
SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 1

A Low-Cost Algorithm for Adaptive Sampling and
Censoring in Diffusion Networks

Daniel G. Tiglea, Renato Candido, and Magno T. M. Silva, Member, IEEE

Abstract—Distributed signal processing has attracted
widespread attention in the scientific community due to its
several advantages over centralized approaches. Recently,
graph signal processing has risen to prominence, and adaptive
distributed solutions have also been proposed in the area. Both
in the classical framework and in graph signal processing,
sampling and censoring techniques have been topics of intense
research, since the cost associated with measuring, processing
and/or transmitting data throughout the entire network may be
prohibitive in certain applications. In this paper, we propose a
low-cost adaptive mechanism for sampling and censoring over
diffusion networks that uses information from more nodes when
the error in the network is high and from less nodes otherwise.
It presents fast convergence during transient and a significant
reduction in computational cost and energy consumption in
steady state. As a censoring technique, we show that it is able
to noticeably outperform other solutions. We also present a
theoretical analysis to give insights about its operation, and to
help the choice of suitable values for its parameters.

Index Terms—Diffusion strategies, adaptive networks, dis-
tributed estimation, graph signal processing, graph filtering,
sampling on graphs, energy efficiency, convex combination.

I. INTRODUCTION

OVER the last decade, adaptive diffusion networks have
become a consolidated tool for distributed parameter

estimation and signal processing. Compared to centralized
approaches, which require a central unit to receive and process
data from the entire network, this kind of solution presents
better scalability, autonomy, and flexibility [1]–[5]. As a result,
adaptive diffusion networks are regarded as effective solutions
in a handful of applications, such as target localization and
tracking [1], spectrum sensing in mobile networks [1], [6],
medical applications [7], among others.

These tools consist in a set of connected agents, or nodes,
that are able to collect local data, carry out calculations and
communicate with other nearby agents, i.e., its neighbors. The
collective goal of the network is to estimate a parameter vector
of interest without a central processing unit [1]–[10]. For this
purpose, each node usually computes its own local estimate in
what is called the adaptation step. Then, the neighboring nodes
cooperate to reach a global estimate of the vector of interest.
This stage is usually called the combination step. The order
in which the adaptation and combination stages are performed

This work was supported by FAPESP under Grant 2017/20378-9, by CNPq
under Grants 132586/2018-5 and 304715/2017-4 and by CAPES under Grant
88887.512247/2020-00 and Finance Code 001.

The authors are with the Electronic Systems Engineering Department,
Escola Politécnica, University of São Paulo, São Paulo, SP, Brazil, e-
mails:{dtiglea, renatocan, magno}@lps.usp.br, ph. +55-11-3091-5134.

leads to two possible schemes: the adapt-then-combine (ATC)
and combine-then-adapt (CTA) strategies [1]–[10].

More recently, graph signal processing (GSP) and graph
adaptive filtering [11]–[16] have become topics of intense
research within the signal processing community, particularly
in the field of diffusion networks [9], [10], [17]. In comparison
with the original distributed adaptation problem, graph adap-
tive filters incorporate information from the topology of the
network in the adaptation step, which is useful in situations
where this topology plays an important role in the dynamics
of the signals of interest [9], [10]. This is the case in many
network-structured applications that have emerged in recent
years, such as smart grids, internet of things, transportation
and communication networks, among many others [9]–[17].
In these cases, graphs are convenient modeling tools, since
they are well suited to represent irregular structures.

When implementing distributed solutions, it is often de-
sirable to restrict the number of data measurements and the
amount of information transmitted across the network. For
instance, when these strategies are implemented on wireless
sensor networks, where energy consumption is often the most
critical constraint [18]–[20]. Consequently, several solutions
have been proposed to reduce the energy consumption asso-
ciated with the communication between nodes. Some seek
to reduce the amount of information sent in each trans-
mission [21], [22], whereas others turn links off according
to selective communication policies [18], [23]–[25]. Finally,
there are the censoring techniques, which seek to avoid the
transmission of information from certain nodes to any of their
neighbors [19], [20], [26]–[28]. Thus, the censored nodes may
turn their transmitters off, which saves energy and reduces the
amount of information used in the processing [20], [28].

Furthermore, in certain situations, the cost associated with
the measurement and processing of the data in every node at
every time instant is prohibitively high, and thus some sort
of sampling mechanism is required [16], [17]. Sampling can
greatly reduce the computational cost and memory burden
associated with the learning task, but it may also impact the
performance of the algorithm. To illustrate this, Fig. 1 shows
simulation results obtained in a stationary environment con-
sidering a network with 20 nodes, which run the ATC diffuse
normalized least-mean-square (dNLMS) algorithm [1]–[3] in
conjunction with a sampling technique where Vs nodes are
randomly sampled at every iteration. The results are presented
for Vs P t5, 10, 15, 20u. The simulation scenario is described
in detail in Section VI, and we adopt the network mean-square-
deviation (NMSD) as a performance indicator [1]. To evaluate
the computational cost, we present the average number of

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 2

multiplications and sums per iteration for each value of Vs.
They are presented as percentages of the number of operations
performed when all Vs “ 20 nodes are sampled. We observe
that the less nodes are sampled, the lower the computational
cost. Nonetheless, there is a clear impact on the convergence
rate, which becomes increasingly slower as the number of
sampled nodes decreases. Furthermore, we observe that the
steady-state performance is not degraded by the sampling.
One intuitive explanation for this is that sampling reduces
the rate with which information enters the adaptive network,
which leads to a slower convergence rate. However, once the
algorithm achieves the steady state, the introduction of more
information into the network usually does not improve the
performance in a stationary environment.

0 20 40 60 80

Iterations (×103)

−30

−20

−10

0

10

(a
)

N
M

S
D

(d
B

)

Vs = 20

Vs = 15

Vs = 10

Vs = 5

15 10 5
Vs

80

90

100

(b
)

R
el

at
iv

e
C

os
t

(%
)

Mult.

Sums

Fig. 1: Simulation results obtained for a 20-node network
running ATC dNLMS with Vs nodes sampled per iteration.
The simulation scenario is described in Section VI. (a) NMSD
curves and (b) Relative number of multiplications and sums in
comparison with the case where all Vs“20 nodes are sampled.

The question that arises from this experiment is whether it
is possible to design a more “intelligent” sampling strategy,
in which more nodes are sampled when the estimation error
is high (e.g., during transient) and less nodes otherwise,
thus preserving the convergence rate of the algorithm. In
our previous works, we have proposed a technique that can
greatly reduce the computational cost during steady state while
maintaining transient performance [29], [30]. Moreover, with
slight modifications it can also be employed as a censoring
strategy, allowing the nodes to save energy by transmitting
less information to their neighbors. This paper extends these
works in numerous ways:

1) We consider a unified formulation encompassing graph
adaptive filters as well as “classical” adaptive diffusion
networks, which have been studied separately in the
literature [1], [9], [10], [29], [30].

2) Theoretical results obtained in [29], [30] are discussed in
more detail and tested in different simulation scenarios.

3) We obtain sufficient conditions to ensure that our pro-
posed technique reduces the computational cost in com-
parison with the original dNLMS algorithm.

4) We compare the censoring version of our proposed
technique with other state-of-the-art censoring mecha-
nisms [19], [26].

5) We test our sampling and censoring algorithms in a non-
stationary environment following a random-walk model.

The paper is organized as follows. The unified formulation
of diffuse adaptive networks is presented in Section II for both
the classical distributed estimation problem and for GSP. In
Section III, the adaptive sampling mechanism is introduced,
and we analyze its behavior in Section IV. In Section V,
the computational cost reduction of the proposed sampling
mechanism is analyzed in more detail. Finally, simulation
results are presented in Section VI, and Section VII closes the
paper with the main conclusions and ideas for future work.
Notation. We use normal font letters to denote scalars, boldface
lowercase letters for vectors, and boldface uppercase letters for
matrices. Moreover, rxsk denotes the k-th entry of the vector
x, and if X is a set, |X | denotes its cardinality. Finally, p¨qT

denotes transposition, Et¨u the mathematical expectation, Trr¨s
the trace of a matrix, and } ¨} the Euclidean norm. To simplify
the arguments, we assume real data throughout the paper.

II. PROBLEM FORMULATION

Let us consider a network with a predefined topology
and V nodes labeled 1, ¨ ¨ ¨ , k, ¨ ¨ ¨ , V . Two nodes are
considered neighbors if they can exchange information, and
we denote by Nk the neighborhood of node k including k
itself. Furthermore, as depicted in Fig. 2, each node k has
access at each time instant n to an input signal ukpnq and to
a desired signal dkpnq, modeled as [1]–[3], [9], [10]

dkpnq “ xT
kpnqw

o ` vkpnq, (1)

where vkpnq is the measurement noise at node k, which is
assumed to be independent of the other variables and zero-
mean with variance σ2

vk
, and wo and xkpnq are M -length

column vectors that represent respectively the optimal system
and a processed version of the input signal ukpnq.

i

j

k

ℓ

Nk

{ (n), (n)}di ui

{ (n), (n)}dj uj

{ (n), (n)}dk uk

{ (n), (n)}dℓ uℓ

⋯

⋯

⋯

r

t

q

{ (n), (n)}dr ur

{ (n), (n)}dt ut

{ (n), (n)}dq uq

Fig. 2: Example of a diffusion network. In this case, the
neighborhood of node k consists of the nodes i, j, k, and `.

In the classical adaptation problem, xkpnq is usually con-
sidered to be a regressor vector, given by [1]–[3]

xkpnq “ rukpnq ukpn´1q ¨ ¨ ¨ ukpn´M`1qsT. (2)

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 3

Thus, dkpnq can be seen as a noisy measurement of the output
of the finite impulse response (FIR) optimal filter wo. In the
context of graph adaptive filtering, xkpnq is assumed to be
related to the topology of the graph through [9], [10]

xkpnq“
”

rupnqsk rAupń 1qsk ¨ ¨ ¨ rA
M 1́upń M 1̀qsk

ıT

, (3)

where upnq “ ru1pnq u2pnq ¨ ¨ ¨ uV pnqs
T, and A is

the graph shift operator. Possible choices for A include
the adjacency matrix, the graph Laplacian matrix, among
others [9], [10]. It is interesting to notice that the graph
associated with A can be different from the communication
network [9]. For instance, nodes may be able to communicate
with farther peers, whose effects on their signals are negligible.
The relation between xkpnq and upnq in (3) can be interpreted
as follows: upnq represents the “raw” information available at
each node of the network at the iteration n, whereas xkpnq
models the spreading of that information throughout the graph,
which is the result of both a temporal and spacial shift, or
“delay”. Moreover, wo models how exactly the graph topology
and time lag affect the spreading of information, and dkpnq
represents a noisy measurement of the information available
at node k as a result of this spreading process [9], [10]. We
should notice that there is a clear analogy to the tapped delay
line commonly found in discrete-time filters [31].

The difference between the classic framework and the
graph-based one lies in the role of the spatial aspect of the
problem. In the former, the topology of the network does not
influence the dynamics of the desired signal. Thus, dkpnq de-
pends only on the signal ukpnq and on the measurement noise
vkpnq, and is independent of uipnq for all i“1, ¨ ¨ ¨ ,V, i‰k.
This occurs since the information does not “travel” from one
node to another. In graph signal processing, if the nodes i and
k are immediate neighbors, dkpnq does depend on uipn´1q,
since the information from one node spreads to its neighbors
over time. Moreover, if nodes j and k are two-hop neighbors
(i.e., it is possible to travel from node j to node k in two
hops), dkpnq also depends on ujpn´2q, and so forth. Hence,
the topology of the network plays a major role in how the
desired signal dkpnq unfolds at each node k. This makes graph
adaptive filtering well suited for distributed problems where
both time and space must be taken into consideration, e.g.,
meteorology [9], [10]. Nonetheless, despite the conceptual
differences between both applications, in all cases Model (1)
is assumed to hold. Thus a common mathematical formulation
can be used to describe them to a certain extent.

In both situations, the objective of the network is to
obtain an estimate w of wo in a distributed manner by
solving [1]–[3], [9], [10]

min
w

Jglobalpwq“min
w

řV
k“1 Jkpwq, (4)

where Jkpwq are the local costs at each node k, given by

JkpwqfiEt|dkpnq´xT
kpnqw|

2u. (5)

Thus, at each iteration, every node k calculates a local estimate
of wo in order to minimize its individual cost function Jkpwq.
This is done by using only the data available locally, as well

as the information transmitted by neighboring nodes. Then,
the nodes cooperate to form the global estimate w.

Several adaptive solutions have been proposed in the lit-
erature to solve (4), one of them being the ATC dNLMS
algorithm [1]–[3], [9], [10]. The adaptation and combination
steps of this algorithm are respectively given by

#

ψkpn` 1q“wkpnq`µkpnqxkpnqekpnq

wkpn` 1q“
ř

jPNk
cjkpnqψjpn` 1q,

(6a)
(6b)

where ψk and wk are the local and combined estimates of
wo at node k. It can be shown that, when the adaptation and
combination steps are done properly, wk converge to a single
common solution for k “ 1, ¨ ¨ ¨ ,V [1]–[4]. Furthermore,

ekpnq “ dkpnq ´ xT
kpnqwkpnq (7)

is the estimation error, and

µkpnq“
rµk

δ ` }xkpnq}2
(8)

is a normalized step size with 0ărµkă2 and a small regular-
ization factor δą 0 [1]. Moreover, tcjkpnqu are combination
weights satisfying [2], [3]

cjkpnqě0,
ř

jPNk
cjkpnq“1, and cjkpnq“0 for j RNk. (9)

Possible choices for tcjku include static combination policies,
such as the Uniform, Laplacian, Metropolis, and Relative
Degree rules [1], [4], as well as adaptive schemes [8], [32],
[33], such as the Adaptive Combination Weights (ACW)
algorithm [32], [34]. ACW incorporates information from the
noise profile across the network, and is obtained by solving
an optimization problem with respect to tcjku [32], [34]. Its
equations are given by [34]

cjkpnq “

$

’

&

’

%

pσ´2
jk pnq

ř

`PNk
pσ´2
`k pnq

if j P Nk

0, otherwise
, (10)

where σ2
jkpnq is updated as

pσ2
jkpnq“p1´νkqpσ

2
jkpn´1q`νk‖ψjpn`1q´wkpnq‖2, (11)

with νk ą 0 for k “ 1, ¨ ¨ ¨ ,V . Hence, greater weights are
assigned to the least noisy nodes [34]. We should notice that
tcikpnqu given by (10) satisfy (9). To avoid division by zero,
in this paper we adopt a regularized version of (10), i.e., we
respectively replace pσ´2

jk pnq and pσ´2
`k pnq by rδc`pσ2

jkpnqs
´1

and rδc`pσ2
`kpnqs

´1 in (10) where δcą0 is a small constant.
Finally, it is worth recalling that we could also employ a

CTA strategy [1]–[10] in conjunction with other adaptive solu-
tions [4], [5]. For simplicity, in this paper we will only consider
the ATC strategy with the dNLMS algorithm. However, the
results can be straightforwardly extended to other approaches.

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 4

III. THE SAMPLING ALGORITHM

At each iteration, the ATC dNLMS algorithm estimates
the vector wo from the data tdkpnq, ukpnqu. In our sampling
proposal, we define the variable sskpnq that assumes the values
zero or one to decide if each node k should be sampled and
if (6a) should be computed or not. Thus, we recast (6a) as

ψkpn` 1q “ wkpnq ` sskpnqµkpnqxkpnqekpnq. (12)

If sskpnq “ 1, dkpnq is sampled, ekpnq is computed as in (7)
and (12) coincides with (6a). In contrast, if sskpnq“0, dkpnq is
not sampled, xT

kpnqwkpnq, ekpnq and µkpnq are not computed,
and ψkpn`1q“wkpnq.

To determine sskpnq, we define skpnqPr0,1s such that

sskpnq “

#

1, if skpnq ě 0.5,
0, otherwise

. (13)

We then minimize

Js,kpnq “ rskpnqsβs̄kpnq`
“

1´skpnq
‰

ÿ

jPNk

cikpnqe
2
i pnq, (14)

with respect to skpnq, where βą0 is a parameter introduced
to control how much the sampling of the nodes is penalized.
When the error is high in magnitude or when node k is not
being sampled (s̄k“0), Js,kpnq is minimized by making skpnq
closer to one, leading to the sampling of node k. This ensures
that the algorithm keeps sampling the nodes while the error is
high and resumes the sampling of idle nodes at some point,
enabling it to detect changes in the environment. In contrast,
when node k is being sampled (s̄k“1) and the error is small
in magnitude in comparison to β, Js,kpnq is minimized by
making skpnq closer to zero, which leads the algorithm to
stop sampling node k. This desirable behavior depends on a
proper choice for β, which is addressed in Section IV.

Inspired by convex combination of adaptive filters (see [35],
[36] and their references), rather than directly adjusting skpnq,
we update an auxiliary variable αkpnq related to it via [36]

skpnq “ φrαkpnqs fi
sgmrαkpnqs ´ sgmr´α`s

sgmrα`s ´ sgmr´α`s
, (15)

where sgmrxs“p1`e´xq´1 is a sigmoidal function and α` is
the maximum value αk can assume. The function φr¨s of (15)
is a scaled and shifted version of sgmr¨s. It was proposed
in [36] to prevent the adaptation process from stopping if
αkpnq becomes too large or too negative. We should notice
that φrα`s “ 1, φr0s “ 0.5, and φr´α`s “ 0. In the literature,
α`“4 is usually adopted [36].

By taking the derivative of (14) with respect to αkpnq, we
obtain the following stochastic gradient descent rule:

αkpn`1q“αkpnq`

µsφ
1rαkpnqs

”

ř

iPNk
cikpnqe

2
i pnq´βs̄kpnq

ı

, (16)

where µs ą 0 is a step size and

φ1rαkpnqsfi
dskpnq

dαkpnq
“

sgmrαkpnqst1´sgmrαkpnqsu

sgmrα`s´sgmr´α`s
. (17)

Equation (16) cannot be used for sampling since it requires
the errors to be computed to decide if the nodes should be

sampled or not, which is contradictory. To address this issue,
we replace eipnq in (16) by its latest measurement we have
access to, which is denoted by εipnq. When the node is
sampled, εipnq“eipnq. We thus obtain

αkpn`1q“αkpnq`

µsφ
1rαkpnqs

”

ř

iPNk
cikpnqε

2
i pnq´βsskpnq

ı

.
(18)

Equation (18) is the foundation of the adaptive sampling
mechanism. In conjunction with (12), it leads to an adaptive-
sampling version of the dNLMS algorithm, named as adaptive-
sampling diffusion NLMS (AS-dNLMS). This algorithm is
summarized in Table I. Since (18) depends only on the
estimation error at each sampled node, the proposed sampling
technique can be extended to any adaptive diffuse algorithm.

It is interesting to notice that although we used skpnq in the
derivation of the algorithm, it does not have to be calculated
explicitly, since it does not arise in (12) or (18). Instead, only
sskpnq and dskpnq

dαkpnq
appear. The latter can be stored in a look-up

table, and the former is related to αkpnq by

sskpnq “

#

1, if αkpnq ě 0,
0, otherwise

, (19)

as can be seen from (13) and (15).

TABLE I: Summary of the AS-dNLMS algorithm

% Initialization
For each node i“1, ¨ ¨ ¨ ,V , set αip0qÐα`, ssip0qÐ1, εipnqÐ0,
xip0q “ 0, ψip0qÐ0, wip0qÐ0.

% Then, repeat the following for every iteration ně0 and every node k:
% Adaptation Step

If αkpnqě0, do :
sskpnqÐ1

Else, do:
sskpnq Ð 0

End
If sskpnq“1, do :

Update xkpnq and }xkpnq}
2

µkpnq Ð rµk{rδ ` }xkpnq}
2s

ekpnq Ð dkpnq ´ xT
kpnqwkpnq

εkpnqÐekpnq
ψkpn` 1q Ð wkpnq ` sskpnqµkpnqxkpnqekpnq

Else, do:
ψkpn` 1q Ð wkpnq

End
% Transmission

Transmit ψkpn` 1q and ε2kpnq to every node P Nk

% Combination Step
αkpǹ 1qÐαkpnq̀ µsφ

1rαkpnqs
”

ř

iPNk
cikpnqε

2
i pnq´βsskpnq

ı

wkpn` 1qÐ
ř

jPNk
cjkpnqψjpn` 1q

The proposed mechanism reduces the number of sampled
nodes in steady state, decreasing the computational cost. If β
is chosen appropriately, this reduction does not occur in the
transient and the adaptive-sampling version of the algorithm
maintains the same convergence rate as that of the original
with no sampling mechanism. This comes at the expense of
a slight increase of the cost during the transient, since the
sampling algorithm requires the computation of an additional
update equation per node per iteration. This will be explored
in more detail in Section V. Furthermore, we should mention
that when the node i is sampled, it is required to transmit
ε2
i pnq “ e2

i pnq to its neighbors. Nonetheless, this information

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 5

can be sent bundled with the local estimates ψi so as to not
increase the number of transmissions.

Finally, we remark that the algorithm described in Table I
can be implemented in conjunction with any rule for the
selection of combination weights. If an adaptive scheme for
such selection is employed, the update of tcikpnqu should also
be included in Table I. Particularly, if ACW is considered
in conjunction with AS-dNLMS and the sampling of node
k ceased for a long period of time, the sampling mechanism
could potentially harm the update of the combination weights.
This occurs since in this case pσkk could tend towards zero
in (11) due to sk being equal to zero in (12). To avoid this,
for j “ k, we replace ψjpn ` 1q in (11) by sψkpn ` 1q fi

sskpnqψkpn` 1q ` r1´ sskpnqssψkpnq.

The Adaptive Sampling Algorithm as a Censoring Strategy

With a very simple modification, the proposed adaptive
sampling mechanism can also be used as a censoring strategy.
This alternate version of AS-dNLMS is obtained by not
updating ψk at all when node k is not sampled. In other words,
instead of using (12), we apply

ψkpn` 1q “ r1´sskpnqsψkpnq`

sskpnq
“

wkpnq`µkpnqxkpnqekpnq
‰

.
(20)

Assuming that the nodes can store past information from
their neighbors, this allows us to cut the number of com-
munications between nodes, since in this case ψk and ε2

k

remain static when s̄k “ 0 and there is no need for node
k to retransmit them. Thus, when node k is not sampled in
this version of the algorithm, it only receives data and carries
out (6b), and can therefore turn its transmitter off. This version
of the proposed algorithm is named as adaptive-sampling-and-
censoring diffusion NLMS (ASC-dNLMS), and it features a
lower energy consumption as well as a computational cost
reduction in comparison with the original dNLMS algorithm.
Its pseudocode is identical to that of Table I, except for the
“else” part of the second “if” condition, which does not exist
in this version.

IV. THEORETICAL ANALYSIS

In the current section, we conduct a theoretical analysis of
the proposed sampling mechanism. In IV-A, we show how to
choose β so as to ensure that the nodes cease to be sampled
during steady state. Then, in IV-B we study how its choice
influences the expected number of sampled nodes per iteration.
Finally, in IV-C, we analyze how fast the nodes cease to be
sampled depending on the choice for µs, and how to select
this parameter appropriately based on that information.

A. The parameter β and its effects on the algorithm

The parameter β plays a crucial role in the behavior of the
AS-dNLMS. It influences the expected number of sampled
nodes during steady state, and determines when the sampling
mechanism begins to act.

Firstly, we study how to choose β so that we can ensure
that every node will cease to be sampled at some point during

steady state. To do so, we examine (18) while node k is being
sampled. In this case, ε2

i pnq and βs̄kpnq can be replaced by
e2
i pnq and β, respectively. Then, subtracting αkpnq from both

sides in (18) and taking expectations, we get

Et∆αkpnqu“µsE

$

&

%

φ1rαkpnqs

»

–

ÿ

iPNk

cikpnqe
2
i pnq´β

fi

fl

,

.

-

. (21)

where ∆αkpnq fi αkpǹ 1q´αkpnq. To make the analysis more
tractable, φ1rαkpnqs and the term between brackets in (21)
are assumed to be statistically independent. Although this
assumption may seem unrealistic, simulation results suggest
it is a reasonable approximation. Furthermore, for simplicity,
we consider henceforth in our analysis that the combination
weights are static and deterministic. Thus, we can write

Et∆αkpnqu “µsEtφ
1rαkpnqsuˆ

”

ř

iPNk
cikEte2

i pnqu ´ β
ı

.
(22)

In order to stop sampling node k, αkpnq should decrease
along the iterations until it becomes negative. Since φ1rαkpnqs
is always positive, to enforce Et∆αkpnqu to be negative while
node k is sampled, β must satisfy

β ą
ř

iPNk
cikEte2

i pnqu. (23)

Assuming that the order of the adaptive filter is sufficient
and that µ̃k, k “ 1, ¨ ¨ ¨ , V, are chosen properly so that the
gradient noise can be disregarded, it is reasonable to assume
that, during steady state, Ete2

i pnqu « σ2
vi , which leads to

σ2
min ď

ř

iPNk
cikEte2

i pnqu ď σ2
max, (24)

where σ2
min fi mini σ

2
vi , and σ2

max fi maxi σ
2
vi , i“ 1, ¨ ¨ ¨ ,V .

Thus, the condition
β ą σ2

min (25)

is necessary (but not sufficient) if we wish to stop sampling the
nodes at some point during steady state. On the other hand,

β ą σ2
max (26)

is a sufficient (although not necessary) condition to ensure a
reduction in the number of sampled nodes. Moreover, this en-
sures that every node will cease to be sampled at some iteration
during steady state in the mean. When σ2

min “ σ2
max, i.e., every

node is subject to the same level of noise power, (25) and (26)
coincide and form a necessary and sufficient condition.

Moreover, given a certain value of β, we can analyze
when the sampling mechanism will begin to act in terms
of the mean-squared error (MSE). From (22) we observe
that Et∆αkpnqu ě 0 as long as

ř

iPNk
cikpnqEte

2
i pnqu ě

β. Since we do not allow αkpnq to become greater than
α`, we conclude that Etαkpnqu “ α` for k “ 1, ¨ ¨ ¨ ,V
as long as MSEminpnq ą β, where MSEminpnq fi

mini“1,¨¨¨ ,V Ete2
i pnqu. In terms of mean-square deviation,

this can be translated as follows. Applying the independence
theory [31] to the estimation errors eipnq, i “ 1, ¨ ¨ ¨ ,V and
assuming that xipnq is wide-sense stationary and statistically

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 6

independent from wipnq, after some algebraic manipulations
we can conclude that Etαkpnqu“α

` as long as

MSDminpnq ą
β ´ σ2

min

mini“1,¨¨¨ ,V Et‖xipnq‖2
u
,

where MSDmin fi mini“1,¨¨¨ ,V Et
∥∥wopnq´wjpnq

∥∥2
u denotes

the lowest MSD in the network. This indicates that, in the
mean, the sampling mechanism does not act as long as
MSDmin remains greater than a threshold that is directly
proportional to β. Consequently, we can be sure that no node
will cease to be sampled in the mean during that period.
Furthermore, the higher the value of β we adopt, the sooner
Etαkpnqu begins to decrease for k “ 1, ¨ ¨ ¨ ,V , and thus the
sooner the nodes cease to be sampled for a fixed step size µs.

B. The expected number of sampled nodes
Based on the previous section, we can estimate upper and

lower bounds for the expected number Vs of sampled nodes in
steady state. For this purpose, we consider each sskpnq as an
independent Bernoulli random variable during steady state that
is equal to one with probability psk or to zero with probability
1´psk for k“1, ¨ ¨ ¨ ,V , with 0ďpskď1. Thus,

V psmin ď EtVsu ď V psmax , (27)

where psmin and psmax are upper and lower bounds for psk ,
k “ 1, ¨ ¨ ¨ ,V .

It is useful to note that the sampling mechanism exhibits a
cyclic behavior in steady state. Hence, we could approximate
psk by the expected “duty cycle” of the mechanism, i.e.,

ppsk “
θk

θk ` θk
, (28)

where θk denotes the expected number of iterations per cycle
in which node k is sampled and θk is the expected number of
iterations in which it is not. Since we are only interested in
estimating psmin

and psmax
, we do not need to evaluate (28)

for every k. Instead, we only need to estimate upper and lower
bounds for θk and θk, which we respectively denote by θmax,
θmin, θmax and θmin.

For the sake of brevity, in this section we omit the inter-
mediate calculations and skip to the final results concerning
the estimation of these parameters. Nonetheless, a complete
demonstration is provided in Appendix A.

Assuming that we can write

σ2
min ď

ř

iPNk
cikEtε2

i pnqu ď σ2
max (29)

for k “ 1, ¨ ¨ ¨ ,V during steady state, we can estimate
θmax by finding the maximum number of iterations any node
can remain sampled in the mean. Considering a worst-case
scenario, as well as the fact that every node must be sampled
at least once during each cycle, and assuming that (26) is
satisfied, we obtain after some approximations

θmax “ maxtσ2
max{pβ ´ σ

2
maxq, 1u. (30)

Following an analogous procedure, the estimated lower
bound θmin of θk can be obtained as

θmin “ maxtσ2
min{pβ ´ σ

2
minq, 1u. (31)

Lastly, for θmax and θmin, we respectively obtain

θmax “ maxtpβ ´ σ2
minq{σ

2
min, 1u (32)

and
θmin “ maxtpβ ´ σ2

maxq{σ
2
max, 1u. (33)

Thus, using (28), we can now estimate psmin and psmax as

ppmin “
θmin

θmin ` θmax

(34)

and
ppmax “

θmax

θmax ` θmin

. (35)

When β ă 2σ2
min, we observe from (31) and (32) that

θmin “ σ2
min{pβ ´ σ

2
minq and θmax “ 1. On the other

hand, for β ě 2σ2
min, (31) and (32) yield θmin “ 1 and

θmax “ pβ ´ σ
2
minq{σ

2
min, respectively. In both cases, making

these replacements in (34), we get

ppmin “ σ2
min{β. (36)

Analogously, from (30), (33), and (35) we obtain

ppmax “ σ2
max{β. (37)

Thus, replacing (36) and (37) in (27), we finally get

V
σ2

min

β
ď EtVsu ď V

σ2
max

β
. (38)

For β ă σ2
max, (38) yields an upper bound that is greater

than the total number V of nodes, which is not convenient.
However, we can generalize it for all β ą 0 by recasting it as

V ¨min

#

1,
σ2

min

β

+

ďEtVsuďV ¨min

#

1,
σ2

max

β

+

. (39)

Replacing β ă σ2
min in (39) implies EtVsu “ V , which

agrees with (25) being a necessary condition to ensure a reduc-
tion in the number of sampled nodes. Analogously, replacing
βąσ2

max we conclude that EtVsuăV , which is in accordance
with (26) being a sufficient condition. Moreover, the higher
the parameter β, the smaller the amount of nodes sampled
in the mean during steady state, as expected. Since there is a
trade-off between the tracking capability and the gains in terms
of computational cost provided by the sampling mechanism,
we should care not to choose excessively high values for β,
since they can deteriorate the performance in non-stationary
environments. Simulation results suggest that if βď5σ2

max, the
good behavior of the algorithm is maintained. Moreover, the
upper and lower bounds coincide when σ2

min“σ
2
max. Finally,

the step size µs does not affect the number of sampled nodes.

C. Choosing the step size µs
In this section, we show how to choose a proper value for

the parameter µs. To do so, we study how fast the nodes cease
to be sampled (i.e., how fast we arrive at Etαkpnqu ď 0)
after the algorithm’s initialization with αkp0q “ α` for
k“1, ¨ ¨ ¨ , V . From (22) and (24), we can write

Et∆αkpnqu ď µsEtφ
1rαkpnqsupσ

2
max ´ βq. (40)

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 7

Since in this case we consider αkpnq P r0, α`s, approxi-
mating φ1rαkpnqs by its first-order Taylor expansion around
αkpnq “ 0 is not a suitable approach. Instead, we now
approximate φ1rαkpnqs in that interval by a straight line that
crosses the points p0, φ10q and pα`, φ1α`q, in which φ10 and
φ1α` respectively denote the value of φ1rαkpnqs evaluated at
αkpnq “ 0 and αkpnq “ α`. This approximation is given by

φ1rαkpnqs « ζαkpnq ` φ
1
0, (41)

where ζ “ rφ1α` ´ φ
1
0s{α

`. For α` “ 4, this is a good
approximation since its mean-squared error in r0, α`s is of
the order of 5ˆ 10´4.

Replacing (41) in (40), we obtain

Etαkpn` 1qu Æ Etαkpnqup1` ζρq ` φ
1
0ρ, (42)

where ρ “ µspσ
2
max ´ βq. Since we assumed Etαkpnqu«α

`

during transient, we denote the first iteration of the steady
state by n0 and define n0 `∆n fi n ` 1. Then, considering
Etαkpn0qu«α

` in (42) and applying it recursively, we obtain

Etαkpn0`∆nquÆα`p1`ζρq∆n`φ10ρ
∆n´1
ÿ

η“0

p1`ζρqη. (43)

After some algebraic manipulations, we arrive at

Etαkpn0`∆nqu Æ rpζα` ` φ10qp1` ζρq
∆n ´ φ10s{ζ. (44)

Since we are interested in studying how fast we arrive
at Etαkpnquď0 depending on our choice of µs, we set
Etαkpn0`∆nqu to zero in (44). Thus, for a desired value
of ∆n and βąσ2

max, we should choose

µs ą
α`

pβ ´ σ2
maxqpφ

1
0 ´ φ

1
α`
q

»

—

–

˜

φ1o
φ1
α`

¸
1

∆n

´ 1

fi

ffi

fl

. (45)

From (45), we observe that the smaller the ∆n, the larger the
value of µs, which is reasonable. Moreover, as β approaches
σ2

max, (45) yields increasingly large values for µs. Since (26)
is a sufficient condition, the nodes may cease to be sampled
even for βďσ2

max. When β«σ2
max and σ2

minăσ
2
max, (45) may

overestimate the value of µs required to cease the sampling
of the nodes within ∆n iterations. Nonetheless, this does not
invalidate (45), since we are only interested in ensuring that
the sampling will cease in at most ∆n iterations.

V. COMPUTATIONAL COST ANALYSIS

If (26) is satisfied, the proposed mechanism leads to a
reduction in the expected number of sampled nodes. However,
this does not guarantee an advantage in terms of computational
cost, since the sampling algorithm also requires a certain num-
ber of operations. Analyzing Table I, we see that the sampling
mechanism requires |Nk |̀ 1`sskpnq sums, |Nk |̀ 1 multiplica-
tions and two comparisons per iteration for each sampled node
k of the network. However, when node k is not sampled, AS-
dNLMS does not have to calculate xT

kpnqwkpnq, ekpnq, and
µkpnq, thus requiring 2M´

ř

iPNk
s̄ipnq less multiplications,

2M´|Nk| ` 1 less sums, and one less division than dNLMS.

These results are summarized in Table II for both algorithms
with ACW applied to classical distributed signal processing.
We consider an implementation of φ1rαkpnqs through a look-
up table, which is not taken into account in Table II.

In this section, we analyze which conditions have to be
satisfied in order to ensure that the computational cost of AS-
dNLMS is lower than that of dNLMS. In our analysis, we
focus on the number of multiplications (b). Analogous results
can be obtained for the number of sums, but since they are
less restrictive for AS-dNLMS, they are omitted here.

Firstly, we subtract the second row of Table II from the first
one, obtaining

∆bk “ 2M ´ 2pM ` 1qsskpnq ´ |Nk|, (46)

where ∆bk represents the difference in the number of multi-
plications between dNLMS and AS-dNLMS.

Summing ∆bk for k “ 1, ¨ ¨ ¨ ,V and taking expectations,
we obtain for the whole network

Et∆bu“2VM´
řV
k“1

“

2pM`1qEtsskpnqu` |Nk|
‰

, (47)

where we have defined ∆bfi
řV
k“1∆bk.

AS-dNLMS is advantageous over dNLMS in terms of
computational cost when Et∆bu ą 0. Assuming again that
ssk can be seen as a Bernoulli random variable in steady state,
we have Etsskpnqu “ psk . In this case, the worst-case scenario
occurs if we consider Etsskpnqu “ psmax , since this minimizes
Et∆bu, leading to

Et∆bminu“2VM´
”

2pM`1qV psmax
`
řV
k“1 |Nk|

ı

. (48)

Enforcing Et∆bminu ą 0, we conclude from (48) that, in
order to ensure that AS-dNLMS requires less multiplications
than dNLMS, we must have

psmax
ă

2VM ´
řV
k“1 |Nk|

2V pM ` 1q
. (49)

Replacing psmax by ppsmax from (37) in (49), we finally get

β ą
2V pM ` 1q

2VM ´
řV
k“1 |Nk|

¨ σ2
max. (50)

We remark that (50) is a sufficient (but not necessary) condi-
tion to ensure that AS-dNLMS presents a lower computational
cost than dNLMS. The factor that multiplies σ2

max in (50)
is always greater than one, which is in accordance with our
expectations. Moreover, the right-hand side of (50) approaches
σ2

max as M grows. Thus, the higher the order of the filter,
the greater the computational cost reduction of AS-dNLMS in
comparison with dNLMS for a fixed β. Furthermore, we can
only ensure a decrease in the computational cost if

M ą
1

2

¨

˝

1

V

V
ÿ

k“1

|Nk|

˛

‚. (51)

If (51) is not met, there is no finite value for β ą 0 that
satisfies (50), since this would imply psmax ď 0 in (49).
Thus, the filter length should be greater than half the average

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 8

TABLE II: Computational cost comparison between dNLMS and AS-dNLMS with ACW for classical distributed signal
processing: number of operations per iteration for each node k.

Algorithm Multiplications (
Â

) Sums (
À

) Divisions Comparisons
dNLMS Mp3` |Nk|q ` 4 Mp3` |Nk|q ` 3 |Nk| 0

AS-dNLMS s̄kpnqp2M ` 2q`Mp1` |Nk|q`|Nk|`4 s̄kpnqp2M ` 2q`Mp|Nk| ` 1q`|Nk|`2 |Nk|`sskpnq´1 2

neighborhood size in the network. This is a reasonable condi-
tion, since sparse and cluster topologies are more common in
most applications [13]–[17]. Finally, we remark that we would
obtain a different expression for β if we considered other
diffuse algorithms [4], [5] and other rules for the selection
of the combination weights [1], [8], [33].

VI. SIMULATION RESULTS

In this section, we present simulation results to illustrate the
behavior of the proposed sampling mechanism and to validate
the results of Sections IV and V. The results presented were
obtained over an average of 100 independent realizations. For
better visualization, we filtered the curves by a moving-average
filter with 64 coefficients, unless otherwise stated.

We consider the ATC dNLMS algorithm and a heteroge-
neous network with 20 nodes. Half of the them use rµk “ 0.1,
while the other half uses rµk “ 1, as depicted in Fig. 3(a).
The network was generated randomly according to an Erdös-
Renyi model [9], and the average degree of the nodes is
10. Furthermore, each node k is subject to a different noise
variance σ2

vk
, as shown in Fig. 3(b). For the optimal system

wo, we consider a random vector with M “ 50 coefficients
uniformly distributed in r´1,1s.

(a)

1 5 10 15 20

Node k

0.08

0.4

σ
2 v k

(b)

Fig. 3: (a) Network used in the simulations of Sections VI-A
to VI-D. (b) Noise variance σ2

vk
for k “ 1, ¨ ¨ ¨ ,V .

The combination weights are updated using the ACW
algorithm with νk “ 0.2 for k “ 1, ¨ ¨ ¨ ,V [34], and we
use δ “ 10´5 and δc “ 10´8 as regularization factors. As
a performance indicator, we adopt the network mean-square-
deviation (NMSD), given by

NMSDpnq “
1

V

řV
k“1 Et‖wopnq´wkpnq‖2

u. (52)

Moreover, in some situations we also analyze the network
mean-square-error (NMSE), given by

NMSEpnq “
1

V

řV
k“1 Ete2

kpnqu. (53)

This section is divided as follows. In VI-A, we compare
AS-dNLMS with the random sampling technique of Fig. 1.

The theoretical results of Section IV are validated in VI-B,
and in VI-C we compare ASC-dNLMS to other censoring
techniques. Next, in VI-D, we study the tracking capability
of the proposed techniques. Finally, in VI-C, we employ AS-
dNLMS in the context of graph distributed adaptive filtering.

A. Comparison with Random Sampling

Firstly, we return to the simulation of Fig. 1 and compare
the behavior of AS-dNLMS to that of the original dNLMS
with the random sampling technique and different numbers of
sampled nodes Vs. Nonetheless, here we simulate a change in
the environment by flipping the parameter vector wo in the
middle of each realization. For the network of Fig. 3, (51)
yields M ą 5.4, which is thus satisfied. For M “ 50, (50)
in its turn yields β ą 1.0610σ2

max. We adjusted AS-dNLMS
to obtain approximately the same computational cost as that
of dNLMS with Vs“ 5 nodes sampled. For this purpose, we
adopted β “ 1.6σ2

max and µs “ 0.06. Figs. 4(a) and 4(b)
present respectively the NMSD performance and the average
number of multiplications per iteration. As seen in Fig. 1, the
more nodes are sampled during the transient, the faster the
convergence rate. Moreover, we observe that AS-dNLMS is
able to detect the change in the optimal system and, since all
nodes are sampled during the transients, it converges as fast as
the dNLMS algorithm with all nodes sampled. It is interesting
to note that the sampling of less nodes per iteration leads to
a slight reduction of the steady-state NMSD in comparison
with the original algorithm. The dNLMS algorithm with
Vs “ 5 nodes sampled achieves a steady-state NMSD that
is approximately 1.3 dB lower than the one presented by
the version with all nodes sampled. In its turn, AS-dNLMS
reaches a steady-state NMSD that is 0.3 dB higher than
that of the algorithm with five nodes sampled, but with a
much faster convergence rate. One possible interpretation for
this is that although the adaptation step is important for the
convergence during the transient and for detecting changes in
the environment, in steady state it introduces noise into the
network, which the combination step tends to remove [29],
[37]. Thus, by reducing the sampling rate during steady state,
there may be a slight reduction in the NMSD. However, we
remark that this reduction can be considered marginal in the
case of Fig. 4(a). From Fig. 4(b) we observe that during the
transients the computational cost of AS-dNLMS is slightly
higher than that of the dNLMS algorithm with all nodes
sampled, but decreases significantly in steady-state. A similar
behavior is observed for the number of sums.

B. Validation of the Theoretical Analysis

In order to validate (39), we also tested the AS-dNLMS
algorithm in a stationary environment with different values

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 9

−30

−20

−10

0

10

20
(a

)
N

M
S

D
(d

B
)

-33

-29

-33

-29

0 20 40 60 80 100

Iterations (×103)

1.4

1.55

1.7

(b
)
⊗
×

10
4

0 5 10 15 20 25 30

Iterações (×103)

-40

-30

-20

-10

0

10

M
S

D
(d

B
)

Vt=20 Vt=15 Vt=10 Vt=5 AS-dNLMS

0 5 10 15 20 25 30

Iterações (×103)

3,5

5,5

7,5

⊗
×

1
0

3

Fig. 4: Comparison between dNLMS with Vs nodes randomly
sampled per iteration and AS-dNLMS (β “ 1.6σ2

max, µs “
0.06). (a) NMSD curves and (b) Multiplications per iteration.

of β ě σ2
min and three methods for the selection of the

combination weighs: the Uniform and Metropolis rules [1],
and the ACW algorithm [34]. Two scenarios were considered:
one with the noise power in the network distributed as in
Fig. 3(b), and another where σ2

vk
“ 0.4 for k “ 1, ¨ ¨ ¨ ,V .

The results are shown in Fig. 5(a) and 5(b), respectively. For
the ease of visualization, they are presented in terms of βr,
defined as βr fi β{σ2

max. Along with the experimental data,
the predicted upper and lower bounds pVsmax

and pVsmin
are

presented for each βr using dashed lines. We should notice
that these bounds coincide in Fig. 5(b), since σ2

min “ σ2
max

in this case. Moreover, in Fig. 5(a), the upper bound remains
fixed at Vsmax

“V “20 for β ď σ2
max. We also observe from

Fig. 5 that the higher β is, the less nodes are sampled in both
scenarios, as expected. Furthermore, the experimental data lie
between the theoretical bounds for all combination rules and
for all values of βr in Fig 5(a). On the other hand, from 5(b)
we notice that the theoretical model slightly overestimates the
number of sampled nodes for 1 ă βr ď 20. One possible
explanation for this resides in the fact that the Assumption (29)
translates to Etε2

kpnqu “ σ2
max for k “ 1, ¨ ¨ ¨ ,V in the

case of Fig. 5(b). However, since sskpnq and εkpnq are not
independent, Etε2

kpnqu ‰ σ2
vk
“ σ2

max. In general, we observe
that Etε2

kpnqu ď σ2
vk

, which can be attributed to εk remaining
at a fixed value for possibly long periods of time, which tends
to reduce its variance. Furthermore, the difference between
the theoretical and analytical results in Fig. 5(b) is especially
noticeable for the ACW algorithm. This can be attributed to
the fact that the analysis presented in Section IV was derived
considering static combination weights, which is not the case

of ACW. Nonetheless, the scenario considered in Fig. 5 is
not realistic, since some level of noise power discrepancy
across the network is expected in most environments [1]–[5].
Lastly, in both Fig. 5(a) and Fig. 5(b), the adoption of the
ACW algorithm led to a smaller number of sampled nodes in
comparison with the Uniform and Metropolis rules.

0.2 1 10 100

20

15

10

5

0

E
{V

s
}

(a)ACW

Metropolis

Uniform

Theoretical Bounds

1 10 100
βr = β/σ2

max

20

15

10

5

0

E
{V

s
}

(b)

Fig. 5: Theoretical bounds and average number of nodes
sampled by AS-dNLMS with three combination rules as a
function of βěσ2

min. (a) σ2
vk

as in Fig. 3. (b) σ2
vk
“ 0.4 for

k“1, ¨ ¨ ¨ ,V .

In Fig. 6, we test (45) by using it to set the step size µs for
different values of β with ∆n“ 3000. In Fig. 6(a) we show
the NMSD curves, in Fig. 6(b) the number of sampled nodes
per iteration, and in Fig. 6(c) the NMSE.

From Figs. 6(b) and 6(c) we observe that, before the abrupt
change in the optimal system, the number of sampled nodes
stabilizes at approximately the same time for all βrą1.1. For
βr “ 1.1, we can notice that (45) slightly overestimates µs.
This is expected for βr Ç 1, as discussed in Section IV-C.
In this case, AS-dNLMS ceased to sample the nodes before
reaching the steady state in terms of NMSD, which compro-
mised the convergence rate. This illustrates the importance of
a proper choice for µs as well as β. Nonetheless, since the
sampling of the nodes ceased in less than ∆n iterations after
the beginning of the steady state in terms of NMSE, the results
obtained support the validity of (45). However, this shows that
some care must be taken when using (45) for β Ç σ2

max.
Lastly, we observe that the sampling of less nodes leads to a
slight reduction in the steady-state NMSD, as in Fig. 4(a).

In Fig. 7 we repeated the experiments of Fig. 6 with
higher values of βr. We observe that the number of sampled
nodes stabilizes almost simultaneously for all values of βr
before the abrupt change and that the performance of AS-
dNLMS is maintained before the change in the optimal system.
Nonetheless, after the change occurs, the NMSD is affected
for βr ě 8. The higher the parameter β, the more intense the
deterioration in performance. The difference in the behavior
of the algorithm before and after the change in the optimal
system can be explained by the initialization with αkp0q “ α`

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 10

20

10

0

-10

-20

-30

(a
)

N
M

S
D

(d
B

)

-31.5

-30.5

-31.5

-30.5

0

5

10

15

20

(b
)
V
s
(n

)

0 10 20 30 40

Iterations (×103)

-10

0

10

(c
)

N
M

S
E

(d
B

)

∆n↔
0 5 10 15 20 25 30

Iterações (×103)

-40

-30

-20

-10

0

10

M
S

D
(d

B
)

βr=1.1 βr=1.6 βr=2.1 βr=2.6 βr=3.1

0 5 10 15 20 25 30

Iterações (×103)

3,5

5,5

7,5

⊗
×

1
0

3

Fig. 6: Simulation results obtained with 1.1σ2
max ď β ď

3.1σ2
max and µs adjusted by (45) for each case. (a) NMSD

curves, (b) Number of sampled nodes per iteration, and (c)
NMSE curves.

for k “ 1, ¨ ¨ ¨ ,V . In contrast, right before the abrupt change,
we have αkpnq ! α`. Thus, the algorithm ceases to sample
the nodes earlier in this case, as can be seen in Fig. 7(b).
We recall that β ď 5σ2

max seems to be a safe interval for the
choice of β, according to various simulations results.

C. Application as a Censoring Technique
In this section, we test the ASC-dNLMS algorithm and

compare it to other techniques found in the literature, namely,
the ACW-Selective (ACW-S) algorithm of [19] and the energy-
aware diffusion algorithm (EA-dNLMS) of [26]. Assuming
that the nodes can broadcast their data to all of their neighbors
at once, we present in Fig. 8(a) the NMSD curves, in Fig. 8(b),
the number Vtpnq of transmitting nodes per iteration, i.e. the
amount of broadcasts in the network, and in Fig. 8(c) the
average number of multiplications per iteration.

The algorithms were adjusted to achieve approximately the
same level of steady-state NMSD. Table III shows the adopted
values for the parameters of each solution. In this regard,
it is worth noting that EA-dNLMS presents a high number
of parameters, which may be difficult to adjust. We consider
the version of EA-dNLMNS that allows node k to receive
and combine the estimates from its neighbors even when it
is not transmitting [26], and we adopt a normalized step size
following (8). For comparison, we also present results obtained
with the original dNLMS and with the non-cooperative case.

20

10

0

-10

-20

-30

(a
)

N
M

S
D

(d
B

)

βr=7

βr=8

βr=9

βr=10

βr=20

0

5

10

15

20

(b
)
V
s
(n

)
0 10 20 30 40

Iterations (×103)

−10

0

10

(c
)

N
M

S
E

(d
B

)

∆n↔

Fig. 7: Simulation results obtained with 7σ2
maxďβď20σ2

max

and µs adjusted by (45) for each case. (a) NMSD curves, (b)
Number of sampled nodes per iteration, and (c) NMSE curves.

Unlike AS-dNLMS, which led to a slight reduction in
the steady-state NMSD in comparison to dNLMS with all
nodes sampled, ASC-dNLMS achieves a slightly higher level
of NMSD in steady state in comparison with the original
algorithm. The same occurs for the ACW-S and EA-dNLMS
algorithms, as can be seen in Fig. 8(a). We observe that
EA-dNLMS presents a notably slower convergence rate in
comparison with ACW-S and ASC-dNLMS, which converge at
a rate similar to that of dNLMS. On the other hand, from Fig. 8
we see that ACW-S utilizes a comparatively high number of
broadcasts, thus saving less energy. During steady state, both
ACW-S and EA-dNLMS transmit more than the proposed
ASC-dNLMS, which maintains all transmissions during the
transient but drastically reduces the number of broadcasts after
converging. Thus, the proposed technique saves more energy
in steady state while preserving the convergence rate.

Lastly, it should be noted from Fig. 8(c) that ASC-dNLMS
requires approximately the same number of multiplications per
iteration as EA-dNLMS, while leading to 50% less broadcasts.
In comparison with ACW-S, ASC-dNLMS requires 21% more
multiplications, but leads to 81% less broadcasts. This gap in
the number of multiplications is due to the fact that ASC-
dNLMS considers the local estimates in the combination step
even if they were not updated in the current iteration. In
contrast, ACW-S considers that the neighborhood of each node
only includes its neighbors that have broadcast their estimate
in the current iteration. Despite this, we recall that in censoring
applications we are mostly concerned with the number of
transmissions, since they are usually the main responsible for

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 11

-30

-20

-10

0

10

20

(a
)

N
M

S
D

(d
B

)
dNLMS

Non-cooperative

ACW-S [19]

EA-dNLMS [26]

ASC-dNLMS
-31

-28

0

5

10

15

20

(b
)
V
t
(n

)

0 5 10 15 20 25 30

Iterations (×103)

1.0

1.35

1.7

(c
)
⊗
×

1
0

4

Fig. 8: Comparison between the ASC-dNLMS, ACW-S and
EA-dNLMS algorithms. The parameters adopted are shown
in Table III. (a) Steady-state NMSD curves. (b) Number of
broadcasts and (b) multiplications per iteration.

energy consumption in the network [19], [20], [26]. Moreover,
given the percentage differences, ASC-dNLMS can be deemed
an efficient solution for censoring.

TABLE III: Parameters used in the simulations of Fig. 8

ACW-S [19] ET “1, ET “2
EA-dNLMS [26] EAct“33.5966 ¨10´3, ETx“15.16 ¨10´3, K`,1“

2, K`,2 “ 0.5, Kg “ 2, γg “ 2,γ` “ 2, δ “ 0.5,
ρ“0.01, r“2

ASC-dNLMS β“2.1σ2
max, µs“0.0333

D. Random-Walk Tracking

As can be observed from Fig. 7, increased values of β
may hinder the tracking capability of AS-dNLMS. Thus, in
this section, we investigate the behavior of the algorithm in
nonstationary environments following a random-walk model,
in which the optimal solution wopnq varies according to

wopnq “ wopn´ 1q ` qpnq, (54)

where qpnq is a zero-mean i.i.d. column vector with length M
and autocovariance matrix Q “ EtqpnqqTpnqu independent
of any other signal [8], [31]. In our experiments, we consider
a Gaussian distribution for qpnq with Q “ σ2

qI, where I
denotes the identity matrix. In Fig. 9, we present the results
obtained with the AS-dNLMS algorithm and different values
of β as a function of TrrQs. For each βr, we maintained the
corresponding step size µs used in the simulations of Fig. 6.

For comparison, we also show the results obtained with the
dNLMS algorithm with all nodes sampled. In Fig. 9(a), we
present the steady-state levels of NMSD, in Fig. 9(b) the
average number of sampled nodes per iteration and in Fig. 9(c)
the steady-state NMSE. The results presented were obtained
by averaging the data over the last 600 iterations of each
realization, after all the algorithms achieved steady state.

5

0

-5

-10

-15

-20

-25

-30

(a
)

N
M

S
D

(d
B

)

dNLMS

βr = 1.1

βr = 1.6

βr = 2.1

βr = 2.6

0

5

10

15

20

(b
)
V
s
(n

)

10−8 10−7 10−6 10−5 10−4 10−3 10−2

Tr[Q]

−5

0

5
(c

)
N

M
S

E
(d

B
)

Fig. 9: Simulation results in a nonstationary environment
following Model (54). (a) Steady-state NMSD, (b) Number
of nodes sampled per iteration, and (c) Steady-state NMSE.

From Fig. 9(a) we can observe that, in slowly-varying
environments (TrrQs “ 10´8), the performance of AS-
dNLMS is similar to that of dNLMS with all nodes sampled.
However, for 10´7 ď TrrQs ď 10´3, there is a degradation
in performance in comparison with dNLMS. The higher the
parameter β, the more intense this deterioration becomes for
a fixed value of TrrQs. For TrrQs ď 10´5 and a fixed β, this
deterioration in comparison with dNLMS intensifies with the
increase of TrrQs. On the other hand, for TrrQs ą 10´5, the
difference in performance begins to decrease as the variations
in the optimal system become faster. This can be explained
by analyzing Figs. 9(b) and 9(c). We observe that, when the
environment varies slowly or moderately, the number of nodes
sampled by the AS-dNLMS is not significantly affected by
the increase of TrrQs. This occurs since the effects of the
changes in the optimal system are small in comparison with
those of the measurement noise for TrrQs ă 10´5, and thus
the NMSE does not increase noticeably, as seen in Fig. 9(c).
However, as these variations become faster, they begin to affect
the estimation error more intensely, and the NMSE starts to
increase for TrrQs ě 10´5, leading to a gradual rise in the
number of sampled nodes in Fig. 9(b). For TrrQs “ 10´2,
the algorithm does not cease to sample any of the nodes for
βr ď 2.6, and thus its performance matches that of dNLMS.

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 12

-5

-10

-15

-20

-25

-30

(a
)

N
M

S
D

(d
B

)

dNLMS

ACW-S [19]

EA-dNLMS [26]

ASC-dNLMS (βr=2.1)

ASC-dNLMS (βr=1.3)

ASC-dNLMS (βr=0.71)

10−8 10−7 10−6 10−5 10−4

Tr[Q]

0

5

10

15

20

(b
)
V
t
(n

)

Fig. 10: Simulation results in a nonstationary environment
following Model (54) with the algorithms listed in Table III.
(a) Steady-state NMSD, and (b) Broadcasts per iteration.

Next, we repeated the experiment of Fig. 9 for
ASC-dNLMS, ACW-S and EA-dNLMS with the parameters of
Table III. The results are shown in Fig. 10. We also present the
results obtained with ASC-dNLMS with βr “ 1.3 and βr “
0.71, which were respectively adjusted to lead to the same
number of broadcasts as those of EA-dNLMS and ACW-S for
TrrQs ď 10´6. Finally, we also show results obtained with
the dNLMS algorithm. We observe from Fig. 10(a) that ASC-
dNLMS with βr “ 2.1 achieves a performance similar to that
of the other solutions for TrrQs “ 10´8 and TrrQs “ 10´7.
However, it is outperformed for TrrQs ě 10´6. It also em-
ploys less transmissions than any other solution in these sce-
narios. With βr “ 1.3, ASC-dNLMS outperforms EA-dNLMS
for TrrQs ď 10´7 and TrrQs “ 10´4, although its NMSD is
higher for TrrQs “ 10´6 and TrrQs “ 10´5. With βr “ 0.71,
ASC-dNLMS outperforms ACW-S for TrrQs ď 10´7, while
the opposite occurs for other values of TrrQs. The results sug-
gest that ASC-dNLMS generally outperforms ACW-S and EA-
dNLMS in stationary or slowly-varying environments while
utilizing the same number of transmissions. Moreover, in these
cases it can achieve a comparatively similar performance while
transmitting less. However, ASC-dNLMS must be employed
with caution in scenarios in which the optimal system changes
rapidly. Finally, we can control the trade-off between energy
saving and performance by adjusting β.

E. Application in Graph Adaptive Filtering

In this section, we test the proposed sampling algorithm on
a graph diffuse adaptive filter. For this experiment, we consider
a temperature dataset of daily average measurements from
12/25/2001 to 12/21/2012 at V “100 weather stations across
Brazil, as depicted in Fig. 11 [38]. Each station corresponds to
a node of a directed weighted graph in which each node k is

connected to the six nearest stations. Denoting this set by NAk
,

each element Akj of the adjacency matrix A is given by [9]

Akj “

$

’

’

&

’

’

%

e
´g2

kj

ř

`PNAk
e´g

2
`k
ř

iPNAj
e´g

2
ji

, if j P NAk

0, otherwise
, (55)

where gkj is the geodesical distance between nodes k and j.

40

45

50

55

60

65

70

75

80

85

Fig. 11: Daily average temperature measured by 100 weather
stations on 06/21/2002 (˝F). Circled nodes use rµk“1, whereas
the others use rµk “ 0.1. Each edge is a communication link.
The arrows point to the stations whose data are used in Fig. 13.

We consider the dNLMS and AS-dNLMS algorithms with
M “ 5 and rµk “ 1 for half of the nodes, while the other half
utilizes rµk “ 0.1. Furthermore, we use the ACW algorithm
with νk “ 0.2 and δc “ 10´5, and we consider that nodes i
and j can communicate if i P NAj

or j P NAi
.

We divided our dataset into training and testing sets. The
former consists of Ntr. “ 3650 measurements from 12/25/2001
to 12/22/2011, which were periodically replicated to form 20
training epochs. During this period, we consider that dkpnq “
ukpn`1q, where ukpnq denotes the temperature measurement
at node k and time instant n. The vector xkpnq is formed
as in (3). The testing set consists of the measurements from
12/23/2011 to 12/21/2012. In this case, we do not have access
to the temperatures registered on the following day. To keep
the adaptation going, we use the last estimate of the algorithm
as the desired signal. Thus, we set dkpnq “ xT

k pn´1qwkpn´
1q. As a performance indicator, we adopt the squared relative
reconstruction error (SSRE), given by [9]

SRRE “
1

V

řV
k“1
pukpǹ 1q́ xT

k pnqwkpnqq
2

u2
kpn`1q

. (56)

We converted the temperature to degrees Fahrenheit in our
experiments to avoid division by zero in (56).

It should be noted that, in this scenario, σ2
max is not known

a priori, making it hard to choose β beforehand. To set β, we
ran AS-dNLMS like the original dNLMS in the first epoch,
calculated the average NMSE during the last 730 days, and
multiplied the result by 3. Then, we used (45) with ∆n“9Ntr.
to set µs, and ran the algorithm normally as in Table I.

In Figs. 12(a) and (b) we present the SRRE obtained in the
training and testing periods, respectively. Similarly, Figs. 12(c)

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 13

and (d) respectively show the number of multiplications per
iteration during training and testing. For the ease of visual-
ization, and due to the noisy nature of the data, the curves
of Figs. 12(a) and (c) were filtered by a moving-average filter
with 1024 coefficients. Nonetheless, in Fig. 12(a) we also show
the envelope of the unfiltered curves as dashed lines.

We can observe that AS-dNLMS and the original dNLMS
algorithm achieved similar performances during both periods.
From the envelope displayed in Fig. 12(a) and the curves
of Fig. 12(b), we can see that the SRRE of both algorithms
during the test phase is slightly higher than the one observed
during training, as expected. Furthermore, from Fig. 12(c)
we see that the computational cost of AS-dNLMS remains
slightly higher than that of dNLMS during transient, but falls
significantly after converging. In the test phase, AS-dNLMS
sampled 20 nodes on average per iteration, and performed 45%
less multiplications than the original dNLMS while preserving
the performance. Considering both the training and test phases,
AS-dNLMS reduced the number of multiplications by 17%.

Lastly, as an illustrative example, in Fig. 13 we present
the estimates provided by AS-dNLMS for the temperature at
the stations of Fig. 11 indicated by the arrows, along with the
measured data at these locations. We observe that the estimates
of the algorithm follow closely the patterns of the real data
even with a reduced number of sampled nodes, as desired.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed adaptive mechanisms for sam-
pling and censoring over distributed solutions. The resulting
algorithms use the information from more nodes when the er-
ror in the network is high and from less nodes otherwise. They
feature fast convergence rates while significantly reducing the
computational cost and the consumption of energy associated
with the communication between nodes. Furthermore, we
derived analytical expressions that help understand the roles
of the parameters β and µs and their effects in terms of
performance, computational cost reduction, and energy saving.
These theoretical results allow to choose proper values for
β and µs and were validated by the simulation results. It
was shown that AS-dNLMS maintains the performance of the
original diffuse NLMS algorithm, while noticeably reducing
the computational burden. Moreover, it can be employed in
graph adaptive filtering as well as in classical distributed
signal processing. It was also shown that ASC-dNLMS is
capable of saving more energy than other state-of-the-art
techniques while achieving a similar steady-state performance
and preserving the convergence rate of dNLMS. However, the
proposed techniques must be employed with some caution
in rapidly-varying environments, as their performance may
deteriorate in comparison with dNLMS or other techniques.
In their current form, this seems to be the main limitation
of the proposed algorithms. For future work, we intend to im-
prove their tracking capability in such scenarios. Nevertheless,
encouraging results for slowly-varying environments indicate
AS-dNLMS and ASC-dNLMS as the recommended solutions
for such cases, in which they outperform similar techniques.
Furthermore, we aim to obtain an upper bound for the step

size µs in order to ensure that the sampling of the nodes does
not cease until the steady state is achieved in terms of NMSE
or NMSD. Finally, the proposed mechanisms could also be
used on other distributed solutions, such as diffuse recursive
least-squares [4] or the diffuse affine projection algorithm [5],
which is another suggestion for future research.

APPENDIX A
DERIVING EQUATIONS (30) TO (33)

In order to estimate upper or lower bounds for θk, we
must understand under which circumstances node k remains
sampled for the greatest (or lowest) number of iterations in
the mean. This can be achieved by estimating the maximum
and minimum values Etαkpnqu and Et∆αkpnqu can assume
in the mean during steady state when node k is sampled (i.e.,
ssk “ 1). Performing the same analysis for ssk “ 0, we can
determine upper and lower bounds for θk. For simplicity, we
assume in our calculations that (26) is satisfied, although the
final result is generalized in Section IV-B for all βą0.

Firstly, let us assume that at the iteration n, αkpnq is nega-
tive but approximately zero, which we denote by αkpnq“0´.
In this case, taking expectations from both sides of (18) yields

Etαkpn`1q|αkpnq“0´u“µsφ
1
0

ř

iPNk
cikEtε2

i pnqu, (57)

Thus, at n`1 the sampling of node k resumes and, recall-
ing (26), Et∆αkpǹ 1q|αkpnq“0´uă0. Therefore, from itera-
tion ǹ 1 onward, αk decreases until it becomes negative again,
meaning that (57) yields the maximum value αk can assume
in the mean in steady state. Moreover, assuming (29), (57)
yields a different value for each node k that lies in

µsφ
1
0σ

2
min ď Etαs.s.

kmax
u ď µsφ

1
0σ

2
max, (58)

where Etαs.s.
kmax

u denotes the maximum value αkpnq can
assume in the mean in steady state. Analogously, we now
assume that at a certain iteration n, αkpnq is positive but
approximately zero, which we denote by αkpnq “ 0`. Making
this replacement in (18) and taking expectations, we obtain

Etαkpn`1q|αkpnq“0`u“µsφ
1
0E

!

ř

iPNk
cikε

2
i pnq´β

)

. (59)

Considering (26), we conclude from (59) that Etαkpn `
1q|αkpnq“0`uă0, meaning that node k ceases to be sampled
at iteration n`1 and, therefore, Et∆αkpnq|αkpnq“0`uą0.
Thus, (59) provides the minimum value αk can assume in the
mean during steady state, which lies in the range

µsφ
1
0pσ

2
min ´ βq ď Etαs.s.

kmin
u ď µsφ

1
0pσ

2
max ´ βq, (60)

where Etαs.s.
kmin

u denotes the minimum value αkpnq can as-
sume in the mean in steady state, k “ 1, ¨ ¨ ¨ ,V .

Since Etαkpnqu keeps oscillating around the point
Etαkpnqu “ 0 during steady state, we replace φ1rαkpnqs
in (22) by its first-order Taylor expansion around αkpnq “ 0,
which is simply equal to the constant φ10. Thus, when node k
is being sampled (ssk “ 1), subtracting αkpnq from both sides
of (22) and taking expectations yields

´µsφ
1
0pβ´σ

2
minqďEt∆αkpnquď´µsφ

1
0pβ´σ

2
maxqă0. (61)

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 14

−35

−30

−25

−20

−15

−10

(a
)

S
R

R
E

(d
B

)
–

T
ra

in
. dNLMS

AS-dNLMS

Envelope

-24

-21

−35

−30

−25

−20

−15

−10

(b
)

S
R

R
E

(d
B

)
–

T
es

t

0 2 4 6

Iterations (×104)

1

1.5

2

2.5

(c
)
⊗
×

10
4

–
T

ra
in

.

0 100 200 300

Iterations

1

1.5

2

2.5

(d
)
⊗
×

10
4

–
T

es
t

Fig. 12: Comparison between dNLMS and AS-dNLMS (β“ 80.49, µs“ 2.5 ¨ 10´5). (a) and (b): SRRE in the training and
testing periods, respectively. (c) and (d): Multiplications per iteration during training and testing, respectively.

0 100 200 300

Iterations

40

50

60

70

80

90

T
em

p
er

at
u

re
(◦

F
)

Real Data

AS-dNLMS

Fig. 13: Comparison between the temperature measured at two
stations and the estimates provided by AS-dNLMS for them.

Analogously, when the node is not sampled (ssk “ 0),

µsφ
1
0σ

2
minďEt∆αkpnquďµsφ

1
0σ

2
max. (62)

From a certain iteration n0 onward, we consider the model

Etαkpn0 ` θkqu“Etαkpn0qu ` θkEt∆αkpnqu. (63)

In order to estimate an upper bound θmax for θk, we assume
that Etαkpn0qu“Etαs.s.

kmax
u and calculate the expected num-

ber of iterations required for Etαkpnqu to fall below zero
in the scenario where the node is sampled for the maximum
number of iterations. This occurs if Etαkpn0qu“µsφ

1
0σ

2
max,

which is the upper bound for Etαs.s.
kmax

u, and Et∆αkpnqu “
´µsφ

1
0pβ ´ σ2

maxq, which is the least negative variation for
Et∆αkpnqu according to (61). Making θk “ θmax, setting
Etαkpn0 ` θmaxqu “ 0 in (63), and taking into account the
fact that the node must be sampled at least once during each
cycle, after some algebra we obtain (30). Analogously, using
(63) for the lower bound θk“θmin, we get (31).

For θk, we replace θk in (63) by θk and consider that at
the iteration n0, Etαkpn0qu “ Etαs.s.

kmin
u. Thus, the upper

bound θmax for θk can be obtained by setting Etαkpn0qu “

µsφ
1
0σ

2
min, which is the lower bound for Etαs.s.

kmin
u, and

Et∆αkpnqu “ µsφ
1
0σ

2
min, which is the minimum value for

Et∆αkpnqu according to (62). Thus, (32) is obtained. Finally,
as an estimate for the lower bound θmin of θk, we get (33).

REFERENCES

[1] A.H. Sayed, Adaptation, Learning, and Optimization over Networks,
vol. 7, Foundations and Trends in Machine Learning, now Publishers
Inc., Hanover, MA, 2014.

[2] C.G. Lopes and A.H. Sayed, “Diffusion least-mean squares over adaptive
networks: Formulation and performance analysis,” IEEE Trans. Signal
Process., vol. 56, pp. 3122–3136, Jul. 2008.

[3] F.S. Cattivelli and A.H. Sayed, “Diffusion LMS strategies for distributed
estimation,” IEEE Trans. Signal Process., vol. 58, pp. 1035–1048, Mar.
2009.

[4] F.S. Cattivelli, C.G. Lopes, and A.H. Sayed, “Diffusion recursive least-
squares for distributed estimation over adaptive networks,” IEEE Trans.
Signal Process., vol. 56, pp. 1865–1877, May 2008.

[5] L. Li and J. A. Chambers, “Distributed adaptive estimation based on
the APA algorithm over diffusion networks with changing topology,” in
Proc. IEEE SSP, 2009, pp. 757–760.

[6] P. Di Lorenzo, S. Barbarossa, and A.H. Sayed, “Bio-inspired decen-
tralized radio access based on swarming mechanisms over adaptive
networks,” IEEE Trans. Signal Process., vol. 61, pp. 3183–3197, Jun.
2013.

[7] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey
on sensor networks,” IEEE Commun. Mag., vol. 40, pp. 102–114, Aug.
2002.

[8] J. Fernandez-Bes, J. Arenas-Garcı́a, M.T.M. Silva, and L.A. Azpicueta-
Ruiz, “Adaptive diffusion schemes for heterogeneous networks,” IEEE
Trans. Signal Process., vol. 65, pp. 5661–5674, Nov. 2017.

[9] R. Nassif, C. Richard, J. Chen, and A.H. Sayed, “Distributed diffusion
adaptation over graph signals,” in Proc. IEEE ICASSP, 2018, pp. 4129–
4133.

[10] F. Hua, R. Nassif, C. Richard, H. Wang, and A.H. Sayed, “A precon-
ditioned graph diffusion LMS for adaptive graph signal processing,” in
Proc. EUSIPCO, 2018, pp. 111–115.

[11] A. Sandryhaila and J.M.F. Moura, “Discrete signal processing on
graphs,” IEEE Trans. Signal Process., vol. 61, pp. 1644–1656, Apr.
2013.

[12] D.I. Shuman, S.K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst,
“The emerging field of signal processing on graphs: Extending high-
dimensional data analysis to networks and other irregular domains,”
IEEE Signal Process. Mag., vol. 30, pp. 83–98, May 2013.

SUBMITTED TO IEEE TRANSACTIONS ON SIGNAL PROCESSING, MARCH 2020 15

[13] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal
processing on graphs: Sampling theory,” IEEE Trans. Signal Process.,
vol. 63, pp. 6510–6523, Dec. 2015.

[14] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for
bandlimited graph signals using graph spectral proxies,” IEEE Trans.
Signal Process., vol. 64, pp. 3775–3789, Jul. 2016.

[15] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs:
Uncertainty principle and sampling,” IEEE Trans. Signal Process., vol.
64, pp. 4845–4860, Sep. 2016.

[16] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive
graph signal processing: Algorithms and optimal sampling strategies,”
IEEE Trans. Signal Process., vol. 66, pp. 3584–3598, Jul. 2018.

[17] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, “Distributed
adaptive learning of graph signals,” IEEE Trans. Signal Process., vol.
65, pp. 4193–4208, Aug. 2017.

[18] N. Takahashi and I. Yamada, “Link probability control for probabilistic
diffusion least-mean squares over resource-constrained networks,” in
Proc. IEEE ICASSP, 2010, pp. 3518–3521.

[19] R. Arroyo-Valles, S. Maleki, and G. Leus, “A censoring strategy
for decentralized estimation in energy-constrained adaptive diffusion
networks,” in Proc. IEEE SPAWC, 2013, pp. 155–159.

[20] J. Fernandez-Bes, R. Arroyo-Valles, J. Arenas-Garcı́a, and J. Cid-Sueiro,
“Censoring diffusion for harvesting WSNs,” in Proc. IEEE CAMSAP,
2015, pp. 237–240.

[21] R. Arablouei, S. Werner, Y.-F. Huang, and K. Doğançay, “Distributed
least mean-square estimation with partial diffusion,” IEEE Trans. Signal
Process., vol. 62, pp. 472–484, Jan. 2014.

[22] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Trading off complexity
with communication costs in distributed adaptive learning via Krylov
subspaces for dimensionality reduction,” IEEE J. Sel. Topics in Signal
Process., vol. 7, pp. 257–273, Apr. 2013.

[23] C.G. Lopes and A.H. Sayed, “Diffusion adaptive networks with
changing topologies,” in Proc. IEEE ICASSP, 2008, pp. 3285–3288.

[24] X. Zhao and A.H. Sayed, “Single-link diffusion strategies over adaptive
networks,” in Proc. IEEE ICASSP, 2012, pp. 3749–3752.

[25] S. Xu, R.C. de Lamare, and H.V. Poor, “Adaptive link selection
algorithms for distributed estimation,” EURASIP J. Adv. in Signal
Process., vol. 2015, pp. 86, 2015.

[26] O.N. Gharehshiran, V. Krishnamurthy, and G. Yin, “Distributed energy-
aware diffusion least mean squares: Game-theoretic learning,” IEEE
J. Sel. Topics in Signal Process., vol. 7, pp. 821–836, Oct. 2013.

[27] L. Yang, H. Zhu, K. Kang, X. Luo, H. Qian, and Y. Yang, “Distributed
censoring with energy constraint in wireless sensor networks,” in Proc.
IEEE ICASSP, 2018, pp. 6428–6432.

[28] D.K. Berberidis, V. Kekatos, G. Wang, and G.B. Giannakis, “Adaptive
censoring for large-scale regressions,” in Proc. IEEE ICASSP, 2015, pp.
5475–5479.

[29] D.G. Tiglea, R. Candido, and M.T.M. Silva, “An adaptive sampling
technique for graph diffusion LMS algorithm,” in Proc. EUSIPCO,
2019, pp. 1364–1368.

[30] D.G. Tiglea, R. Candido, and M.T.M. Silva, “A sampling algorithm for
diffusion networks,” To appear in Proc. EUSIPCO, 2020.

[31] A.H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.
[32] N. Takahashi, I. Yamada, and A.H. Sayed, “Diffusion least-mean squares

with adaptive combiners: Formulation and performance analysis,” IEEE
Trans. Signal Process., vol. 58, pp. 4795–4810, Sep. 2010.

[33] C.-K. Yu and A.H. Sayed, “A strategy for adjusting combination weights
over adaptive networks,” in Proc. IEEE ICASSP, 2013, pp. 4579–4583.

[34] S.-Y. Tu and A.H. Sayed, “Optimal combination rules for adaptation
and learning over networks,” in Proc. Int. Workshop on Comput. Adv.
in Multi-Sensor Adaptive Process. (CAMSAP), 2011, pp. 317–320.

[35] J. Arenas-Garcia, L.A. Azpicueta-Ruiz, M.T.M. Silva, V.H. Nascimento,
and A.H. Sayed, “Combinations of adaptive filters: performance and
convergence properties,” Signal Process. Mag., vol. 33, pp. 120–140,
Jan. 2016.

[36] M. Lázaro-Gredilla, L.A. Azpicueta-Ruiz, A.R. Figueiras-Vidal, and
J. Arenas-Garcia, “Adaptively biasing the weights of adaptive filters,”
IEEE Trans. Signal Process., vol. 58, pp. 3890–3895, Jul. 2010.

[37] J.-W. Lee, J.-T. Kong, W.-J. Song, and S.-E. Kim, “Data-Reserved Pe-
riodic Diffusion LMS With Low Communication Cost Over Networks,”
IEEE Access., vol. 6, pp. 54636-54650, Sep. 2018.

[38] Instituto Nacional de Meteorologia – INMET (National Institute of
Meteorology). “Historical Temperature Dataset,” Sep. 2020. [Online].
Available: https://portal.inmet.gov.br/ (in Portuguese). Data used in the
simulations also available at: https://github.com/dgtiglea/Daily-Average-
Temperature-Brazilian-Stations.

Daniel G. Tiglea received the B.S. degree in 2018
and the M.S. degree in 2020, both in Electrical
Engineering from Escola Politécnica, Universidade
de São Paulo, Brazil. Since August 2020, he has
been pursuing his PhD at the same institution. His
research interests include linear and nonlinear adap-
tive filtering, and distributed signal processing.

Renato Candido received the B.S. degree in 2006
from Universidade Presbiteriana Mackenzie, São
Paulo, Brazil and the M.S. and Ph.D. degrees in 2009
and 2014 from Escola Politécnica, Universidade de
São Paulo, Brazil, all in Electrical Engineering.
From 2015 to 2017, he worked as a Postdoctoral
Researcher at the Department of Electronic Systems
Engineering, Escola Politéncia, Universidade de São
Paulo and currently he collaborates as a researcher
at the same university. His research interests include
signal processing, adaptive filtering, and machine

learning.

Magno T. M. Silva (M’05) received the B.S. de-
gree in 1999, the M.S. degree in 2001, and the
Ph.D. degree in 2005, all in Electrical Engineer-
ing from Escola Politécnica, Universidade de São
Paulo, Brazil. Since August 2006, he has been with
the Department of Electronic Systems Engineering
at Escola Politécnica, Universidade de São Paulo,
where he is currently an Associate Professor. From
January to July 2012, he worked as a Postdoctoral
Researcher at Universidad Carlos III de Madrid,
Leganés, Spain. From 2015 to 2018, he served as

Associate Editor for the IEEE Signal Processing Letters. His research interests
include linear and nonlinear adaptive filtering, and machine learning for signal
processing.

