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Transient and steady-state analysis of the affine

combination of two adaptive filters
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Abstract

In this paper, we propose an approach to the transient and steadyustdysis of the affine combination of one fast and
one slow adaptive filters. The theoretical models are based on exmedsr the excess mean-square error (EMSE) and cross-
EMSE of the component filters, which allows their application to differemilzimations of algorithms, such as least mean-squares
(LMS), normalized LMS (NLMS), and constant modulus algorithm (CM#Agnsidering white or colored inputs and stationary
or nonstationary environments. Since the desired universal behavibe combination depends on the correct estimation of the
mixing parameter at every instant, its adaptation is also taken into accoung imathisient analysis. Furthermore, we propose
normalized algorithms for the adaptation of the mixing parameter that exgabd performance. Good agreement between analysis

and simulation results is always observed.

Index Terms

Adaptive filters, affine combination, tracking, transient analysis, legstn square methods, unsupervised learning.

|. INTRODUCTION

OMBINATION schemes constitute an interesting way to imgr@adaptive filter performance [3]-[15]. Among these
C schemes, the convex combination of two fixed step-size agdiiters has received attention due to its relative sioili
and the proof that it is universal in steady-state, i.e.,dbmbined estimate is at least as good as the best of the cemipon
filters [8].
Convex combination schemes were proposed to improve trdafoantal tradeoff between convergence rate and steatdy-sta
excess mean-square error (EMSE) in adaptive filters [18]-Rurthermore, such schemes have been exploited in rimmsisy
environments to improve tracking performance, considgéng, the algorithm proposed in [8] or the combination gbathms

with different tracking capabilities of [10]. The correatjastment of the step-size for the updating of the mixingapsater
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depends on some characteristics of the filtering scenarah as the input signal and additive noise powers, or the Shes

of the adaptive filters considered in the combination. Thizbfem was addressed in [9], where a novel normalized scheme
was proposed. It was shown that the new update rule presteegood features of the existing scheme and is more robust
to changes in the filtering scenario.

Using a similar approach to that of [8], the authors of [1Qgwsed an affine combination of two least mean-square (LMS)
algorithms, where the condition on the mixing parametereisxed, allowing it to be negative. Thus, this scheme can be
interpreted as a generalization of the convex combinatincesthe mixing parameter is not restricted to the intefoall].

This approach allows for smaller EMSE in theory, but suffiesn larger gradient noise in some situations. Under aertai
conditions, the optimum mixing parameter was proved to lgatiee in steady-state. Although the optimal linear corabiis
unrealizable, two realizable algorithms were introdud@de is based on a stochastic gradient search and is referieere
asn-LMS algorithm. The other is based on the ratio of the avemger powers from each individual adaptive filter. Under
some circumstances, both algorithms present performdose to the optimum. In the analysis of [12], white Gaussigiuts
and stationary environments are assumed. Furthermorégtievior of the mean-square deviation is studied only #fiefast
filter has converged but the slow filter has not yet converged.

Similarly to the convex combination, the correct adjustimeithe step-size for the updating of the mixing parameter in
the affine combination, denoted hy,, depends on some characteristics of the filtering scendgace, the desired universal
behavior of the affine combination cannot always be ensti@dlustrate, Fig. 1 shows the EMSE as a function of time oo t
LMS filters with step-sizeg; =0.01 (11-LMS) and o =0.001 (u2-LMS), and their affine combination. In this scenario, it is
necessary to use a high value for the step-size of)th®S algorithm (e.g.,, = 3) in order to enable the switching from the
slow filter to the fast one. A large value pf, may, however, cause instability during the initial conwsrge of the algorithm,
thus [12] constraing)(n) to be less than or equal to 1. Unfortunately, even with thisst@int, the higher the step-sizs,
the higher the variance of the mixing parameter during tht@lrterations. Therefore, the combination performadesiates
from universal, as shown in Fig. 1-(a). On the other handyéf $tep-size is small (e.gs, = 0.1), the combination performs
better in the initial iterations but does not switch as fashaeded from the slow filter to the fast one, as shown in Fidp).1-

In fact, we will show that the performance of theLMS algorithm depends on(n) £ E{[y;(n) — y2(n)]?}, whereE{-}
represents the expectation operation gnd), ¢ = 1,2 are the outputs of the filters. As we can observe in Fig. 1(¢),)
suffers a large variation during the adaptation of the 8ltdrhus, a transient analysis and alternative algorithmedapt the

mixing parameter are two important key issues for the pratapplication of the affine combination of adaptive filters

A. Contributions and organization of the paper

The present paper extends previous results in four ways:

1) providing a steady-state analysis for the optimum affiomhination of adaptive filters, which is valid for white or
colored inputs, stationary or nonstationary environmeautsl combinations based on different algorithms, such aS,LM
normalized LMS (NLMS), and the constant modulus algoritt@M@);

2) proposing a simple geometrical interpretation to exptaie behavior of the affine combination;

3) providing a transient analysis of the combination, tgkinto account the adaptation of the component filters anal als

the adaptation of the mixing parameter with thé&MS algorithm;
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Fig. 1. EMSE foru;-LMS, p2-LMS and their affine combination @), = 3.0; b) uy, = 0.1; ¢) E{[y1(n) — y2(n)]?}; p1 = 0.01, us = 0.001, M =7,
identification of the systenw, =[0.9003 —0.5377 0.2137 —0.0280 0.7826 0.5242 —0.0871] 7, 0,12, = 0.01, white input with variancef,% = 1/7; 500 independent

runs.

4) using the results of the transient analysis to facilitteeadjustment of the free parameters of the scheme and pogzo

two normalized algorithms to update the mixing parameter.

To the best of our knowledge, all these are novel contrilngtio

The paper is organized as follows. In the next section, weridesthe affine combination of two adaptive filters for both
supervised (LMS and NLMS) and blind (CMA) algorithms. In 8ew Ill, analytical expressions for the optimum mixing
parameter and the optimum EMSE of the combination are addaiin the steady-state analysis of Section IV, the results
of Section Il are particularized for optimum combinatioofistwo LMS filters, two NLMS filters, and two CMA equalizers,
considering stationary and nonstationary environment&dction V, transient analyses taking into account realizachemes
are presented. Initially, we obtain an analytical exp@sd$or the EMSE of the combination, which depends on the teams
models of the combined algorithms and also on the algoritlseduo adapt the mixing parameter. We summarize results
for the transient analysis of LMS, NLMS, and CMA. Then, in Sa&t V-A, we present the transient analysis of th&MS
algorithm. The resulting analysis suggests the normabizgirocedure presented in Section V-B and an algorithm wthial
instantaneous normalization, proposed and analyzed itio88¢C. Comparisons between analytical and experimaeisllts

are shown through simulations in Section VI. Section Vllyides a summary of the main conclusions of the paper.

Il. PROBLEM FORMULATION

This section is divided into three parts. We first describe #ffine combination of one fast and one slow supervised
algorithms. In the sequel, the combination of two CMA eqe is presented. Then, we propose a common formulation for

the affine combination of supervised (LMS and NLMS) or bli@MA) algorithms.

A. Combination of supervised algorithms

The linear combination of two supervised adaptive filterglépicted in Fig. 2, where the filter weights are adjusted to

minimize the mean-square error cost function, obtaininghatoutput an estimate of the given “desired sign&lh). The
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output of the overall filter is given by
y(n) = n(n)yx(n) + [1 = n(n)]y2(n), @)
wheren(n) is the mixing parameter ang(n), i = 1,2 are the outputs of two transversal filters, igg(n) = u” (n)w;(n—1).

The superscripf” denotes transpositiony;(n — 1), 7 = 1,2 represent the lengthf coefficient column-vectors characterizing

the component filters, and(n) is their common input regressor column-vector.

v(n)
woln 1)
i'"(v_{:f) ______
wi(n — 1)
am ]S
wa(n — 1)

Fig. 2. Linear combination of two supervised adaptive filters

We focus on the affine combination of two algorithms of thddieing general class
wi(n) = wi(n —1) + pi(n)u(n)e;(n), )

wherep;(n) is a step-size and;(n) is the estimation error. Many algorithms can be written a2y by proper choices of
pi(n) ande;(n). For some algorithmg; (n) can even be a matrix, as is the case of the recursive-leaastesy(RLS) algorithm,
wherep;(n) is an estimate of the inverse autocorrelation matrix of tiruf signal. In supervised adaptive filtering, a “desired

signal” d(n) is available such that
ei(n) = d(n) — yi(n) ®3)

and a linear regression model holds, i.e.,

d(n) =" (n)we(n —1) +v(n) (4)

with w,(n — 1) being the time-variant optimal solution am¢n) a zero-mean random process uncorrelated with), whose
variance is denoted by? = E{v?(n)}. In order to make performance analyses more tractable, gfeesces{u(n)} and
{v(n)} are assumed stationary and we will use the common assuntptiti(n) is independent ofi(n) (not only uncorrelated)
[17, Sec. 6.2.1]. Defining the weight-error vectets(n) = w,(n) — w;(n), thea priori errorse, ;(n) = u” (n)w;(n — 1),
and using the linear model (4), we find that

ei(n) = eq,i(n) +v(n). (5)

An important consequence of this model is théat) will be independent of aliv;(j), w,(j), ande, ;(k), t = 1,2, j < k, for

any particular time instant [17, Lemma 6.2.1].
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Considering the combination of two LMS filters and the mirgation of the overall instantaneous square etfén) = [d(n) — y(n)]?,

[12] proposed the following gradient-based algorithm

n(n+1) = n(n) + ppe(n) [yr(n) = ya(n)] .- (6)

To obtain a tradeoff between stability of this recursion #melalgorithm’s tracking capability in the initial phaseafaptation,
n(n) in (6) must be constrained to be less than or equdl for all n. We should remark that this kind of constraint is not

needed in the normalized algorithms proposed in SectioBsawtd V-C.

B. Combination of blind algorithms

Fig. 3 shows a simplified communications system with a coatimn of two blind equalizers. In this case, the sign@t),
assumed i.i.d. (independent and identically distribusa) non Gaussian, is transmitted through an unknown chawheke
model is constituted by an FIR (finite impulse response)rfated additive white Gaussian noise. From the received bigng
and the known statistical properties of the transmittedaligthe blind equalizer must mitigate the channel effents r@cover
the signala(n) for some delayr,. We also assume that the equalization algorithms are imgiéed inT'/2-fractionally spaced
form, due to its inherent advantages (see, e.g., [20]-[28] the references therein). This type of implementation icely
used in the literature since it ensures perfect equalizatica noise-free environment, under certain well-knownditons.

The output of the overall equalizer of Fig. 3 is also given by (

a(n) w(n—1)
Channel i y1(n)

Fig. 3. Simplified communications system with a linear comberatf two blind equalizers.

Algorithms based on the constant modulus cost function, [4] define the “estimation error” as

ei(n) = [r —yi (n)]yi(n), @)

wherer = E{a*(n)}/E{a?(n)}. Using (7), CMA can also be written as in (2). However, givée nonlinear nature of
CMA, additional assumptions are necessary to obtain a maglsimple as (5): essentially, large signal-to-noise ratrcular
symmetry of the transmitted constellation, and an init@hdition close to the zero-forcing solution (see Append)x Fhese
assumptions were used in [10] and [26] to obtain simple timeadels that capture the behavior of CMA close to an optimum

solution. Thus, (7) was approximated by

ei(n) = y(n)eqi(n) + B(n), (8)
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where

230%(n —714) — 1 9)
and

B(n) £ ra(n —14) — a®*(n — 14). (20)

The variable3(n) is identically zero for constant-modulus constellatiststhe variability in the modulus af(n) (as measured
by 3(n)) plays the role of measurement noise for constant-modwdsedalgorithms. Model (8) was proposed in [10] to study
convex combinations of constant-modulus-based algostamd extended in [26] to obtain explicit stability conditsofor
CMA. The main assumptions and the derivation of this modelsammarized in Appendix A.

To update the mixing parameter in order to combine two CMAatigars, we could use a gradient rule to minimize the
instantaneous constant-modulus cdst,(n) = [r — y2(n)]?, as considered in the convex combination of [27]. However,
we observed through simulations that the resulting algoridoes not always ensure the desired universal behavidneof t
combination, specially for nonconstant modulus signalsusl we propose a stochastic gradient algorithm to minirttize
instantaneous square decision ertan) = e2(n), whereeq(n) £ a(n—74) —y(n) and a(n—74) is the estimate of the

transmitted signal at the output of the decision devices Thsults in the following update equation

n(n+1) =n(n) + pmea(n) [y1(n) — y2(n)] . (11)
We observed through simulations that the decision-erasetl adaptation ensures a more adequate behavior tharf that o
constant-modulus-based adaptation, even in presenceisd# and/or when both component filters are far from convergen
Assuming thati(n—7,;) = a(n—7,) and that the optimal solution achieves perfect equalingsee Assumption B1 in Appendix
A), the minimization of J;(n) is equivalent to the minimization of the squaaepriori error, since under these assumptions

eq(n) =~ eq(n).

C. A common formulation

Comparing (8) to (5), we can write the following general egzion
ei(n) = rk(n)eqi(n) + p(n), i=1,2, (12)

wherex = 1 and p(n) = v(n) for a supervised algorithm ot(n) = v(n) and ¢(n) = 3(n) for a blind one. In both cases

E{p(n)} = 0. This model also holds for the overall scheme, i.e.,
e(n) = r(n)ea(n) +¢(n), (13)

wheree(n) represents the error of the combined filiglz) = d(n) — y(n) for supervised algorithms e(n) = [r — y*(n)]y(n)
for constant-modulus-based algorithms, andn) is the a priori error of the overall scheme. It should be noticed that (12)
and (13) are approximations in the blind case. For the salsgngflicity, we use the equality sign here and in the expogssi
derived from (12) and (13).

The supervised LMS and NLMS algorithms and the blind CMA esygphe step-sizeg;(n) and the estimation erroes(n)

as in Table I, wherey is a regularization factor angl - || represents the Euclidean norm. The models for the errgrg of
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these algorithms are also shown in this table for conveniefigrence. The step-size interval which ensures the cgeree
and stability is different for each algorithm. For the LMSdaNLMS algorithms, the step-size intervals are well-knowrihie
literature [16], [17], whereas for CMA, the derivation ofghinterval was shown recently in [26].

TABLE |

PARAMETERS OF THE CONSIDERED ALGORITHMS AND ERROR MODELS

Alg. p(n) e;(n) Model for e;(n)
LMS i
NLMS i d(n) — yi(n) €a,i(n) +v(n)
en +|lu(n)|l?
CMA Hi [r = y; (n)]yi(n) | v(n)ea,i(n) + B(n)

Using model (5) in the supervised case, and the factdfat) =~ e,(n) in the blind case, we can write a general expression

for updating the mixing parameter, i.e.,
n(n+1) = n(n) + pmeg(n)y1(n) - ya(n)], (14)

where

eqg(n) =eq(n) +b(n) (15)

andb(n) = v(n) for the combination of supervised algorithms igr) = 0 for the combination of constant-modulus-based
algorithms. In both casesy(n) is constrained to be less than or equalltéor all n [12]. Algorithm (14) is denoted here by
n-LMS.

To close this section, it is important to observe that:

1) In order to simplify the arguments, we assume that all thentjties are real. In the case of blind equalization of clesp
constellations, complex extensions may be developed,gedwsignal circularity conditions are satisfied [28];

2) The analyses provided here can be extended straightidignvie the affine combination of two RLS filters [1], of two
Shalvi-Weinstein equalizers [10], [29], and also to the boration of algorithms of different families, as is the cade
the combination of one LMS with one RLS or of the combinatidnone CMA with one Shalvi-Weinstein algorithm
[10];

3) Besides the)-LMS algorithm, [12] proposed a scheme based on error poteenpdate the mixing parameter. Although
this scheme also presents performance close to the optinmaler wwertain circumstances, its structure is significantly

different from that ofp-LMS, so we leave its analysis for a future work.

IIl. THE OPTIMUM MIXING PARAMETER AND EMSE

An analytical expression for the optimum mixing parameign) can be obtained equating to zero the expected value of

the gradient used to updatgn) in (14), i.e.,

E{eg(n)[y1(n) — y2(n)]} = 0. (16)

The errorey(n) in (16) can be rewritten as a function of thepriori errorse, ;(n), i = 1,2, as follows.



8 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST120
Using (1), (12), and (13), the priori errore,(n) of the overall scheme can be written as
ea(n) = n(n)eq,1(n) + [1 —n(n)leq2(n)
= eq2(n) +1(n) [eqa,1(n) — eq2(n)]. (17)
Replacing (17) in (15), and remarking that(n) — y2(n) = eq,2(n) — eq,1(n), (16) can be rewritten as
E {62,2(") - Ga,l(”)ea,z(”)}

-k {no(n)[ea,Q(n) - ea,l(n)]Q}
+E{b(n)[eas(n) —ear(n)]} = 0. (18)
In the blind caseh(n) = 0 and in the supervised cadén) = v(n), which is assumed independentef;(n), i = 1,2. Hence,

in both cases the third term on the l.h.s. of (18) is equal to.ze

To proceed, we remark that the EMSE of the component filtedsthe cross-EMSE can be calculated [8], respectively as

Gi(n) £ E{e] ;(n)}, i=1,2, and (19)
Ci2(n) £ Efea,1(n)eaa(n) }- (20)
Introducing the differences
AGi(n) = Gi(n) = Giz(n), i=1,2, (21)
and using (19)-(21) in (18), we arrive at
o) = 7o) 22

T Al (n) + Alaa(n)”
A similar expression was also obtained in [8, Eq.(29)] fag tonvex combination of two LMS filters at the steady-state. W
should notice that (22) is more general: it holds forsall> 0 (not only at the steady-state) and the mixing parameter is no
restricted to the intervdD, 1].

Defining the EMSE of the overall combined scheme as

¢(n) = E{ez(n)}, (23)

we now obtain an analytical expression for its optimum vaB squaring both sides of (17) with(n) = 7,(n) and taking

expectations, we arrive at

E{ez(n)}=n3(n)E{ez 1 (n)}+[1-no(n)*E{e; 5(n)}
+ 210 (n)[1=no (n)]E{€a,1(n)ea,2(n)}. (24)
Using (19)-(22) in (24), we obtain
Co(n) = Ca2(n) = 10(1) Ala2(n). (25)
After some algebraic manipulations, (25) can be rewritten a

AC11(n)Alea(n)

Gon) = G2 + R T ¥ Aoa(n)”

(26)
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This expression was obtained in [8, Eq. (33)] for the convemlgination of two LMS filters at the steady-state, but again i
also holds for alln > 0.

As already mentioned in [8], (22) and (26) hold for the conaltimn of any two algorithms that satisfy (12). The values
of A¢;i(n), i = 1,2 however do depend on the actual algorithms that are beindiomeh. Thus, provided approximations
for ¢;;(n), i,j = 1,2 are available, (22) and (26) can be applied to the affine coatioin of different algorithms, including

combinations of algorithms of different families.

IV. STEADY-STATE ANALYSIS OF THE OPTIMUM COMBINER

In this section, the optimum mixing parameter and the optnitMSE of the combination, given respectively by expression
(22) and (26), are particularized for the combination of tl@S filters, two NLMS filters, and two CMA equalizers in steady
state for stationary and nonstationary environments. Waatorederive the steady-state expressions¢fofoo), i,j = 1,2
here, only use the best approximations from the literatiisein [12], we assume that the algorithm which updates thangix
parameter is able to achieve the optimum value in steadg-sSRealizable schemes for adaptationn¢f) are taken into
account in Section V.

We assume that in a nonstationary environment, the vani@dtiadhe optimal solutiorw,, follows a random-walk model [17,

p. 359], that is,

Wo(n) = Wo(n —1) +q(n). @7)

In this model,q(n) is an i.i.d. vector with positive-definite autocorrelatioratrix Q = E{q(n)q”(n)}, independent of the
initial conditions{w,(—1),w(—1),n(—1)} and of{u(l)} for all [ [17, Sec. 7.4]. In supervised filtering(n) is also assumed
independent of the desired resporgil)} for all [ < n. In blind equalizationw,(n) represents the zero-forcing solution and
q(n) models the channel variation.

Table Il lists analytical expressions ¢fz(co) for some pairs of filters. Expressions fQf(cc) can be obtained from Table I
making i1 = po. Details about the derivation of these expressions can bedfén [8], [10], [13] for the cross-terms and
in [16], [17], [23], [28], [30]-[34] for the casg:; = us. In this table,R £ E{u(n)u”(n)} is the autocorrelation matrix of
the input signal,Tr(A) stands for the trace of matriA, andv, = E {||u(n)|~2}. For Gaussian inputs and large number of
coefficients,v, can be approximated by/[o7. (M —2)] with o7 = E{u*(n)} [13], [35]. The constants?, 7, and&, which
appear in the expression for the EMSE of CMA, depend on staisf the transmitted signal and are defined in Appendix A.

TABLE I

ANALYTICAL EXPRESSIONS FOR THE STEADYSTATE CROSSEMSE OF THE CONSIDERED COMBINATIONS

Combination C12(00)
p1p202Tr(R) + Tr(Q)
w1+ p2 — papeTr(R)

Tr(R) [#1/120'12;Vu +T1”(Q.)]

1+ 2 — 1 p2
u1p20 3 Tr(R) + Tr(Q)

F(p1 + p2) — prpeTr(R)E

p1-LMS aﬂd,ug-LMS

11-NLMS and po-NLMS

©1-CMA and p2-CMA
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A. Stationary environments

Replacing the expressions of Table Il wi@® = 0 in (22) and (26), we obtain analytical expressions for tteady-state
optimum mixing parametet,(co) and for the steady-state optimum EM&Eoco) in stationary environments. The resulting
expressions are shown in Table Ill, where we defified /11 with 0 < § < 1. It is worth to notice that the second filter
of the combination is always assumed to be the slower fijtger< p1) which consequently presents the lower steady-state

EMSE in a stationary environment.
TABLE IIl

ANALYTICAL EXPRESSIONS FOR1)o(00) AND (o (00).

Combination 7o (00) So(0)
(11 andpz)-NLMS 52[(25__/?)] % [%ﬁ:ﬂ]
o sy (BT [T

The expressions of Table Il show two interesting propertie

i) 7,(c0) is negative for all considered combinations, which can bi#ied through the stability conditions of the algorithms.
To ensure the stability of;;-LMS and 11-NLMS, the step-sizes should be chosen respectively in diewfing ranges
0<p <2/Tr(R) and0 < p; < 2 [19]. In the case ofu;-CMA, assuming model (8), it was shown in [26, Eq. (14)]
that the range of step-sizés< p; < 27/[3Tr(R)¢] guarantees good performance. Choosing the step-size®se th
ranges, we can verify from the expressions of Table Il thdto) < 0.

i) d~1 yields (,(00)~(2(c0)/2. Since(y(c0) < (1 (oc0) for all combinations, the affine combination provides a 3aing
in relation to the best component filter. In this caggoo) — —cc.

Property i) was observed in [12] for the combination of two EMllters, assuming Gaussian and white inputs, and additiona
assumptions equivalent to choosing the LMS step-size forimmam convergence speed. If we consider= 1/Tr(R) in

the expression of Table Ill, we recover the result of [12,(E8)]. The same property was observed in [13] for the affine
combination of two NLMS filters, also assuming white and Géars inputs.

An intuitive explanation for Property ii) can be found asldals. Using (12), the overall steady-state error is writésn

e(n)=ea(n) +n(n) £(n)[wa(n)—wi(n)]"u(n). (28)
——
dy(n) —un(n)

From the point of view of the computation gfn), d,(n) represents the signal which has to be estimatedgta) plays the
role of input signal. Assuming that;(n), i = 1,2 vary slowly compared tg(n), (28) has a simple geometric interpretation
as shown in Fig. 4. The affine combination seeks the best weggttor in the linew, + n(w; — ws). In Fig. 4-(a), the best
linear combination ofw; andw, is w. In the case of close step-sizes, we also have close coeffigetors in steady-stdte

1t is possible to prove using the results of Tables Il and \t thawo stable adaptive filters are initialized with the sanmector and adapted with close

step-sizes the following limit holds

e B —Sem)?) )
Ll{nloo ([ (|2} }0'

In other words, close step-sizes imply close coefficientarscin steady-state.



CANDIDO, SILVA, AND NASCIMENTO: TRANSIENT AND STEADY-STATE ANALYSIS OF THE AFFINE COMBINATION OF TWO ADAPTIVE FILTERS 11

i.e., w; = wy (Fig. 4-(b)), andn has to assume a large value to take the combined vector dose $ince the input signal

u,(n) depends on the difference between and w,. Thus, if (wq —ws) — 0, || — oo.

Fig. 4. Geometric interpretation of the affine combination.

B. Nonstationary environments

In a nonstationary environment, the largest EMSE reduatiotihe affine combination in relation to its components oscur

when {11 (c0) & (22(c0). This can happen in two situations (see Table IV):

i) when the step-sizes are not close to one anotheflat@) = ¢12, whereg;» is the value ofTr(Q) for which (11 (c0) ~
Ca2(00);
i) when the component filters are adapted with close stegssp ~ 1). However, wher’ ~ 1 and Tr(Q) = ¢;2, the gain

is small.

Replacing the expressions of Table Il under the small step-approximatiof in (22) and (26), we obtain analytical
expressions for;. and ¢,(co) shown in Table IV. From these expressions, we can obsentehthaEMSE reduction in all
cases is limited by 3 dB. A reduction close to 3 dB will occurenty — 0 in case (i) or when the environment tends to
be stationary Tr(Q) ~ 0) in case (ii). It is relevant to notice that case (i) also gsdn the convex combination of adaptive
filters since in this case < 7,(c0) < 1. On the other hand, case (ii) occurs only in the affine conlainasincen, (co) does
not lie in the intervall0, 1].

The 3 dB gain is an interesting property inherent to the affine domiion. However, we should emphasize that using the
affine combination with the filters adapted with differergssizes is more worthwhile than using it with close steesi In
the stationary case fqus < 1, the closerdss(oo) to ¢q1(c0) the closer the EMSE gain to 3 dB. Although a gain increase
can be obtained with close step-sizes, the EMSE of the catibmis higher in absolute terms &s(cc) becomes closer to
¢11(c0). On the other hand, for a single adaptive filter in nonstatigrenvironments there is an optimal value of the step-size
for which the steady-state EMSE is minimum [16], [17]. The &®¥of the combination achieves its smallest value when one
of its component filters is adapted with this optimum steg@sin this case, the combined estimate is as good as thatof th
optimum component, and there is no EMSE gain, as is illledrét a simulation of Section VI-D (see Fig. 17). Moreover, it
was shown analytically in [36] that a combination of two fittdrom the same family (i.e., two LMS or two RLS filters) cahno
improve the performance over that of a single filter of the sdgpe with optimal selection of the step-size (or forgeftin

factor).

2The small step-size approximation was assumed in order torobimipler expressions.
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TABLE IV

ANALYTICAL EXPRESSIONS FORg12 AND (o (00) FOR CASES(i) AND (ii) IN A NONSTATIONARY ENVIRONMENT.

Combination (0] (i)
q12 Go(0) Co(00)
u1-LMS p 202 C22(0)/2 (22(c0)/2
) 20¢22(00) o7 Tr(R)Tr(Q)
and p2-LMS xTr(R) TEE +W
p1-NLMS pip2os | Caz(o0)/2 G22(00)/2
] 20G22(0c0) o2 [Tr(R)*Tr(Q)vu
and p2-NLMS Xy + (1+0)2 + 2C22(o0)
©1-CMA pip2oy | C22(00)/2 G22(00)/2
) 26(22(c0) a%Tr(R)Tr(Q)
and p2-CMA xTr(R) 1107 W

V. TRANSIENT ANALYSIS OF REALIZABLE SCHEMES

In this section, we take into account the adaptatiom@f) in the analysis. Our focus will be on how much a realizable
estimate for,(n) deviates from the optimum, and how this affects the comlmnat overall performance.

By squaring both sides of (17) and taking expectations, waiob

E{el(n)} =E{el 2 (n)} +Efn*(n)[ea1 (n)—€a2(n)]*}
+ 2B{n(n)[eq2(n)eq,1 (n) —€; 5(n)]} - (29)
To proceed, we assume that:
Al. The adaptation ofy(n) is slow so that the correlation between it ang;(n)e, ;(n), 4,5 = 1,2 can be disregarded.
This assumption follows from observations: simulationsvelthatr(n) converges slowly compared to variations in the input
u(n) and thus to variations on thepriori errors.
Using Al, (19)-(21) and (23), we can rewrite (29) as
((n)~Coa(n) +E {n*(n) } a(n)—2E {n(n)} Az (n), (30)
where we defined
a(n) £ E{[yi(n) — y2(n)]*} = AGi(n) + Alea(n). (1)
To estimate the EMSE of the combination for al>> 0 using (30), analytical expressions f¢r(n), i = 1,2, E{n(n)}, and
E{n?(n)} should be obtained.
It is common in the literature to evaluate the EMSE as
Gij(n) £ Efeq,i(n)eq,j(n)} ~ Tr(RS;;(n — 1)), (32)
where

S;;(n) £ E{®,(n)W] (n)}, i=1,2 (33)

is the covariancei(= j) or the cross-variancei (% j) matrix of the weight-error vector. This approach is basedtloe

independence assumption between the regressor vegtgrand weight-error vectorsr;(n — 1), « = 1,2 and is justified for
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small step-sizes due to the different time-scales for tiana in u(n) andw;(n — 1). This condition is a part of the widely
used independence assumptions in adaptive filter theoly[[ll¥, [37]. Recursions foS;;(n), i = 1,2 are generally obtained

in the transient analysis of adaptive filters (see, e.qg,,[[18], [26], [35] and their references). In the transientlgnis of
linear combinations of two adaptive filters, an estimateSgf(n), i # j should also be obtained, which is a straightforward
extension from the case= j [10]. In Table V, we show the recursions for the cross-vareamatrixSi2(n). Expressions for
the covariance matri$;;(n), ¢ = 1,2 can be obtained from this table, makipg = p». Using the expressions of Table V
in conjunction with (32),¢;;(n), 4,7 = 1,2 can be estimated for alt > 0. The expression foS,,(n) considering the
combination of two NLMS was derived using the approach fr@8],[ under the assumptions of Gaussian inputs and large
number of coefficients. We should notice that steady-stpfgoximations for the EMSE and cross-EMSE of the component
filters can be obtained from the expressions of Table V, {g(m0) ~ Tr(RS;;(c0)), ¢,j = 1,2. However, this procedure

leads to more complex expressions than those of Table lll.

TABLE V

RECURRENT EXPRESSIONS FOR CROSBARIANCE MATRIX S12(n).

Combination Si2(n)
ul-LMS Slg(n) ~ Slg(nfl)f,LLlRSlz(nfl)
and 7/1,2812(77,71)R+/j,1,u,2[2R812(’n - l)R
pa-LMS +RTr (RS12(n — 1))+02R] + Q
H1
-NLMS | S ~ S —1)— ——— RS —1
[0} 12(n) & S12(n—1) Z(M—2) 12(n—1)
H2 H1p2
and —— 7S -)R+——————
sz—a) 2 DRt =)

p2-NLMS | x [2RS12(n—1)R+RTr (RS12(n—1))+0-R]+Q

n1-CMA S12(n) ~ Slg(n—l)—uﬂRSm(n—l)
and —p2¥S12(n—1)R+p1 2 [26RS12(n—1)R
p2-CMA +ERTr (RS12(n—1))+03R] + Q

Expressions foiE{n(n)} and E{n*(n)} depend on the mixing parameter adaptation. In the nextesectie assume that

n(n) is updated with the)-LMS algorithm.

A. Adaptation of the mixing parameter using-MS

Replacing (17) in (15), we get

eg(n) = ea2(n) —n(n)lea2(n) — eq1(n)] + b(n). (34)

Using (34) and remarking that; (n) — y2(n) = eq2(n) — eq,1(n), the update equation of-LMS, given by (14), can be

rewritten as
A

n(n+1) =n(n)(1 — pyleaz(n) — ea1(n)]?)
B

+ nleq 2(n) = ea1(n)eqa(n)]
c

+ hnb(n)[ea2(n) — ean(n)]. (35)

Using (35), we can obtain recursions for the first and the rsgenoments ofy(n).
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1) First-order analysis: Using the same arguments of Section Ill, we remark €} = 0. Assuming Al and taking

expectations in (35), we get

E{n(n+1)} =E{n(n)}[1—pya(n)] + pmAla2(n). (36)

Since the constraini(n) < 1 is imposed in thep-LMS algorithm, we truncate at each iteration the theosttialue of
E{n(n+1)} estimated by (36), so th@&{n(n+1)} < 1.

Taking the limit forn — oo on both sides of (36), we obtain

lim E{n(n)} = no(c0). (37)

Thus, as observed in [12], theLMS algorithm converges in the average to the optimum nghparameter at the steady-state.

A sufficient condition for the exponential stability of (38) given by [38, p. 73]
1= pga(n)| <1—e, Vn, (38)

wheree is a small positive constant. In particular, for a constdaepsize, a sufficient condition is

2) Second-order analysisSquaring (35) and taking expectations, we obtain
E{n’(n+1)} = E{A*} +E{B*} +E{C*} +E{2A4B}
+ E{2AC} + E{2BC} . (40)
To evaluate the terms of (40), we assume that
A2. Thea priori errorse, 1(n) ande, 2(n) are jointly Gaussian with zero-mean, which implies [39]
E{eqi(n)eai(n)} = 3Gi(n)Gij(n), i,j=1,2, (42)
E {[emg(n)—eml(n)]‘l} = 3a%(n), (42)
E{e2 (n)e »(n)} = C11(n)¢aa(n) + 2¢75(n). (43)

Although this condition is violated in general, it is freoqily used to make the transient analysis of adaptive filteosem
tractable [16]-[19]. This assumption tends to be reasenfdsl small step-sizes and long filters [17].

Now, using Al and A2 we can evaluate the terms of (40):

E{A?}: Using Al and (42), we obtain

(A%} = B {i () (1— pyfeaz(n) —ean(n)]?)” |
~ B ()} [1-2pma(n) + 3p20%(n)] (44)

E{B?}: Using (41) and (43), we have

E{B%} = jinE {[e7 5(n) — ea1(n)ea2(n)]’}

~ pCaz(n)a(n) +2u5 ACS (n). (45)
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E{C?}: Sinceb(n) is assumed independent @f ;(n), i = 1,2, E{b(n)} = 0, andE{b*(n)} = o2, we get

E {CZ} = E{u%b2(n)[ea,2(n) — 6(171(71)]2}
~ ppopa(n). (46)
For the combination of two CMA equalizers this term is nuihce b(n) = 0.

E{2AB}: Using Al, (41) and (43), we obtain

E{2AB} = 241, E{n(n) YE{ (1= 1y [ea2(n) €01 (n)]?)
X 12 o(n)~ a1 (m)ea ()]}
~ 2unE{n(n)} [C2(n) =31y ACoa (n)a(n))] (47)
E{2AC} andE{2BC}: Sinceb(n) is assumed independent of ;(n), i = 1,2 and E{b(n)} = 0, these terms are null.
Again, for the combination of two CMA equalizers these tegms null by definition, sincé(n) = 0.

Replacing the approximations (44)-(47) in (40), we finaliyivee at

E{n’(n+ 1)} = E{n*(n)} [1-2uya(n) + 3u;a’(n)]
+ 2pnE{n(n)} [C22(n) =3y Aoz (n)a(n)]

+ pp (Co2(n) + 07) a(n) + 262 A3, (n). (48)

Using (48) and (36) in conjunction with the expressions dil&a/, the EMSE of the combination for all > 0 considering
the n-LMS algorithm can be estimated via (30).

From (48), the range of step-sizes to ensure the mean-sqtadyidity of -LMS is given by [38]

0< py < (49)

3max{a(n)}’
which is more restrictive than (39).

The stability ofn-LMS depends onx(n). From Fig. 1-(c), we can see thai{n) = E{[y1(n) — y2(n)]?} is large at first
when the fast filter has almost converged but the slow filtestilsfar from the optimum solution. At this poinjy, should be
small, as required by (49). However, when the EMSE of the slow fast filters are similakx(n) is small. At this point, a
large u,, is required so the combination will switch to the slow filt€his is the reason why [12] needs to constra{n) < 1.
To guarantee thaj-LMS switches quickly to the slow filter at the proper timg, must be chosen so large thalLMS will
be unstable at the beginning, wheiin) is large. Therefore, some sort of normalization is necgsfarthe estimation ofy.

Thus, we propose in the following sections two normalizegbathms to update the mixing parameter.

B. Adaptation of the mixing parameter usingPN-LMS

Using an instantaneous normalization, i.e., replacingtep-size by., (n) =i, /[y1(n) —y=(n)]?, can also lead to divergence

(see, e.g, [40]). One possible solution is to normalize therdhm using an estimate of(n), as in [9]. The resulting normalized
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algorithm is called power normalized least mean-squar®N-LMS) algorithm and updates the mixing parameter via the

recursion
0+ 1) = n(n) + g (n)eg(n) v (n) — y2(n) (50)
where
meéefgm, (51)
p(n) = Ap(n — 1) + (1= N)[ys (n) — ya(n))* (52)

is a low-pass filtered estimate for the powerwain) — y2(n), € is a small positive constant used to avoid large step-sizes
whenp(n) becomes small, andl < A < 1 is a forgetting factor. The stability of (50) is ensured ok 1, < 2 [38] and no
constraint ory(n) is necessary.

In the analysis of the-PN-LMS algorithm, we assume that

A3. The forgetting facton is sufficiently close to one, so that the variance@f) is small and the step-sizeg,(n) is weakly

correlated with the priori errorse, ;(n), i = 1,2 and the mixing parameter(n).

Using A3, the analysis of)-LMS can be directly extended tg-PN-LMS, replacinguf, by [E{Mn(n)}}’“, k = 1,2 in the
expressions of Section V-A. Hence, we only need to estirfigie, (n)}, as shown in the sequel.

Expandingu, (n) as a Taylor series, around the expected valfp(n)} £ p(n), we obtain

i [pln)=p(0)] iy lon) ~p(0)]* (53)
P

Hn (n)~ 3

Tetp(n)  [e+p(n))? [e+p(n)]

Taking expectations on both sides of (53), we arrive at

)
E{uy(n)}~ e+p(n) [e+ﬁ(n)]3

; (54)

where we denoted?(n) = E{[p(n) — p(n)]’}. Assuming A3, the second term on the r.h.s. of (54) can beghsded, which

leads to

B ()} ~ . (55)

Using the same arguments, the second moment of the step:giz¢ can be approximated biy{..2(n)} ~ [E{u,,(n)}]Q.

Now, we obtain a recursion fgi(n). Taking expectations on both sides of (52), we get
p(n)=Ap(n—1)+(1=NE {[y1(n)—y2(n)]*} . (56)
Remarking thaty; (n) —y2(n) =eq 2(n) —eq.1(n), the following recursion holds
p(n)=Ap(n—1)+(1-Na(n). (57)

At steady-state, we havgco) = a(0).
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C. Adaptation of the mixing parameter usingSR-LMS

Althoughn-PN-LMS circumvents the problem encountered in the corererg ofy-LMS, three parameters must be adjusted:
iy, A, ande. The forgetting factor\ is relatively easy to be adjusted (e.g.= 0.99). However, the choice of the step-size
1ty and of the regularization factar needs some care, as we show through the simulations of Be¢tidn order to avoid
these extra adjustments and since a normalization is reagesse can employ a partial instantaneous normalizationgus

pn(n) = pins/|y1(n) — y2(n)| as step-size. With this choice, the update rule (50) redtxes

n(n+1) = n(n) + pseq(n)signlyi(n) — y2(n)], (58)

where sigf] is the sign function defined as

+1, >0
signz] = 0, =0 . (59)
-1, =<0

We call this algorithm sign regressor least mean-squareritign (-SR-LMS).

Using (34) and remarking thatsignz| = |z| and thaty; (n) —y2(n) =eq 2(n)—eq.1(n), (58) can be rewritten as
D

n(n+1) =n(n) (1 = pyslea2(n) —ea1(n)])
£

+ lys€a,2(n)SigN[eq 2(n) —eq 1(n)]
F

+ Unsb(n)Sign[eaﬂ(n)_ea,l(n)] . (60)

Using (60), we can obtain recursions for the first and secoachemts ofn(n).

1) First-order analysis:Assuming Al, taking expectations in (60), and remarking g7} = 0, we obtain
E{n(n+1)}=E {n(n)}(1-pmsE{lea2(n) —ea1(n)})
+unsE{eq2(n)signleq 2 (n) —€q1(n)]} . (61)

Assuming A2 and using a special case of Price’s theorem ésge[39], [17, p. 306]), the following approximations hold

B {Jeas(n) —can ()} = /220, (62
and
B {ca(n)signicaa(n)—con ()]} = ZEL (63
Replacing (62) and (63) in (61), we arrive at
E{n(nﬂ)}wE{n(n)}[mns 7 (64

Taking the limit forn — oo on both sides of (64), we obtalim,, ... E{n(n)} = n,(c0). Hence, then-SR-LMS algorithm
also converges in the average to the optimum mixing parana¢tde steady-state.
The range of step-sizes that guarantees stability of (64jven by [38]

2w

0 < e < 4 —2
< Hns < max{a(n)}

(65)
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2) Second-order analysisSquaring (60) and taking expectations, we obtain
E{n’(n+1)} = E{D*} +E{€*} +E{F*} +E{2D&}
+E{2DF} + E{2EF}. (66)

Using Al and A2, we can evaluate the terms of (66):

E{D?}: Using Al and (62), we obtain

E{D?} = E {n*(n) [1=ptnslea(n) —eas ()]}
~~ E{UQ (n)} [lf,uns\/Sa(n)/w + uflsoz(n)} . (67)

E{£?} andE{F?}: Using the fact that sigtiz] = 1 almost everywhere on the real line, we get

E{€%} = E{up.er 5 (n)sig’ [eq2(n) — eq,1(n)] }
~ piroCaa(n), (68)
and
E{F?} = E{u b*(n)sigr’ [eq,2(n) — eq,1(n)] }
R O (69)

E{2D¢&}: Using Al and (63), we obtain

E{2DE} =21 B{ () (1= stgs ea2(n) a1 ()]
X €q.2(n)SigN[eq.2(1) —ea.1(n)] }

Al (n)
ma(n)/2
Sinceb(n) is assumed independent @f ;(n), i = 1,2 andE{b(n)} = 0, we haveE{2DF} ~ 0 andE{2£F} ~ 0. Replacing

~ 2pnsE{n(n)} = fnsAGa2(n) |- (70)

the approximations (67)-(70) in (66), we finally arrive at

E{nz(nﬂ)}%E{WQ(H)}[l—Mns Sadn) +uisa<n>]

Alpa(n) ,M,SA@Q(n)]

+ 2B} | <

+ 115 [0 + Coa(n)] . (71)

The range of step-sizes that guarantees stability of (7@jvien by [38]

/ 8
0 < s < 7 max{a(n)} (72)

It should be noticed that this range is more restrictive t(@6). Although the step sizg,, still depends on an estimate of
a(n), this dependence is weaker than that of taAeMS algorithm due to the square-root in (72). Furthermqrg, can be
adjusted based on the analytical EMSE of the combinatioa F$g. 11). Thus, the-SR-LMS algorithm can perform better
than -LMS, following quickly the variations on,(n) with a small EMSE and with only one free parameter to adjust, a

shown in the simulations of Section VI-A.
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VI. SIMULATION RESULTS

The simulations are divided into four parts. First, we wetifie accuracy of the transient analysis for the introdyctor
simulations shown in Fig. 1. We also verify the behavior af firoposed algorithms-PN-LMS and»n-SR-LMS in the same
simulation scenario. In the second part, we show some sesaticerning the analysis of combinations of NLMS filters and
CMA equalizers. In the third part, we verify the validity dfet analysis of combinations of LMS filters with close stegesi

Finally, we focus on the tracking analysis and compare thopaances of the affine and convex combinations.

A. Recalling the introductory simulation

To verify the validity of the transient analysis in the supsed case, we consider the identification of a time-invdria

system. The optimum solution is formed wifli = 7 independent random values between -1 an 1, and is given by
w, = [40.90 —0.54 —0.03 4+0.78 +0.52 —0.09]. (73)

We assume white Gaussian input with varian¢g@/ so thatTr(R) = 1, and an average of 500 runs. Moreover, i.i.d. noise
v(n) with variances? = 0.01 is added to form the desired signal.

Figures 5 and 6 show the results of the EMSE and the mixingnpetex for the affine combination of two LMS filters in
the same situations considered in Figures 1-(a) and (b) hichwthe mixing parameter is updated with th-MS algorithm.
In Fig. 5, wherep,, = 3, the analysis can predict that the performance of the caatibim is far from universal in the initial
iterations. Similarly, withu,, = 0.1, the analysis can predict that the combination is not ablswitch to the slow filter, as
shown in Fig. 6. We should notice that, due to the constrangiosed in the)-LMS algorithm ¢(n) < 1), these situations
become difficult to model and there is a small gap betweenxperenental and theoretical EMSE during the initial iteyas.
Moreover, the mixing parameter does not achieve the optimaiore obtained in the analysis, which is higher than one én th

initial iterations.

0 p1-LMS
e (19-LMS
Combination
— % -((n) (Theoretical)
— © -(,(n) from (26)

EMSE (dB)

Experimental
— % — Theoretical
— © — no(n) from (22)

; ; ; \GT Bl = S s FerO—K —©
0 1 2 3 4 5 6 7 8
iterations x10%

Fig. 5. a) EMSE foru:-LMS, pu2-LMS and their affine combination; b) ensemble average(ef) adapted with the)-LMS algorithm and theoreticaj, (n);
w1 = 0.01, u2 = 0.001, u, = 3, M = 7; identification of the system given by (73)2 = 0.01, white input with variancer2 = 1/7; 500 independent

runs.

In the same scenario, the algorithmdPN-LMS or n-SR-LMS can circumvent the problem, as shown in Figures 7 &nd
respectively. These two algorithms have a similar perforteawhich is predicted by the analysis with a good accunadyoth

cases. In addition, the experimental mixing parameterdgdi than one in the initial iterations, being far from itedhetical
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optimum value during the very first iterations, as shown iguFés 7-(c) and 8-(c). However, this does not representsareis

since the combination presents a close to universal pesfiocm

0
-LMS

2 oIS
< -20 ~——— Combination
—~ — % - ((n) (Theoretical)
CL;J) -30 - o - go(n) from (26)
= 40
M50

-60

= 1 O ey ’

< ~ y
= Experimental
5 0.5 Q\\ - g - T}{éo)rc[tical 22)
o N — - 1o(n) from
0 (b) : ; ; \GT\ & —O—i-0 —50-—— ©
0 1 2 3 4 5 6 7 8

iterations x10*

Fig. 6. a) EMSE forui-LMS, u2-LMS and their affine combination; b) ensemble average(af) adapted with the)-LMS algorithm and theoreticaj, (n);
p1 = 0.01, uo = 0.001, u, = 0.1, M = 7; identification of the system given by (732 = 0.01, white input with variancer2 = 1/7; 500 independent

runs.

— L LMS
m— 15-LMS

—— Combination
—*—((n) (Theoretical)
—O—(o(n) from (26)

EMSE (dB)

o) 1 me FiXperimental
£ —%— Theoretical
= 0.5 —0O- 1)(n) from (22)
=
=g
0 1 2 3 4 5 6 7 8
iterations x10*
10
-~ # s Experimental
< —%— Theoretical
= 5 —O- 1)5(n) from (22)
e
=
0

iterations x10%

Fig. 7. a) EMSE foru;-LMS, u2-LMS and their affine combination; b) ensemble average(ef) adapted with the)-PN-LMS algorithm and theoretical
No(n); p1 = 0.01, po = 0.001, i, = 3 x 1073, e = 5 x 1074, A = 0.99, M = 7; identification of the system given by (73}2 = 0.01, white input

with variances? = 1/7; 500 independent runs; c) detail of b) from= 0 until n = 0.5x 10 (note the different x-scaling).

To illustrate the influence of the parameterand i, in the performance of thg-PN-LMS algorithm, Figures 9 and 10
show the theoretical, experimental, and optimal EMSE of dbmbination at three time instants as a functiore dFig. 9)
and ofzz,, (Fig. 10). The time instants were chosen in order to checlatoeiracy of the analysis in three different situations:
atn = 15x 102 the slower filter has not converged yet, the time instant 40 x 103 is close to the switching between the
faster to the slower filter, and at= 65x10° both filters have converged. The same simulation settinggf7is considered.

Similarly, Fig. 11 shows the results on the influenceugf for the n-SR-LMS algorithm, considering the same simulation
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setting of Fig. 8. The analysis provides an accurate estmatf the EMSE in all cases, which enables the adjustmentef t
parameters through the analytical results. We can alsonadbskat the optimum value of, 1), or u, is different for each
time instant considered in the simulations. However, itdsgible to choose an intermediate value to obtain a tradedffese

three situations.
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—%-((n) (Theoretical)
—0-(o(n) from (26)

EMSE (dB)
=

—_ 1 s FIXperimental
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0p(b) ‘ Ry — om0k -©
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—_ @ s FIXperimental
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-
€3]

K40k t-0 st t-0mt0te0
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
iterations x10%

Fig. 8. a) EMSE foru;-LMS, u2-LMS and their affine combination; b) ensemble average(ef) adapted with the)-SR-LMS algorithm and theoretical
No(n); p1 = 0.01, po = 0.001, puys = 2.5 x 1072, M = 7; identification of the system given by (732 = 0.01, white input with variancer2 = 1/7;

500 independent runs; c) detail of b) from= 0 until n = 0.5x10* (note the different x-scaling).
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Fig. 9. Theoretical, experimental and optimal EMSE at thréferdint time instants for the affine combinationof-LMS and n2-LMS using then-PN-LMS

for different values ofe; 1 = 0.01, u2 = 0.001, fi, = 3, A = 0.99, M = 7; identification of the system given by (73}2 = 0.01, white input with

variances? = 1/7; 500 independent runs; each experimental value was calculatetidosnean EMSE of 50 samples around the considered time instant.
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Fig. 10. Theoretical, experimental and optimal EMSE at thifferdnt time instants for the affine combinationef-LMS andp2-LMS using then-PN-LMS

for different values ofzi,; p1 = 0.01, po = 0.001, e = 5 x 1074, A = 0.99, M = 7; identification of the system given by (73j2 = 0.01, white input

with variances2 = 1/7; 500 independent runs; each experimental value was calculatéitebyean EMSE of 50 samples around the considered time instant.
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Fig. 11. Theoretical, experimental and optimal EMSE at thiferdnt time instants for the affine combination@f-LMS and u2-LMS using then-SR-LMS
for different values ofuys; 11 = 0.01, ue = 0.001, M = 7; identification of the system given by (732 = 0.01, white input with variancer2 = 1/7;

500 independent runs; each experimental value was calculatedebgnean EMSE of 50 samples around the considered time instant.

B. Combinations of two NLMS filters and two CMA equalizers

To verify that the transient analysis is also accurate ferafiine combination of the other algorithms, Fig. 12 and Eig).
show the results for combination of two NLMS filters with thePN-LMS algorithm and two CMA equalizers with the
SR-LMS algorithm, respectively. For the NLMS case, to abtai better estimate for the EMSE of the component filters
using the expression of Table V, we considef = 32 coefficients and the optimum solutiow{) from [12, Fig. 2].
Again, we can observe a good agreement between analysisimotation. In the CMA case, we assume the channels

h; = [+0.1 +0.3 +1.0 —0.1 +0.5 +0.2]" andhy = [+0.25 +0.64 +0.80 —0.55]" [27], [33] in the absence of noise
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and the transmission of a 4-PAM (pulse amplitude modulatggnal, i.e.,a(n) = £1 or a(n) = £3, with statisticsr = 8.2,
og = 28.8, and¥ = 6.8. In the combination, each component filter hes=4 coefficients implemented as a T/2-fractionally
spaced equalizer (FSE) and is initialized with only one nah-and unitary element in the second position. Fig. 13 show
the results for the EMSE and the mixing parameter considetie channeh; until n = 4x10* and the channeh, after
that. To smooth the EMSE curves, they were filtered by a mesiregage filter of32 coefficients. Although there is no exact
agreement between analysis and simulation, the predickes model the overall behavior of the combination, carsig)

that a difference of a few dB is common in models of blind allfpons due to the strong assumptions necessary for the @nalys

m— 11 -NLMS
w15~ NLMS
~—— Combination

-10

% -20 —#-((n) (Theoretical)
;J/ 30 —O-(o(n) from (26)
95}
E -40+
(a)
50 ; ; ; ; ; ;
0 0.5 1 1.5 2 2.5 3
. 3 (b) = Experimental
= 9 —%—Theoretical
= —O-1),(n) from (22)
= 1
m
0
0 0.5 1 1.5 2 2.5 3
iterations x10*

Fig. 12. a) EMSE fon1-NLMS, p2-NLMS and their affine combination; b) ensemble averagg(ef) adapted with the)-PN-LMS algorithm and theoretical
No(n); 1 = 0.1, po = 0.01, fi, = 3 x 1073, e = 5 x 1074, X = 0.99, M = 32; identification of the system considered in [12f = 0.01, white input

with variances? = 1/32, Q = 0; 500 independent runs.
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Fig. 13. a) EMSE fom1-CMA, u2-CMA and their affine combination; b) ensemble average(of) adapted with the)-SR-LMS algorithm and theoretical
No(n); p1 = 1x1073, po = 1x107%, puys = 0.5; Equalizers withM = 4 as T/2-FSE, initialized witho 1 0 0)7; channelh; =[0.1 0.3 1.0 —0.1 0.5 0.2
until n = 4x10* andhy =[0.25 0.64 0.80 —0.55T aftern =4 x 10%; Q = 0; 4-PAM transmitted signal300 independent runs; EMSE curves filtered by a

moving-average filter of 32 coefficients.

C. Affine combination of filters with close step-sizes

We now consider an affine combination of two LMS filters witbs® step-sizes in a stationary environment. We assume that

the optimum solution is given by (73) and the inpuft:) is generated using a first-order autoregressive model, avtraasfer
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function is \/1—0%/(1—pz71), with o = 0.8. This model is fed with and i.i.d. Gaussian random procesmse variance is

1/M, such thatTr(R) = 1. Again, to form the desired signal, white noisén) with variances? = 0.01 is added. Fig. 14

shows the EMSE and the mixing parameter along the iterafmmsvo LMS filters with step-sizeg; = 0.01 and o, = 0.0009,

using then-LMS algorithm with 1,, = 600. This high value ofy, is needed in order to ensure a high convergence rate for the

combination sincéy; (n) —y2(n)] is small. In this situation, the performances of the comporiiéters are very close and the

combination provides 8 dB EMSE gain in steady-state, as shown in Fig. 14-(a) andigieztiby the analysis. To smooth the

EMSE curves, they were filtered by a moving-average filteh\266 coefficients. We can observe that, due to the constraint

(n(n) < 1) imposed in the)-LMS algorithm, the mixing parameter does not achieve itsnapm value, which may be close

to 25 in some time instants, as shown in Fig. 14-(b). Congsafyyehe EMSE of the combination is far from the optimum

EMSE in some time instants.

EMSE (dB)

E{n(n)}

Fig. 14.
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1 \& —%— Tl’zeo)r;}tical( )
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b ¥ Nk O
) 1 4 5 6 7 8
iterations x10%

a) EMSE foru1-LMS, p2-LMS and their affine combination; b) ensemble average)(@f) adapted with the)-LMS algorithm and theoretical

No(n); p1 = 0.01, pa = 0.009, u, = 600, M = 7; identification of the system given by (732 = 0.01, colored input (AR model, ¥ order, pole at

0.8) with variances?2 = 1/7; 500 independent runs; EMSE curves filtered by a moving-averagg filith 256 coefficients.

In the same scenario, the&PN-LMS andn-SR-LMS algorithms circumvent the problem since no comstran 7(n) is

necessarily used, as show respectively in Figures 15 and B6dB EMSE gain can be observed in steady-state and there is

also an EMSE gain in the transient, being both well predittgdhe analysis.

EMSE (dB)

Fig. 15.
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a) EMSE foru1-LMS, n2-LMS and their affine combination; b) ensemble average(ef) adapted with the)-PN-LMS algorithm and theoretical

No(n); p1 = 0.01, po = 0.009, fiy, = 0.4, e = 9 x 1074, A = 0.99, M = 7; identification of the system given by (7332 = 0.01, colored input (AR

model, ** order, pole ab.8) with variances2 = 1/7; 500 independent runs; EMSE curves filtered by a moving-averag filith 256 coefficients.
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Fig. 16. a) EMSE fom1-LMS, p2-LMS and their affine combination; b) ensemble average(ef) adapted with the)-SR-LMS algorithm and theoretical
No(n); u1 = 0.01, pa = 0.009, uys = 0.5, M = 7; identification of the system given by (73)2 = 0.01, colored input (AR model, ¢ order, pole at

0.8) with variances?2 = 1/7; 500 independent runs; EMSE curves filtered by a moving-average filith 256 coefficients.

D. Accuracy of tracking analysis

To verify the validity of the tracking analysis, the affinengbination is compared to the convex combination assuming
two LMS filters with different step-sizes. The same simwlatisetting of Fig. 14 is considered, but with fixed = 0.1
and p2 = dpy. Fig. 17-(a) shows the theoretical and experimental vabfes;(co), i = 1,2 for the component filters and
the values of((cc0) for the affine and convex combinations as functionsy,oonsidering a nonstationary environment with
Q = 4x10~ L. The ratio¢(co0)/ min{¢;;(oc)} is also shown in Fig. 17-(b). It can be noticed that there i€EMSE reduction
for both the affine and convex combinations WhBfiQ) = g12 = p1 202 Tr(R), which corresponds t6 = 0.025 in this case.
An EMSE reduction for the affine combination also occurs whens ps, i.€.,6 ~ 1. In this case, the convex combination can
only perform as its best component filter, since the mixincppeeter needs to be negative to cause the EMSE reduction, as
shown in Fig. 17-(c). In both cases, the reduction is limiie@ dB, which agrees with the results of Table 1V. The thaoatt
results for the convex combination were obtained trungative value of the optimal mixing parameter to the intergall].
It is important to remark, though, that both points at whible targest EMSE reduction happens do not represent optimal
situations, as can be seen in Fig. 17-(a). For a single LM& fitt a nonstationary environment, there is an optimum vafue
the step-size that minimizes the EMSE. The minimum EMSEe/&bu the affine and convex combinations (38 dB) occurs
exactly whenus assumes this optimum value, which happensdfer 0.17 in this example. In this case, both combinations
perform as their best component filtgs-LMS. Therefore, using the affine combination of filters o t,ame family updated

with different step-sizes is more worthwhile than using ithwclose step-sizes.

VIlI. CONCLUSION

As an extension of [12] and [13], we proposed transient aeddst-state analyses for the EMSE and the mixing parameter
of the affine combination, based on the theoretical EMSE angseEMSE of the component filters and on the adaptation of
the mixing parameter. This allows the application to défgr combinations of algorithms, such as LMS, NLMS and CMA,
considering white or colored inputs and stationary or reitstary environments. Good agreement between the asaysi

the simulations was always observed. Moreover, we propasddanalyzed two normalized algorithms for updating theimgix
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Fig. 17. Theoretical and experimental values of¢g)oco), ¢ = 1,2 and {(c0); b) ((00)/ min{(;;(c0)}, ¢ = 1,2; and c)E{n(co)} for the affine
(un = 1) and convex o = 100, a* = 4 ande = 0.1 [8]) combinations of two LMS filters withu; = 0.1, p2 = dp1 and M = 7; identification of the
system given by (73)¢2 = 0.01, colored input (AR model, ¢ order, pole a®.8) with variances? = 1/7; Q = 4x 10~ 7I; 50 independent runs. The
theoretical values are indicated by lines and the experiheatues byA, [, O, and *.

parameter. The theoretical models can predict situationshiich these algorithms can achieve a better performareiagb

useful for the designer.

APPENDIXA

ASSUMPTIONS FOR THECMA ANALYSIS

Model (8) is based on the following assumption:

B1. The channel noise power is small enough for the zerdrfgreolutionw, to be one of the global minimizers of the
constant-modulus cost function. In other words, the ogtistdution achieves perfect equalization, i.e(n — 74) ~

u” (n)wo(n — 1) [10], [23], [26], [33].

Using B1, the filter output can be approximated by
yi(n) = a(n —14) — eqi(n), i=1,2. (74)

Equation (8) is obtained replacing (74) in (7) and assunmiirag terms depending CHg,i(n), k > 2 are sufficiently small to be
disregarded for ath > 0. In other words, we assume that the deviation between th@aoent equalizers and the zero-forcing
solution is always small.

To calculate the first and second moments of the random vadablesy(n) and 5(n), we assume that

B2. The constellation used to generate th{ie) has circular symmetry, so th&t{a*(n)} = 0 for all odd integersk > 0.

This assumption is not restrictive, since this conditioirige for practical constellations.
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Using B2, we find thaE{3(n)} =0,

and

(1]

(2]
K]

(4]

(5]

(6]

(7]

(8]

El

[20]

[11]

[12]

(23]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

o5 £ E{f*(n)} = E{a®(n) — r’a®(n)}, (75)
7 2 E{y(n)} = 3E{a*(n)} —r, (76)
¢ £ E{y*(n)} = 3rE{a*(n)} +r*. (77)
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