuration known in the
literature as adapt-then-combine (ATC) [1]-[5]. The order of
these steps could be reversed, resulting in the combine-then-
adapt (CTA) configuration. In this paper, we focus on the ATC
protocol, but the results can extended to the CTA dLMS.

III. THEORETICAL ANALYSIS

In our analysis, we are especially interested in the NMSD,
a commonly adopted performance indicator, defined as [1]

v
1
NMSD(n) = — MSD 7
in which MSDj, is the mean-square deviation at node k,
given by
MSDy(n) £ E{|[%x(n)|*}, (8)

where we have introduced the weight-error vector

Wi(n) = we — wi(n). 9

For compactness of notation, it is convenient to introduce the
quantities

Bij(n) = E{W (n)W;(n)} (10)
fore=1,---,Vand j =1,---,V. It is worth noting that
Bi(n) = E{|Wi(n)[*} = MSDy(n). (11)

We then introduce the matrix B(n) such that [B(n)];; =

Bij (n), i.e.,

ﬁll(n) B2 (n) Tt ﬁlv(n)
B(n) = ﬁm:(n) 622:(71) ﬂQV:(n) , (12)
Bvi(n) Bva(n) Bvv(n)
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which allows us to recast the NMSD as

NMSD(n) = %Tr{B(n)}. (13)

Furthermore, defining the V2 x 1 vectors

B(n) = vec{B(n)} = [B11(n) B1(n) ---

and b = vec{Iy}, and recalling that

Byv(n)]T (14)

Tr{M;M;} = vec{M; } Tvec{M,} (15)

for any arbitrary matrices My and My of compatible dimen-
sions, (13) can be written as
NMSD(n) = lTr{B(n)} = leﬁ(n).
|4 |4
Resuming our analysis, by subtracting both sides of (4a)
from w,, and replacing (1) and (5) in the resulting equation,
after some algebraic manipulations, we can write

(16)

Pi(n) = [Ty — G (n)ug(n)uf (n) [ Wi (n — 1) (17)
— uC(n)ug(n)uvg(n),
where we have introduced
P(n) = wo — ¢y, (n). (18)
On the other hand, from (4b), we observe that
Wi(n) = Y cinth;(n). (19)

€N

If we multiply both sides of (19) by W (n) from the left,
and use (4b) again, we obtain after some algebra

Bl = 3 Y caenth, P (n).  20)
€N JEN
Replacing (17) in (20), we obtain
[We(m)|> = > D) cinci
i€EN JEN
AT =15 () (m)af ()19 (n—1)
T
— G (n)u; (m)o; (m)} @
A =G (m)ul ()]s (n—1)
—Gi(myw (n)vg(n)}

To examine the MSD of node k, we need to take the
expectations from both sides of (21). At this point, we make
a few assumptions to make the analysis more tractable, all of
which are common in the related literature [1]-[3], [35]-[37]:

Al. All the nodes in the network employ the same step size,

le, pr=-=py=p>0

The weight error vectors w;(n — 1) are statistically
independent of u;(n) for any pair ¢ and j. This is a multi-
agent version of the independence theory, a common
assumption in the adaptive filtering literature [35], [36];
The measurement noise vg(n) is zero-mean with variance
avk, independent and identically distributed (iid), and
independent from any other variable for k =1,--- | V;

A2.

A3.

A4. The input signals are zero-mean and white Gaussian with
variance 02 = --- = 0. = oo > 0. In other words, the
w; (n)}, k=

u
autocorrelation matrices VRuk 2 E{ug(n)

1,---, V are the same, and are proportional to the identity
matrix, i.e., R,, =--- =Ry, = O'ZIM;

For every node k, (x(n) is independent from any other
variable, and drawn from a Bernoulli distribution, such
that (,(n) = 1 with probability p. and (;(n) = 0 with
probability 1—p.. We remark that we are assuming that p,
is the same for every node in the network. Furthermore,
for any pair of distinct nodes, (;(n) and (;(n), i # j, are
statistically independent from each other;

At any time instant n, u;(n) is statistically independent
from u;(n) for any pair of nodes ¢ and j, ¢ # j.

AS.

A6.

With these assumptions at hand, we can continue with our
analysis. For the sake of brevity, we shall omit here the
intermediate steps and focus on the main results obtained
from (21). These results are justified in detail in Appendix A.
For the scenario described, using (6), we can obtain

ﬂkk =0 Z Clkﬁn n— ]-)
i= 1
v
TZ chkc[kﬁjg n—1)+u’pc Mo Zchag, (22)
—16— 1
=, ”
where for the sake of compactness we have introduced
0 21— 2upco, + pPpcoy, (M +2) (23)
and
=1 2upcol + /,LQpﬁaﬁ. (24)

Hence, we can see that MSDy(n) depends on the MSD
of its neighbors at the previous iteration, as well as on the
trace of the cross correlation matrices between w;(n —1) and
we(n —1), ie, Bjy(n —1) = E{va;f(n — 1)wy(n — 1)}, for
every pair of nodes j and ¢ in the neighborhood of node
k. The impact of each of these terms on the behavior of
node k depends on u, o u, cir. for i € N} (and, therefore,
on the network topology), and, in the case of the MSD’s of
neighboring nodes, on the filter length M. Finally, the noise
variance in the neighborhood also influences directly the MSD
of node k.

From (22), it becomes evident that we also need to study
how the trace of the cross-correlation matrix of W;(n) and
we(n), with j # £, evolves over time. Again, we focus on the
main result and leave the details for the Appendix A. Using
assumptions Al to A6, we can obtain the following recursion:

B]Z =0 Z Ct]Ctzﬁtt n— 1)
t=1
vV Vv \4
+TZ Zcrjcsgﬁrs(n—l)—i-qucMUi Zczjczlgagz. (25)
r=1ls=1 z=1
S#T

Next, we analyze in Sec. III-A the special case of the
non-cooperative approach, as it is more straightforward and
enables us to draw some qualitative conclusions about this
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type of scenario. Then, in Sec. III-B, we resume our analysis of
Egs. (22) and (25) for the general case. Later on, in Sec. III-C,
we derive an approximate model for the cooperative strategies
that will provide us with valuable insights.

A. The Non-Cooperative Case

For the non-cooperative case, the analysis is straightforward.
Since in this case we have ¢y, =1 for any k=1,---,V, and
c;ir =0 if i#k, we can recast (22) as

ﬁkk(n) = Gﬂkk(n — 1) + /1,2p<MO'ZO'3k. (26)

Assuming B (0) = ||[w,
get

2, by recursively applying (26) we

n—1

>

TL¢=0

Brr(n) = 0" |wo|? + p’pc Moo,

o 27)
Assuming that |0] < 1, we have that lim,,_,, 6™ = 0. At this
point, it is worth noting that we can write

7= (1—ppco?)? =0 (28)

and

0 =1+ pu’peot(M+2—p;) =T, (29)
where the equality only occurs if p; =0, in which case 0 =
7=1. Assuming p; >0, we notice that # <1 if, and only if

0<p< (30)

(M +2)02’
where we have incorporated the fact that ;> 0. In this case, we
can write ZZ:O o™i = % Thus, considering (7) and (11), by
applying some algebraic manipulations to (27), we can write
the NMSD as

INMSDye(1) = ([Wo? = Xac)0” + xae:| 3D
with y
Yne . /J’M i Zk:l 012)k (32)
2~ puo2(M +2) 14
Taking the limit lim,,_,,- NMSD,.(o0) in (31) yields
| NMSDye(0) = Xne- (33)

Therefore, we can clearly see that x,. given by (32) represents
the steady-state value of the NMSD for the non-cooperative
strategy. It is interesting to notice that p; does not appear
in (32). Thus, the sampling probability does not affect the
steady-state NMSD of the algorithm in the non-cooperative
approach whatsoever, so long as p¢ > 0. If p. =0 were chosen,
we would obtain 6 =1, and, from (26), we would get By (n) =
[wo||? for every iteration n. This is reasonable, since in this
case the nodes would never acquire any information on wy,.
There are a couple more things to notice from the previous
analysis. Firstly, we remark that (32) agrees with existing
results in the literature for the steady-state NMSD of non-
cooperative networks when all the nodes are sampled and
employ sufficiently small step sizes [1]. Moreover, taking into

account that, for a single LMS filter, it is a well-known result
that its MSD can be approximated by [35], [36]

pMao;
2 — po2(M +2) (34)

u

XLMs =

for sufficiently small step sizes, we see from (32) that the
steady-state NMSD of the non-cooperative approach is simply
the average of the MSD’s of V' individual LMS filters working
isolated from one another, with each filter k£ subjected to a
certain noise power ng. This conclusion makes sense, since
there is no cooperation between the nodes. Lastly, we remark
that (30) is simply the condition for the stability of an LMS
filter in the mean [35], [36]. Therefore, we can interpret (30)
as follows: so long as p¢; > 0, if we pick a step size p that
leads to the individual stability of each filter in the network,
the network as a whole will be stable, regardless of the value
of p¢-

Finally, we notice that in (31) the term (||wol> — xnc)0™
decays exponentially along the iterations. Assuming that this
term is dominant during the transient phase in comparison with
Xne» We conclude that the closer € is to unity, the slower the
convergence rate. From (23), we can clearly see that

lim 6 =1.
pc—0t

(35)

This indicates that the lower the sampling probability, the
slower the convergence.

From the previous discussion, we can summarize the effects
of sampling on the behavior of non-cooperative networks as
in the following result.

Result 1 (Non-cooperative networks). In the case of the non-
cooperative networks, the stability of dLMS is ensured if (30)
holds and 0 < p¢ < 1. Under these conditions, the lower
the sampling probability p¢, the slower the convergence rate.
Moreover, the steady-state NMSD is completely unaffected by
pe¢- This result follows as a direct consequence of Eqs. (31)-
(33) and (35).

B. The General Case

Let us now resume our analysis for a more general case,
encompassing the cooperative strategies as well. From (22)
and (25), we observe that [ii(n) can be seen as a linear
combination of the 3;;(n—1) and §;,(n—1), plus the constant
term p> Moy, ¥, o ¢o,05 - This becomes clear if we expand
the first two summations in (22), i.e.,

Brr(n) =90%k611(n—1) 4+t HC%kBVV(n—l)

+reipcorBia(n—1)+- - +1evicy_kBy(v-)(n—1) 36)

\4
2 2 2
+u pcMO'?L Z CakTu,>
q=1

Analogously, the same can be said about /3,,(n) based on (25).
Hence, we should be able to write

B(n) = ®B(n —1) + p’pc Moo,

where ® is a matrix whose k-th row determines how ex-
actly each §;(n — 1) influences the corresponding term in

(37
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the current iteration, and o is a vector that aggregates the
information from the network topology and noise variance
from the constant terms that appear in (22) and (25).

Let us now aggregate the combination weights intoa V' x V'
matrix C, such that [C];; = ¢;;. Similarly, let us collect the

noise variances in a V' x V' diagonal matrix R, such that its
2

k-th element is equal to T ie.,
031 0 0
0 032 0
R, = ) (38)
: 0
2
0 0 o
In this case, we observe that
Y v v T
2 2 2 2
chlavk chlckgavk tee ch1ckvo'vk
k=1 k=1 k=1
v Vv Vv
2 2 2 2
CroCk10, chga v chgckvo'
T Z Vi Vi Vi
CR’UC =\ k=1 k=1 k=1 ~(39)
v v v
2 2 2 2
chvcklavk chvckzavk- .. chvavk
| k=1 k=1 k=1 |
Then, we may write the V2 x 1 vector o in (37) as
Vi 2 2
Z‘:/i=1 Ci10v,
2
Z‘, Ci2Ci10,,.
=1 Ci2Ci10y,
o =vec{CR,C"} = ! ) (40)
Vo 2 2
i CivOu;

As for the matrix ®, from (22) and (25) we obtain that

®=Q0T, (4D
where we have introduced
2 (CC)" (42)
and
Q=[2 Q2 --- Qy], (43)

in which Q; is a V2 x V matrix whose elements in the i-th
column are all equal to 6, and whose other elements are all
equal to 7, i.e.

i-th column
T T 0 T T
T T 0 T T
Q; = : 44)
T T 0 T T
V' columns

More details on the matrices ® and 2 are discussed in
Appendix B, but are skipped here for the sake of brevity.

With Eqgs. (39) to (44) at hand, we can continue with the
analysis of Eq. (37). Considering an initial condition 3, =
3(0), the recursive application of (37) leads to

n—1
B(n) = "B + p’pcMos >, ®"io. (45)

n4 =0

If the algorithm is initialized with wy(0) =0, for every node
k, we have that W (0) =w,. Thus, for any ¢ and j, we have
that 5;;(0) = E{WE(0)%;(0)} = B{wIw,} = |wo|?, and,
consequently,

Bo = [wol*1y-. (46)

Using this information in (45) and noting that 22;10 P =
[Ty2 — @] 1[Iy2 — ®"], we get

B(n)=[wo|*®@" 1y

47
+12pe M2 [Ty2 — @] 7 Iy — "o “n
Thus, considering (47) and (16), we can write
1
NMSD(n) = 7 { [wo|?bT®" 1y
(48)

+12pe Ma2bT [Tye —®] 7 [Ty —q>"]a}.

It is worth noting that although w,, appears in (47) and (48),
we do not need to know it beforehand. Instead, we only need
its norm. This is usually not a problem, since the norm of
the optimal system can be adjusted by using adaptive gain
control. Furthermore, we remark that §;;(n) = ;;(n), which
means that the vector 3(n) given by (14) has V(V —1)/2
duplicated entries. Although we could remove these elements
from our model to make it more efficient from a computational
perspective, and make the appropriate modifications where
needed, we opted not to make this change for the clarity
of the exposition. This is due to the fact that we are not
primarily concerned with the computational complexity of the
proposed model, and we believe that the formulation adopted
is more convenient for the calculations. However, we would
like to reinforce that this change is possible, and can reduce
the amount of computations significantly, especially if V is
large. Lastly, it is interesting to notice that we can obtain the
theoretical MSD of the LMS algorithm [35]-[37] as a special
case of (48). In this situation, we have that V = 1,and b, o, T,
Q and ® degenerate into b=1, 0 =02, ' =1, & =0 and
® = 0, respectively. Replacing these results in (48), we get

MSD(n) = (||wo|* — xLms)0"™ + xvLws,

with xpms given by (34).

From (47) and (48), we can see that the stability of the net-
work in the mean-squared sense is ensured if lim,, ,, ®" =
Oy24y2, which occurs if, and only if, [44]

p(®) <1, (49)

where p(-) denotes the spectral radius of a matrix, i.e., the
maximum absolute value of its eigenvalues.
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If (49) holds, by taking the limit of (48) as n — o0, we
conclude that the steady-state NMSD is given by

2 M 2
NMSD(c0) = K2 0up Ty . @] Lo, | (50)

As will become clear in Sec. V, the model described by (48)
can be very accurate. However, it still does not allow us to
draw many qualitative conclusions about the behavior of the
diffusion algorithm. Thus, further approximations may come
in handy to aid us in this task, as shown next.

C. An Approximate Model for the Cooperative Strategies

Since the columns of the matrix 2 are filled by either 7
or 0, we could adopt 22 ~ 71y 2,2 or 2~ 601lyz24y2 as an
approximation. Making these replacements in (41) leads to
® ~ 7T or ® ~ AT, respectively. Due to (29), the second
approximation tends to be more conservative. Replacing it
in (49), and using the fact that for any real scalar oz and matrix
M, p(aM) = |a|p(M), we conclude that

§-p(T) <1, (51)

where we used the fact that 6 > 0.

Due to (6), C is a left-stochastic matrix, i.e., a matrix whose
entries are all non-negative, and whose columns add up to
one. Consequently, C® C is also a left-stochastic matrix. By
transposing it, we conclude that I' is a right-stochastic matrix,
i.e., all of its entries are non-negative, and its rows add up
to one. One interesting property of such matrices is that their
spectral radius is always equal to one [44], [45]. Thus, the
condition established by (51) can be recast as simply 6 < 1.
Replacing (23) in (51) and assuming that p; > 0, after some
algebra we get (30). Hence, we can observe that our previous
conclusion that if p lies within a certain range, the sampling
probability pe does not affect the stability of the algorithm, so
long as p¢ > 0, holds for the general case, and not just for the
non-cooperative approach. We remark that (30) corresponds
to ensuring that each individual filter in the non-cooperative
scheme is stable. It is a well-known fact in the adaptive
diffusion networks literature that, if every individual node is
stable, the stability of the network as a whole in a cooperative
scenario is also ensured [1]-[3]. However, we remark that (30)
was obtained considering a worst-case scenario, in which
® =0T. In practice, (30) is not strictly necessary to ensure the
stability of the algorithm if a cooperative strategy is adopted.
In these cases, greater step sizes may be employed without
making the algorithm unstable.

Next, we seek to derive an approximate model from (48)
and (50) for the cooperative strategies. In this case, simulations
show that adopting ® =~ 7I' leads to reasonable results.
It is worth noting, however, that this approximation is not
applicable to the non-cooperative case. Thus, replacing ® with
7I' in (48), we conclude that, for cooperative networks, we
may write

1
NMSD(n) = v { [wo|* b7 T 12

(52)
+ e Ma2bT [Ty —®] 7 112 —T"I‘"]a'}.

We remark that the result of the multiplication T"1y2 is a
column vector whose i-th element is the sum of the elements
of the i-th row of the matrix I'". Since the product of right-
stochastic matrices is also right-stochastic [45], I'" is right-
stochastic, from which we notice that I'"1y2 = 1y2. More-
over, using the fact that levz =V, we thus conclude that for
the cooperative strategies, the NMSD is well approximated by

pPpc Mo,
1% (53)
b [Iy2 —7T] Iy —7"T"]0.

NMSD, (n) = |w,|*" +

Analogously to what we observed in Sec. III-A about (31),
the first term in (53) decays exponentially along the iterations.
Assuming that this term is dominant during the transient phase,
we conclude that the closer that 7 is to unity, the slower the
convergence rate. From (23) and (24), we note that

(54)

lim 7=1.
pc—0t
Hence, much like in the non-cooperative case of Sec. III-A,
the lower the sampling probability, the slower the convergence
for the cooperative strategies. We remark that this result is in
accordance with Fig. 1.

Finally, let us assume that 7 < 1, which can only occur if
p¢ > 0. In this case, if we take the limit when n — o0 in (53),
we conclude that the steady-state NMSD of the cooperative
networks can be well approximated by

2 M 2
NMSD, (o0) = %V”“bT[IVz —7T . (55)

Eq. (55) clearly depends on the matrix I', and, therefore,
on the network topology and combination rule adopted. It also
depends on y, M, 02, V, and p¢, as evidenced by the factor

2 2
%MU" that appears in (55). However, u, M, o2, and p¢

also influence the value of 7, which in its turn plays a role
in Eq. (55) due to the matrix [Iy2 — 7T']~!. Unfortunately,
there does not seem to be a way of rewriting (55) such that
the dependency of the steady-state NMSD with relation to p¢
is completely explicit. Thus, it is hard to tell exactly how the
sampling probability affects the steady-state performance in
the generic case by just taking glance at Eq. (55). However, as
we shall see in the simulations of Sec. V, the model of Eq. (55)
accurately predicts the effects of the sampling probability on
the performance of cooperative networks.

Even though it is difficult to extract direct conclusions
from (55) for any arbitrary topology without calculating them
explicitly, we can use it as a starting point for obtaining an
upper bound for the steady-state NMSD in the generic case.
Doing so, we do get an explicit relationship with the sampling
probability p¢. If the matrix I' is symmetric, which certainly
occurs if Metropolis weights are employed, for example, one
can obtain the upper bound given by (56), depicted at the
top of the next page. This result is derived in Appendix C.
We notice from (56) that the upper bound for the steady-state
NMSD decreases as we reduce p¢.

Furthermore, let us also calculate the steady-state NMSD
for a particular case. Next, we consider a network topology
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2

|4
D cricko?, (56)
k=1

represented by a complete graph, i.e., one in which every
pair of nodes is directly connected by an edge. A graph with
this topology and V' nodes is usually denoted by Ky in the
literature. An example with V' = 8 nodes is depicted in Fig. 2.

Fig. 2: A network arranged according to the Kg topology.

For the Ky topology, the Uniform and Metropolis weights
coincide, and lead to Cg, = wlyyxy and Tg, =
%h/zxvz, where the index K7y is adopted to refer to this
type of topology with Uniform or Metropolis weights. For the
aforementioned matrix I'x,, from (55), we get

|4
/~LM Zk:l ng
2—ppeol  VE T

NMSD.,-KV(OO) = XK, = (57)
This result is derived in Appendix D and establishes an explicit
relationship between the steady-state NMSD and p¢ in the
case of the network topology given by Fig. 2. Comparing (32)
and (33) with (56) and (57), we observe that the sampling
probability does not affect the steady-state performance of
the non-cooperative strategy, but does influence the steady-
state NMSD of the cooperative schemes. For example, we get
from (57) that

\% 1%
M Xy ng < YKy < pM Yy ng
2 V2 KvSo9_ ez ve

i.e., as we reduce the value of p¢, xx, decreases as well.
The first inequality is obtained by taking the limit of g, as
pc — 07. This observation is in accordance with the results
from Fig. 1. This reduction in the steady-state NMSD should
be more significant for relatively large values of 4 and o2. If
uo2 « 2, however, the impact of sampling becomes negligible.
We remark that (32) and (57) agree with the analysis of [1]—
[3] for the ATC dLMS algorithm with every node sampled and
small step sizes, if we consider p; =1 in the latter. Lastly, it is
worth noting that (57) only holds for p; > 0. This is because,
in order to obtain this result, we assumed in our calculations
that 7 < 1, which can only be true if p; > 0, as can be seen
from (24). If we consider p; = 0, we would get 7 = 1 and
therefore obtain from (55) that NMSD(n) = | w,|? for every
iteration n, which is in accordance with our expectations.

(58)

We can summarize the results of the analysis for the
cooperative networks as in the following result.

Result 2 (Cooperative networks). In the case of the cooper-
ative networks, the stability of dLMS is ensured in the mean-
squared sense if (49) holds, which can only occur if pc > 0.
If the sampling probability is different from zero, (30) is a
sufficient but not strictly necessary condition for stability of
cooperative networks. Furthermore, if the algorithm is stable,
then the lower the sampling probability p¢, the slower the
convergence rate, much like in the non-cooperative case.
However, in contrast with the non-cooperative approach, in
cooperative schemes the steady-state NMSD decreases as
we reduce p¢. This follows as a consequence of Egs. (49)
and (53)—(55), and is better visualized from the approximate
model given by (57).

Comparing Results 1 and 2, therefore, we can see that
in both the non-cooperative and cooperative schemes, as we
reduce p¢, the convergence rate deteriorates in comparison
with the case in which every node is sampled, assuming
that the other parameters are kept fixed. However, in the
non-cooperative case, this deterioration is not accompanied
by any change in the steady-state NMSD whatsoever if the
other parameters of the algorithm remain unchanged. Under
the same circumstances, when the nodes do cooperate, the
steady-state NMSD does slightly decrease, although, as we
shall discuss next, it would not be adequate to treat this
as a performance improvement in comparison with the case
in which the nodes are kept permanently sampled. It is
worth recalling that (55) is not applicable to non-cooperative
networks, due to the approximations adopted in its derivation,
i.e., that @ ~ 7I'. One possible interpretation for the different
impacts of the sampling probability in both cases is as follows.
The adaptation step is the process through which the algorithm
acquires knowledge about its environment. For this reason, it
is particularly relevant when there is little knowledge about
the optimal system — e.g., during the transient phase. Thus, it
makes sense that by not sampling the nodes in the transient
phase, the convergence rate should deteriorate. However, the
adaptation step also introduces noise into the algorithm, since
it involves the acquisition of the desired signal, which is
corrupted by it. In steady state, the algorithm does not gain
enough information from the adaptation step to continue to
decrease its NMSD, but is affected by the noise that it injects.
The step size directly influences the impact of the measure-
ment noise on the algorithms, since it multiplies dj(n), and,
therefore, v (n) in (4a). Thus, the greater the u, the more the
noise will affect the behavior of the algorithm. Conversely,
if p is small, this effect is restricted. Following this line of
reasoning, if we cease to sample some of the nodes, there is
less noise entering the algorithm. In a non-cooperative scheme,
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if a node is not sampled, its estimate remains fixed until its
sampling is resumed. Hence, there is no reason why the steady-
state performance should be affected by sampling less nodes,
which is predicted by our theoretical model. However, in the
cooperative schemes, this is changed by the existence of the
combination step. Indeed, (57) shows that we should expect
some decrease in the steady-state NMSD in this scenario, even
if slightly, and at the expense of a great deterioration in the
convergence rate. The theoretical model attributes this to the
parameter 7, which is related to the cooperation between nodes
in (22), since it determines how E{W} (n—1)W;(n—1)}, for ¢
and j in the neighborhood of node &, will affect E{|[Wwy,(n)|?}.
The model also shows that when p is large, the effects of
sampling less nodes on the steady-state NMSD should be more
noticeable, which supports the idea of the step size as a factor
that determines the impact of the measurement noise in the
algorithm. Interestingly, the diagnosis that the adaptation step
injects noise in the algorithm, and that the combination step
tends to remove it, has been raised in, e.g., [26], [28], [46],
but lacked formal theoretical support, until now.

Lastly, it may be interesting to compare the steady-state
NMSD achieved by the algorithm with a certain step size u
and sampling probability p¢, and the one obtained by utilizing
i = upc and maintaining all nodes sampled. Denoting these
quantities by NMSDync. (00) and NMSDyyyc. (00), respectively,
we notice from (57) that, for the topology of Fig. 2, we get

NMSDygync.(00) = peNMSDjgyne. (00). (59)

This is in accordance with [34], in which it was noticed that
the steady-state NMSD of the synchronous networks should
be less than or equal to that of the asynchronous one, if an
adjusted step size is adopted taking p¢ into consideration. In
other words, if we adjust the step size, the network with all
nodes sampled should outperform the one with random sam-
pling, as it will present approximately the same convergence
rate, with a lower steady-state NMSD.

IV. COMPUTATIONAL COST REDUCTION

In this section, we seek to estimate the effects of sampling
on the expected computational cost of the dLMS algorithm.
For brevity, we focus on the number of multiplications per
iteration, but a similar analysis could be done for the additions.

We begin by noticing that each sampled node k needs
to perform M (2 + |[Ng|) + 1 multiplications per iteration,
assuming that static combination weights are employed. This is
summarized in Table II, in which the number of multiplications
required at each node k per iteration is denoted by ®; and
detailed for each calculation required. We can see that 2M + 1
multiplications are related to the adaptation step. Assuming
that none of the operations associated with this step have to
be performed at node & if it is not sampled, we conclude that
the total number of multiplications required at the iteration n
and node k£ with random sampling can be estimated as

®k(n) = Gi(n) - (2M + 1) + M|Ny|.
Taking the expectations from both sides in (60), we obtain

E{®x} = pc(2M + 1) + M|Ny|,

(60)

(61)

where we dropped the indication of the time instant n since the
right-hand side of (61) remains constant along the iterations.

TABLE II: Estimated number of multiplications per iteration
at each sampled node k.

Calculation Step Rk
1 yr(n) = uf wi(n — 1) Adapt. M
2 ex{n) = dp(n) — yr(n) Adapt. 0
3 - ex(n) Adapt. 1
4 [ ex(n)] - ug(n) Adapt. M
5wl 1)+ ([ ex ()] ux(n)} | Adapt 0
6 Zie/\/k Cik’([)i(’n) Comb. M|./\/k|
[ Total [ M2+ [N +1 ]

Summing (61) for £ = 1,---,V, we can estimate the
expected computational cost for the whole network as

14
B{®uwu} = Vpc(2M + 1) + M Y. [Nil.
k=1

(62)

By replacing p¢ =1 in (62), we obtain the number of multipli-
cations required by the dLMS with every node sampled. Thus,
denoting the number of multiplications saved per iteration due
to the sampling by A®yo1, We can thus estimate it as

E{A®mtal} = V(QM + 1)(1 _pC) (63)

by subtracting (62) from the case with p, = 1.

From (63), we see that the smaller the p., the greater the
savings in computation, as expected. Moreover, for a given p¢,
the number of multiplications saved increases with V' and M.

V. SIMULATION RESULTS

In this section, we present simulation results to validate
the theoretical analysis. They were obtained over an average
of 1000 independent realizations, considering the scenarios
summarized in Table III. The Scenario 1 of this table cor-
responds to that of Fig. 1. In every case, the coefficients of
the optimal system w,, are drawn from a uniform distribution
in the range [—1,1], and later normalized so that w, has
unit norm. Moreover, the length of the adaptive filter is
always equal to that of w,. We consider the network topology
presented in Fig. 3(a), which was generated randomly. The
input signal u(n) and the measurement noise v (n) follow
Gaussian distributions with zero mean for each node k, with
0. = o2 = 1, whereas the noise variance o7, is drawn
from a uniform distribution in the range [0.001,0.01] for
k=1,---,V, as depicted in Fig. 3(b).

TABLE III: List of scenarios considered in the simulations.

Scenario o M | Combination Rule
Scenario 1 0.1 10 Metropolis
Scenario 2 | 0.01 10 Metropolis
Scenario 3 | 0.02 | 100 Uniform
Scenario 4 | 0.01 10 Non-Cooperative

This section is organized as follows. In Sec. V-A, we study
the transient performance of the algorithm, in Sec. V-B, its
stability, and in Sec. V-C, its steady-state NMSD.
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Fig. 3: (a) Network topology, and (b) noise variance profile
considered in the simulations.

A. Transient Performance

In Fig. 4, we present the simulation results obtained in
the Scenarios 1, 2, and 3 of Table III, considering p: €
{1,0.5,0.1}, and compare them to the theoretical models of
Sec. III. The sub-figures in the top row present a comparison
with the more precise model of Eq. (48), whereas those in
the bottom row show the comparison with the approximate
model of Eq. (53). Furthermore, each column of Fig. 4
refers to a scenario, with Figs. 4 (a) and (b) presenting the
results obtained in Scenario 1, Figs. 4 (c) and (d) those from
Scenario 2, and Figs. 4 (e) and (f) those from Scenario 3.

From Figs. 4 (a), (c), and (e), we can see that the simulation
results match the theoretical curves very well for all three
scenarios, and that the model accurately predicts the reduction
in steady-state NMSD caused by the sampling of less nodes.
Furthermore, comparing the results of Figs. 4 (c) and (e) with
those of Fig. 4 (a), we can observe that the difference in
performance caused by the sampling is indeed more noticeable
for larger step sizes, as expected. By comparing Figs. 4 (a)
and 4 (b) can see that, in Scenario 1, the approximate model
is less accurate than the one described by Eq. (48). This was
expected, to a certain extent. The same can be said about
Scenario 3, by comparing Figs. 4 (e) and (f). However, we
observe from Figs. 4 (c) and (d) that, in Scenario 2, both
models practically coincide. Hence, we can conclude that the
approximate model of Eq. (53) tends to be more accurate for
relatively low step sizes p and filter lengths M, and is more
affected by them than the model of Eq. (48).

In order to examine the impact of sampling on the computa-
tional cost under these circumstances, in Table IV we present
the average number of multiplications required per iteration in
the whole network for each p. considered in the simulations
for M = 10, as in Scenarios 1 and 2, and for M = 100, as
in Scenario 3. We also present the number of multiplications
saved per iteration in comparison with the case in which
every node is sampled, and compare them to the results given
by (63). We can see that the average number of operations
saved per iterations matches Egs. (63), which can be attributed
to the high number of realizations and iterations considered
in the computations. Furthermore, it is straightforward to see
that the smaller the p¢, the greater the savings in terms of
computation, as expected. Moreover, for a fixed value of p¢,
the computational cost and the savings increase with M, as

expected. From these experiments, we can summarize the
effects of sampling as follows: smaller sampling probabilities
p¢ lead to lower steady-state NMSD and computational costs,
at the expense of a deteriorated convergence rate.

TABLE IV: Average number of multiplications per iteration
in the network for pc€{0.1,0.5, 1} with M =10 and M =100.

Rrotal A®iotal Eq. (63)
P¢ "AT=10 [M=100| M=10| M =100 | M=10] M =100
T | ~1460 | 14420 0 0 0 0
05 | 1250 12410 210 2010 210 2010
0.1 1082 10802 378 3618 378 3618

In the simulations of Fig. 5, we consider the Scenario 4 of
Table III, and compare the simulation results to the theoretical
model given by Eq. (31) for the non-cooperative scheme.
Once again, the simulation results closely match the theoret-
ical analysis. Furthermore, the simulations support the idea
that the sampling probability does not affect the steady-state
performance of the algorithm in the non-cooperative scheme,
unlike what was observed in Fig. 4 for the cooperative rules.

B. Effects of Sampling on the Stability

From (30), we concluded that the sampling probability
does not affect the stability of the algorithm so long as p
is sufficiently small and p; > 0. However, (30) is not strictly
necessary to ensure the stability of the algorithm in the mean-
squared sense. For instance, the value of ;1 considered in the
Scenario 3 of Table III does not satisfy (30), but still leads to
the stability of the dLMS algorithm for the network of Fig. 3(a)
with Uniform weights and M =100. Under these conditions,
one obtains p(®) ~ 0.9628 for p, = 1, which satisfies (49)
and thus ensures the convergence in the mean-squared sense.
For p¢=0.5 and p:=0.1, we get p(®) <1 as well.

To verify if the sampling of the nodes influences the stability
of the algorithm in the general case, we calculated the spectral
radius of the matrix ® considering M = 100 and the three
combination policies for the network of Fig. 3(a) with ©=0.1
and several values of p¢. The results are shown in Fig. 6 (a),
where we have highlighted with a red horizontal line the
threshold p(®)=1. We can see that, for all combination poli-
cies, the adoption of p. =0 leads to p(®) =1. This is expected,
since in this case we get # = 7 = 1, and consequently ® =T,
whose spectral radius is equal to one. Intuitively, this comes
from the fact that the algorithm never acquires any knowledge
on the optimal system if the nodes are never sampled. For the
non-cooperative strategy, p(®) increases with p¢, indicating
that the algorithm is unstable for any sampling probability. For
the Uniform and Metropolis combination policies, however,
p(®) decreases up to a certain point with the increase of
p¢, and then begins to rise. Interestingly, for both policies,
Fig. 6 (a) tells us that, under the conditions considered, the
algorithm is unstable with all nodes sampled, but we can
stabilize it by sampling less nodes. For the Uniform rule, we
conclude from Fig. 6 (a) that the dLMS algorithm is stable
for p¢ €]0,0.71] (approximately), whereas for the Metropolis
rule the stability occurs for p; €]0,0.39]. In order to verify
these results, we ran the dLMS algorithm under the same



SUBMITTED TO THE IEEE TRANSACTIONS ON SIGNAL PROCESSING

0 0 — 0
—&— po=1 Simul | gl 46 Y
(a) —&— pc = 0.5 - Simul. M I (e) 337
—— pc=0.1 - Simul, 347 —-10 B . ——
= —10 —— pc=1-Eq. (48) 484 —10+ =349
05 B (48) 367
=) | P pe=05-Fa (49) — 90 - L
A —+— pc=0.1 - Eq. (48)
—201 ]
E —304 —20
Z.
—301 —401
o —— ¢ *——— AN —301
T k—— J M b A & 5 v . &
} I I —50 I I
0
—@— pc =1 Simul. 324 I
321e o lo— |
—8— pc = 0.5 - Simul, p— |7 te——tr 38 Y
—— pc=0.1- Simul| —347 = —-10 - .
\ -4- pc=1-Eq (53) Y L34 v
\, ~® 7 =05 Fa. () B == 90 - — [ r=
W*- pc=0.1-Eq. (53)
\ —30
P P
\\ ’\
T —40 1 N
T T S - eSS
T T T —50 T T T i T T T T 1
0.2 0.4 0.6 0.8 1.0 0 2 6 8 10 0 1 2 3 4 5

Iterations x10°

Iterations x103

Iterations x10°

Fig. 4: The sub-figures in the top row present a comparison between the simulation results and the model of Eq. (48), whereas
the ones in the bottom row show a comparison with the model of Eq. (53). The simulation results were obtained considering
the Scenario 1 of Table III in sub-figures (a) and (b), Scenario 2 in (c) and (d), and Scenario 3 in (e) and (f).
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Fig. 5: Comparison between the simulation results and the
model of Eq. (31) for p.€{1,0.5,0.1} in Scenario 4.

circumstances considered in Fig. 6 (a) with different sampling
probabilities in the range [0.01,1] for 200 - 103 iterations,
which is more than necessary for the algorithm to achieve the
steady state with p. = 0.01 and cooperative strategies. Then,
utilizing the isnan and isinf functions of MATLAB®, we
calculated the percentage of realizations in which the dLMS
algorithm diverged at some iteration. The results are depicted
in Fig. 6 (b). We can see that, for the non-cooperative strategy,
the algorithm diverges in 100% of the realizations for all
values of p considered. For the Uniform and Metropolis rules,
the percentage of realizations in which the algorithm diverges
is initially zero, and increases steeply as p. approaches the
limit values of p; =0.71 and p¢ = 0.39, respectively. For the
former combination policy, the algorithm starts to diverge for
p¢ > 0.68, whereas for the latter the first divergences occur
for p; >0.41. In both cases, by increasing p¢ slightly further,
the algorithm begins to diverge at some point in 100% of

the realizations. Therefore, the simulation results of Fig. 6 (b)
support the theoretical findings of Fig. 6 (a). It is worth noting
that, although the Uniform rule leads to the stability of the
algorithm for a wider range of p. than the Metropolis rule
in this case, this does not necessarily occur in all scenarios.
For example, for the topology in Fig. 2, the weights coincide
for the two rules and therefore there is no difference between
them in terms of the stability of the algorithm.

“‘. Uniform -
7\,\,, 1.2 (a) '."" = =Metropolis fa”
& K . . l\'on—coop’,,’
"9‘ "" ’r”
< 100 : : : '
< [ () |
[}
£ 501 !
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Fig. 6: (a) p(®) as a function of p¢, and (b) percentage of
realizations in which the dLMS diverged with ¢ = 0.1 and
M =100 for p€[0.01, 1] with different combination policies.

C. Steady-State Performance

Lastly, in order to verify Eqs. (50) and (55) in detail, we
ran the ATC dLMS for different values of p. € [0.1,1], and
calculated the average NMSD during the final 20% iterations
of each realization. The results are shown in Figs. 7 (a),
(b), and (c) for Scenarios 1, 2, and 3, respectively. In each
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case, we set the total number of iterations /N so that the
algorithms achieved the steady state before the end of each
realization, resulting in 10> < N < 10°. We remark that the
simulation results match (50) very closely in Scenarios 1 and
2. In Scenario 3, there is a discrepancy between the simulation
results and the theoretical curve of 0.1 dB, on average. As for
the model of Eq. (55), there is a difference of approximately
0.40 dB in comparison with the simulation results in Fig. 7
(a), on average. In Fig. 7(c), this difference is of roughly 0.23
dB, whereas in Fig. 7 (b) the curve practically overlaps with
the simulation results.

-33
T oW e
=B
1+ = Simulations
CED 371 == Eq (50)
=, - = Eg. (55)
-39

NMSD(o0)
5

NMSD(o0)

Fig. 7: Steady-state NMSD for p. € [0.01, 1] in: (a) Scenario 1,
(b) Scenario 2, and (c) Scenario 3.

VI. CONCLUSIONS

In this paper, we conducted a theoretical analysis on the
ATC dLMS algorithm with random sampling in a stationary
environment. It was shown that, so long as the sampling prob-
ability is greater than zero, the sampling does not hinder the
stability of the algorithm in the worst-case scenario. Moreover,
there is a slight reduction in the steady-state NMSD, but this is
accompanied by a noticeable deterioration in the convergence
rate. As a result, networks with a random sampling technique
are outperformed by their counterparts in which the nodes
are permanently sampled, if the step sizes are adjusted so
as to obtain the same convergence rate. Lastly, as one might
expect, the sampling of less nodes leads to a reduction in
the computational cost. The simulations support the theoretical
results obtained in the paper. Furthermore, it is interesting to
notice that the effects of the sampling probability observed
in them are not exclusive to the scenarios considered in
this paper, as they were also noted in, e.g., [26], [28]. In
future works, we intend to extend the analysis to: i) non-
Gaussian and/or colored input signals, ii) to scenarios in which
each node k£ has its own distinct step size ug, sampling
probability p¢, , and autocorrelation matrix R, for the input
vector ug(n), iii) to situations in which the optimal system
varies over time, such as in random-walk scenarios, and iv)

possibly to other solutions, such as the dNLMS and dRLS
algorithms. Finally, it may be interesting to investigate if this
phenomenon also occurs in other types of algorithms, such
as nonlinear solutions like the diffusion Kernel Least-Mean-
Squares (dKLMS) algorithm [20]-[23].

APPENDIX A
DERIVING (22) AND (25)

Taking the expectations from both sides of (21) and using
Assumption Al, we get

E{|[Wi(n)*} = Bir(n) = D) D) cacipazi(n),  (64)
€N jEN
where we have defined
2ji(n) :E{{ [Las — 1€ (n)u; (n)u? (n)]%; (n—1)
T

— G (m); (n)u; (m)} .
AL = i) (n)uT ()]s (n—1)

= Gy }f.

The analysis of (65) can be broken down into two cases: i)
when j =1, and ii) when j #+. In the first situation, using A3
and AS, and noting that E{¢;(n)} =E{¢?(n)} =p¢, we get

zii(n) =B{&] (n—1)W;(n—1)}

—2upcE{W] (n—1)wi(n)uj (n)%;(n—1)}
+?pcB{W] (n—1)u(n)uf (n)ui(n)u; (n)w;(n—1)}
+u?pcoy E{uf (n)uy(n)}.

Using Assumptions A2 and A4, and following similar
procedures to those used in the analysis of the MSD of the
LMS algorithm, we may write (see pages 803-807 of [37])

(66)

E{w} (n—1Du(n)u} (n)W;(n—1)} = 62pi(n —1)  (67)
and
E{% (n—1)u;(n)uj (n)w;(n)uj (n)W;(n—1)} =
0y (M +2)Bii(n — 1). ©®
Thus, (66) can be recast as
zii(n)=0B;(n—1) + ungMoiai, (69)

with 6 defined as in (23). Let us now analyze the case in
which j # . To make this distinction clearer, we shall replace
the index ¢ by ¢ in this case. From A5, we can observe

that B{C;(n)Ce(n)} = E{¢;(n)}E{Ci(n)} = p2. Thus, using
assumptions A3 and AS, we can rewrite (65) for /#j as

zje(n) =E{v~v;-r(n—1)v~w(n—1)}

= B (1= s () () (1) .
— upcE{F (n=Dus(m)uf (n)We(n—1)}

P pZE{W ] (n—1)u; (n)uj (n)ug(n)uy (n)We(n—1)}

Using A2, A4, and A6, from (70) we can write

E{%] (n—1)u;(n)uj (n)%¢(n—1)}

=E{W] (n—1)w;(n)u (n)We(n—1)} =02 Bje(n — 1)

%

(71)
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for any pair of nodes ¢ and j, £ # j. Moreover, since the fourth-
order moment from (66) is absent in (70), we may write

E{W] (n—1)u;(n)u; (n)ug(n)ug (n)We(n—1)}

J
(72)
=0, Bje(n = 1)
Therefore, with 7 defined as in (24), we can write
zje(n)=7Bje(n —1). (73)

Thus, replacing (69) and (73) in (64) leads to (22).

As evidenced by (22) and (73), we also need to obtain a
recursion for E{W (n — 1)W,(n — 1)}, for j # ¢, in order to
analyze the evolution of the MSD of each node. Firstly, we
should notice that we can rewrite VNVJT (n)Wy(n) as a function
of the local estimates, i.e.

ST cucos by (), ().

SENg T‘E./\/’j

%7 (n)Wo(n) =

: (74)

Replacing (17) in (74), using Assumption A1, and taking
the expectations from both sides, we arrive at

Bie(n) = D1 D] cartrjzns(n).

seNy reN;;

(75)

Similarly to what we did for (64), the analysis of (75) can be
broken down into two cases: when s=r=t, and when s#r.
In the first case, we have that ¢;; # 0 and ¢4 # 0 only if the
node ¢ is in ./\/] NN¢. Thus, in an analogous manner, we get

Bt (n) =u2p4M03012,t + 084 (n—1). (76)
For s # r, we can write
Brs (n) =7—Brs (n - 1) (77)

Thus, replacing (76) and (77) in (75), we finally obtain (25).

APPENDIX B
ON THE MATRIX ®

We begin by noting that (25) can be recast as

v Vv
Bie(n) = >. " enjeel(0 = T)6ps +7]Brs(n — 1)

y (78)

+ u?pcMao? Z czjczga,i,
z=1

for any arbitrary j and ¢, by simply changing the order in
which the elements are added. Thus, if r = s, 8,.(n — 1),
which corresponds to the MSD of node 7, is multiplied by 6
and by c¢,jcy. In contrast, if 7 # s, 5,5(n — 1) corresponds
to the trace of the covariance matrix between w,.(n — 1) and
Ws(n — 1), and is multiplied by 7 and by ¢,;cse. Thus, if we
examine the vector 3(n) in (14), we notice that it consists of
V' elements between each pair of consecutive MSD’s in the
vector, and V(V — 1) elements related to cross-terms.

Thus, the matrix ® that appears in (37) is a matrix that has
V columns filled with 6, and between each pair of consecutive
columns, there are V' columns filled with 7. These columns
are multiplied element-wise by the corresponding combination

weights. As an example, let us consider a network formed by
only two connected nodes. In this case, we have

96%1 TC21C11 TC11C21 90%1
P — Ociaci1  Teaac11  Teipcar Ocpacon (79)
Ociicia  Tea1c12 Teiicae  Ocgicon
06%2 TC22C12 TC12C22 9C%2

We should notice that there are V' = 2 columns that are
related to the MSD’s, and, in between them, we have also two
columns, which are related to the covariances. If we focus on
the combination weights, we can see that the matrix ® carries
information from (CT)®(CT)=(C®C)", where the equality
follows from the properties of the Kronecker product. It also
carries information from 7 and 6. Hence, we can see ® as
the element-wise multiplication of two matrices, as in (41):
T', which is related to the combination weights as in (42), and
Q, which is related to 6 and 7 as in (43).

APPENDIX C
AN UPPER BOUND FOR THE STEADY-STATE NMSD OF
COOPERATIVE NETWORKS

For compactness of notation, let us introduce the quantity

e2b'[Iy: —7T] 'o. (80)
Replacing ¢ in Eq. (55), we thus obtain
2 M 2
NMSD, (o0) = w. (81)

Since ¢ is a scalar, and the trace of a scalar is the scalar
itself, we can write

e=Ti(e) = Tr {bT[IV2 —_ TF]_la} . (82)

The cyclic property of the trace operator states that we can
write

TI‘(MlMQMg) = TI'(MQMng) (83)

for any arbitrary matrices M;, My and M3 of appropriate
dimensions. Applying this property twice to (82), we get

e="Tr {o-bT[IVz _ Tr]—l} . (84)
Defining S = obT and G = [Iy2 — 7]}, (84) can be
recast more compactly as

e =Tr(SG). (85)

At this point, it is worth noting that, if I" is symmetric, so is
the matrix I — 7I". Recalling that the inverse of a symmetric
matrix is also symmetric, we can conclude that G is also
symmetric. Since I' = (C ® C)7, the matrix T' is symmetric
if, and only if, C is symmetric. This is guaranteed to occur
if the Metropolis rule is adopted, regardless of the network
topology, for example [1]. In the adaptive diffusion networks,
rules for the selection of the combination weights that lead to a
symmetric matrix C regardless of the topology are sometimes
referred to as “doubly stochastic policies” [1]. If we adopt the
Uniform rule instead, this is not guaranteed, since it is not a
doubly stochastic policy [1]. Nonetheless, the matrix C may
still be symmetric, depending on the network topology.
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On the other hand, the matrix S is not symmetric, and in
general is not positive semi-definite. Nonetheless, it has been
shown in [47] that, for a real N x N matrix M, and for a
real symmetric N x N matrix My, we may write

TI'(MlMQ) < Zf\il Az(ml))‘z(MQ)v (86)

where \;(-) denotes the i-th largest eigenvalue, and M; =

- (M;+MT). With this notation, we have that A\(-) >

A2(-) = -+ = An(+). In other words, Ai(-) represents the
greatest eigenvalue of its argument, i.e., A\1(*) = Apax(-), and
An(+) denotes the smallest one, i.e., Ay (+) = Amin(+).

In our context, if C is symmetric, we can replace My with
G in (86), and M; with

Q & 1 TY _ 1 T T
s_2(8+s)_2(ab +ba). 87)
Doing so, we straightforwardly obtain
2 —
Tr(SG) < 37, M(S)Xi(G). (88)

It would be useful to estimate Ap,ax(G). To do so, we begin
by noticing that I" is a right-stochastic matrix. As mentioned
in Sec. III-B, the spectral radius of these matrices is equal
to one [44], [45]. Moreover, at least one of their eigenvalues
is necessarily equal to 1. As a result, we know for sure that
Amax(T'") = 1. Thus, we have that \;(T") € [-1,1] for i =
1,2,---,V? and therefore conclude that \;(7T) € [—,7],
Ai(I—7T) e [1—7,1+ 7], and, consequently,

1 1
(G e [1+¢ 1_7] |

Moreover, since Apax(I') = 1, we conclude from (89) that
1
T 1-—7

We should notice that, as long as (30) holds, we have that
0 <7 <1, with7 =1 only if p; = 0. Thus, for p; > 0,
we observe from (90) that A\p.x(G) > 0. Moreover, since
—1 < Apin(T') < 1, we have that

1 1

(89)

Amax(G) (90)

< Arnin G g . 91
1+7 (G) 1—7 Oh
Since 1 > 0, we thus conclude that
1
0 < Anin(G) € Apax(G) = T— 92)
-7

We remark that the matrix S = ob™ is formed by the outer
product of two nonzero vectors.The rank of such matrices is
equal to one, and their non-zero eigenvalue is given by [44]

AL(S) = Tr(S) = Tr (baT) —bTo, (93)

where we adopted the index “1” because bTe > 0 and
thus this is the greatest eigenvalue of S. Moreover, since
transposing a matrix does not change its rank, we thus notice
that rank(S) = rank(ST) = 1. Since rank(M; + M), <
rank(M;) + rank(My3) for any arbitrary matrices M; and
M, of the same dimensions [44], we thus conclude that

rank(S) < rank(S) + rank(ST) = 2. (94)

In fact, from (87), we can see that S will be a rank-two
matrix, unless bT and o are linearly dependent, in which case
the rank of S will be equal to one. However, comparing the
vectors b £ vec{Iy} and o given by (40), we notice that
they cannot be linearly dependent unless c;; = 0 for every
1 # k, i.e., the network is non-cooperative. Since (55) only
holds as valid approximation for the cooperative scheme, we
conclude that, for the scenario we are interested in analyzing,
the rank of S cannot be equal to one. Finally, we remark that
the rank of S cannot be zero either, as this would lead to
the conclusion that the steady-state NMSD is equal to zero.
Thus, S is a rank-two matrix. Since it is also symmetric, and
therefore diagonalizable, this means that S has exactly two
non non-zero eigenvalues, or one non-zero eigenvalue with

multiplicity two. Let us denote them by \'(S) and \"(S). For

convenience, we use \'(S) to refer to the greatest eigenvalue

of S, and \”(S) to refer to the other one, i.e., N'(S) = \(S).
Moreover, we notice that

N (S) + \'(S) = Tx(S), (95)

as all the other eigenvalues of S are equal to zero. Since

transposing a matrix does not change its trace, Eq. (87) leads to

Tr(S) = Tr (S). (96)
Thus, using (95), we may write
Tr (S) =b"e. (97)
At this point, recalling (15), we may write
b'e = Tr(IyCR,CT) = Tr(CR,C™). (98)
Replacing (39) in (98) then yields
blo = ZY:1 Zkvzl i, ©9)
Thus, from (97) and (99), we can write
N(S) +N'(S) = XL, Xy or,. (100)

Since ZZ‘/=1 szl cz;08, > 0, we conclude that at least one

of the eigenvalues of S is positive. Since we are considering

that M’(S) = \’(S), we must have
N(S) >0

and, therefore,

A (S) = X(S). (101)

In principle, A”(S) could be either positive or negative,
provided that (100) holds. As discussed previously, it cannot

be equal to zero because rank(S) = 2. However, Bendixson’s
inequality states that, for any arbitrary matrix M, we have [48]

Amin [; (M+MT)] <Re[AM)] < Amax [; (M+MT)]

(102)
for every eigenvalue A of M. We remark that in (102), Re[']

denotes the real part. Thus, if we assume that A”(S) > 0, we
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1 vV v 14 |4
Tr(SG) < 1 5 > 2 Gioo, + |V D] D crickjo?, (109)
i=1k=1 i=1j=1 k=1
. MO' 1 1 vV Vv vV Vv 14 2
NMSD, (0) < Moy 1)1 SN SEa2 4+ (VIS Dlewicrjoz, : (110)
4 =7 |2 i=1k=1 i=1j=1 k=1

would have that Apin(S) = 0. In this case, from (87), (101),
and (102) we should be able to write

0 < 21 1Zk 1Clﬂ vk )‘I(S)

However, this leads to a contradiction. From (100) and (103)
we respectively get \'(S)+\"(S) = Zk 1202 and N'(S) =
Zl‘c/:l gﬁiagk. Both expressions cannot be simultaneously true
if \”(S) is positive, which contradicts our initial assumption.
Thus, \”(S) is necessarily negative, and we may write

(103)

/\V2(S) = )\”(g) < 0.
Therefore, from (88), we get

(104)

Tr(SG) < Amax(G)N(S) + Amin(G)N"(S (105)

)-
From (92) and (104), we notice that Ayin (G)A”(S) < 0, from
which we may write

Tr(SG) < Amax(G)X'(S), (106)

which leads to V(S
Tr(SG) < T ( ). (107)

-7

Hence, we need to determine \'(S). At this point, it is useful

to notice that the matrix S can be written as S = §§ 4-Sg,

_ bt
[0 b]isaV x2 matrix and Sp = o7

where Sy =
isa2xV msitrix._ We then use the fact that_ the_non-zero
eigenvalues of S 4 -Sp are the same as those of Sg-S 4, which
P bToe bTb
corresponds to the 2 x 2 matrix Sg -S4 =
P BRA cTo ble

After some algebra, we therefore conclude that
N(S) =

1
5 (b o+ [ble]). (108)

Thus, we have to evaluate |b| and ||o|. From (15), we get

Ib|? = bTb = vec{Iy } Tvec{Iy} = Tr(Iy) =V, (111)
and therefore
Ib] = VV. (112)
As for the vector o, from (40) we get
2
vV v 1%
lo| = Z Z Z CriCrjO2, (113)

i=1j=1 k=1

Thus, replacing (99), (112), and (113) in (108), we obtain

2

vV Vv v v|[v

2 2 2
2, 2kion+ |V || Dewewion,
im1k=1 i=1j=1| \ k=1

N(S)= - (114)

2

Lastly, replacing (114) in (107), we obtain Eq. (109) presented
at the top of this page.

Replacing (109) in (85) and then in (81), we conclude that,
for an arbitrary topology with doubly stochastic combination
weights, the upper bound of the steady-state NMSD is given
by (110), which is also presented at the top of the page. Then,
after some algebraic manipulations, one finally obtains (56).

APPENDIX D
OBTAINING (57)

Firstly, it is useful to note that [Iy» — 7[]7! =
Z;f;:O(TI‘)"i = Iy +Z;f’i:1(7'1")”'i. At this point, one
useful property of the matrix I, = ¢ly2yy2 is that
I‘%(V = I'k, . Thus, we have that

o T
[Iv2 —TFKV] 1 :Ivz-i-mlvzxvz. (115)
Multiplying (115) from the left by bT leads to
bT[Ivz—TrKV]_l :bT—i—lez, (116)

By applying the inverse vec operator to the right-hand side
of (116), we obtain

_ T T
eC ! {bT+(1_7_)‘/1v2}:IV+(1_T)‘/1VXV. (117)

Thus, using (15), (116), and (117), and introducing £ =
bT[Iy2—7Tk, ] vec{CR,C"}, we can write

T 1
=T I —1 X 1 X 1 X
£ r{[V+(1—7)VVV]V2 vxvRy VV}

1
=7

(118)
-3 (1 + 1= )Tr{lVXvR ].va}

where we used the fact that Cx,=C} =71yxy and that
I%XFVIVXV. Moreover, from (83), we get

Tr{lyxvRylyxv} =VTr{R, 1y uy} =V ), 02, (119)
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where we took advantage from the fact that R, is a diagonal
matrix. Thus, we obtain

&=

14
1 Zk’:l 0121k

1 T Vv
1 V- 2 — . (120
V2< +1—r> Vodimon sy (120

Finally, replacing (120) in (55) leads to (57).
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