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Abstract

In this paper, we propose an approach to the transient and steady-stateanalysis of the affine combination of one fast and

one slow adaptive filters. The theoretical models are based on expressions for the excess mean-square error (EMSE) and cross-

EMSE of the component filters, which allows their application to different combinations of algorithms, such as least mean-squares

(LMS), normalized LMS (NLMS), and constant modulus algorithm (CMA), considering white or colored inputs and stationary

or nonstationary environments. Since the desired universal behaviorof the combination depends on the correct estimation of the

mixing parameter at every instant, its adaptation is also taken into account in the transient analysis. Furthermore, we propose

normalized algorithms for the adaptation of the mixing parameter that exhibitgood performance. Good agreement between analysis

and simulation results is always observed.

Index Terms

Adaptive filters, affine combination, tracking, transient analysis, leastmean square methods, unsupervised learning.

I. I NTRODUCTION

COMBINATION schemes constitute an interesting way to improve adaptive filter performance [3]–[15]. Among these

schemes, the convex combination of two fixed step-size adaptive filters has received attention due to its relative simplicity,

and the proof that it is universal in steady-state, i.e., thecombined estimate is at least as good as the best of the component

filters [8].

Convex combination schemes were proposed to improve the fundamental tradeoff between convergence rate and steady-state

excess mean-square error (EMSE) in adaptive filters [16]–[19]. Furthermore, such schemes have been exploited in nonstationary

environments to improve tracking performance, considering, e.g, the algorithm proposed in [8] or the combination of algorithms

with different tracking capabilities of [10]. The correct adjustment of the step-size for the updating of the mixing parameter
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depends on some characteristics of the filtering scenario, such as the input signal and additive noise powers, or the step-sizes

of the adaptive filters considered in the combination. This problem was addressed in [9], where a novel normalized scheme

was proposed. It was shown that the new update rule preservesthe good features of the existing scheme and is more robust

to changes in the filtering scenario.

Using a similar approach to that of [8], the authors of [12] proposed an affine combination of two least mean-square (LMS)

algorithms, where the condition on the mixing parameter is relaxed, allowing it to be negative. Thus, this scheme can be

interpreted as a generalization of the convex combination since the mixing parameter is not restricted to the interval[0, 1].

This approach allows for smaller EMSE in theory, but suffersfrom larger gradient noise in some situations. Under certain

conditions, the optimum mixing parameter was proved to be negative in steady-state. Although the optimal linear combiner is

unrealizable, two realizable algorithms were introduced.One is based on a stochastic gradient search and is referred to here

asη-LMS algorithm. The other is based on the ratio of the averageerror powers from each individual adaptive filter. Under

some circumstances, both algorithms present performance close to the optimum. In the analysis of [12], white Gaussian inputs

and stationary environments are assumed. Furthermore, thebehavior of the mean-square deviation is studied only afterthe fast

filter has converged but the slow filter has not yet converged.

Similarly to the convex combination, the correct adjustment of the step-size for the updating of the mixing parameter in

the affine combination, denoted byµη, depends on some characteristics of the filtering scenario.Hence, the desired universal

behavior of the affine combination cannot always be ensured.To illustrate, Fig. 1 shows the EMSE as a function of time for two

LMS filters with step-sizesµ1 =0.01 (µ1-LMS) andµ2 =0.001 (µ2-LMS), and their affine combination. In this scenario, it is

necessary to use a high value for the step-size of theη-LMS algorithm (e.g.,µη = 3) in order to enable the switching from the

slow filter to the fast one. A large value ofµη may, however, cause instability during the initial convergence of the algorithm,

thus [12] constrainsη(n) to be less than or equal to 1. Unfortunately, even with this constraint, the higher the step-sizeµη,

the higher the variance of the mixing parameter during the initial iterations. Therefore, the combination performancedeviates

from universal, as shown in Fig. 1-(a). On the other hand, if the step-size is small (e.g.,µη = 0.1), the combination performs

better in the initial iterations but does not switch as fast as needed from the slow filter to the fast one, as shown in Fig. 1-(b).

In fact, we will show that the performance of theη-LMS algorithm depends onα(n) , E{[y1(n) − y2(n)]2}, whereE{·}

represents the expectation operation andyi(n), i = 1, 2 are the outputs of the filters. As we can observe in Fig. 1-(c),α(n)

suffers a large variation during the adaptation of the filters. Thus, a transient analysis and alternative algorithms toadapt the

mixing parameter are two important key issues for the practical application of the affine combination of adaptive filters.

A. Contributions and organization of the paper

The present paper extends previous results in four ways:

1) providing a steady-state analysis for the optimum affine combination of adaptive filters, which is valid for white or

colored inputs, stationary or nonstationary environments, and combinations based on different algorithms, such as LMS,

normalized LMS (NLMS), and the constant modulus algorithm (CMA);

2) proposing a simple geometrical interpretation to explain the behavior of the affine combination;

3) providing a transient analysis of the combination, taking into account the adaptation of the component filters and also

the adaptation of the mixing parameter with theη-LMS algorithm;
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Fig. 1. EMSE forµ1-LMS, µ2-LMS and their affine combination a)µη = 3.0; b) µη = 0.1; c) E{[y1(n) − y2(n)]2}; µ1 = 0.01, µ2 = 0.001, M = 7,

identification of the systemwo =[0.9003 −0.5377 0.2137 −0.0280 0.7826 0.5242 −0.0871]T , σ2
v = 0.01, white input with varianceσ2

u = 1/7; 500 independent

runs.

4) using the results of the transient analysis to facilitatethe adjustment of the free parameters of the scheme and to propose

two normalized algorithms to update the mixing parameter.

To the best of our knowledge, all these are novel contributions.

The paper is organized as follows. In the next section, we describe the affine combination of two adaptive filters for both

supervised (LMS and NLMS) and blind (CMA) algorithms. In Section III, analytical expressions for the optimum mixing

parameter and the optimum EMSE of the combination are obtained. In the steady-state analysis of Section IV, the results

of Section III are particularized for optimum combinationsof two LMS filters, two NLMS filters, and two CMA equalizers,

considering stationary and nonstationary environments. In Section V, transient analyses taking into account realizable schemes

are presented. Initially, we obtain an analytical expression for the EMSE of the combination, which depends on the transient

models of the combined algorithms and also on the algorithm used to adapt the mixing parameter. We summarize results

for the transient analysis of LMS, NLMS, and CMA. Then, in Section V-A, we present the transient analysis of theη-LMS

algorithm. The resulting analysis suggests the normalization procedure presented in Section V-B and an algorithm withpartial

instantaneous normalization, proposed and analyzed in Section V-C. Comparisons between analytical and experimentalresults

are shown through simulations in Section VI. Section VII provides a summary of the main conclusions of the paper.

II. PROBLEM FORMULATION

This section is divided into three parts. We first describe the affine combination of one fast and one slow supervised

algorithms. In the sequel, the combination of two CMA equalizers is presented. Then, we propose a common formulation for

the affine combination of supervised (LMS and NLMS) or blind (CMA) algorithms.

A. Combination of supervised algorithms

The linear combination of two supervised adaptive filters isdepicted in Fig. 2, where the filter weights are adjusted to

minimize the mean-square error cost function, obtaining atthe output an estimate of the given “desired signal”d(n). The
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output of the overall filter is given by

y(n) = η(n)y1(n) + [1 − η(n)]y2(n), (1)

whereη(n) is the mixing parameter andyi(n), i = 1, 2 are the outputs of two transversal filters, i.e.,yi(n) = uT (n)wi(n−1).

The superscriptT denotes transposition,wi(n− 1), i = 1, 2 represent the length-M coefficient column-vectors characterizing

the component filters, andu(n) is their common input regressor column-vector.

Fig. 2. Linear combination of two supervised adaptive filters.

We focus on the affine combination of two algorithms of the following general class

wi(n) = wi(n − 1) + ρi(n)u(n)ei(n), (2)

whereρi(n) is a step-size andei(n) is the estimation error. Many algorithms can be written as in(2), by proper choices of

ρi(n) andei(n). For some algorithmsρi(n) can even be a matrix, as is the case of the recursive-least squares (RLS) algorithm,

whereρi(n) is an estimate of the inverse autocorrelation matrix of the input signal. In supervised adaptive filtering, a “desired

signal” d(n) is available such that

ei(n) = d(n) − yi(n) (3)

and a linear regression model holds, i.e.,

d(n) = uT (n)wo(n − 1) + v(n) (4)

with wo(n− 1) being the time-variant optimal solution andv(n) a zero-mean random process uncorrelated withu(n), whose

variance is denoted byσ2
v = E{v2(n)}. In order to make performance analyses more tractable, the sequences{u(n)} and

{v(n)} are assumed stationary and we will use the common assumptionthatv(n) is independent ofu(n) (not only uncorrelated)

[17, Sec. 6.2.1]. Defining the weight-error vectorsw̃i(n) = wo(n) − wi(n), the a priori errorsea,i(n) = uT (n)w̃i(n − 1),

and using the linear model (4), we find that

ei(n) = ea,i(n) + v(n). (5)

An important consequence of this model is thatv(k) will be independent of allwi(j), w̃i(j), andea,i(k), i = 1, 2, j < k, for

any particular time instantk [17, Lemma 6.2.1].
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Considering the combination of two LMS filters and the minimization of the overall instantaneous square errore2(n) = [d(n) − y(n)]2,

[12] proposed the following gradient-based algorithm

η(n + 1) = η(n) + µηe(n) [y1(n) − y2(n)] . (6)

To obtain a tradeoff between stability of this recursion andthe algorithm’s tracking capability in the initial phase ofadaptation,

η(n) in (6) must be constrained to be less than or equal to1 for all n. We should remark that this kind of constraint is not

needed in the normalized algorithms proposed in Sections V-B and V-C.

B. Combination of blind algorithms

Fig. 3 shows a simplified communications system with a combination of two blind equalizers. In this case, the signala(n),

assumed i.i.d. (independent and identically distributed)and non Gaussian, is transmitted through an unknown channel, whose

model is constituted by an FIR (finite impulse response) filter and additive white Gaussian noise. From the received signal u(n)

and the known statistical properties of the transmitted signal, the blind equalizer must mitigate the channel effects and recover

the signala(n) for some delayτd. We also assume that the equalization algorithms are implemented inT/2-fractionally spaced

form, due to its inherent advantages (see, e.g., [20]–[23] and the references therein). This type of implementation is widely

used in the literature since it ensures perfect equalization in a noise-free environment, under certain well-known conditions.

The output of the overall equalizer of Fig. 3 is also given by (1).

Fig. 3. Simplified communications system with a linear combination of two blind equalizers.

Algorithms based on the constant modulus cost function [24], [25] define the “estimation error” as

ei(n) = [r − y2
i (n)]yi(n), (7)

where r = E{a4(n)}/E{a2(n)}. Using (7), CMA can also be written as in (2). However, given the nonlinear nature of

CMA, additional assumptions are necessary to obtain a modelas simple as (5): essentially, large signal-to-noise ratio, circular

symmetry of the transmitted constellation, and an initial condition close to the zero-forcing solution (see Appendix A). These

assumptions were used in [10] and [26] to obtain simple linear models that capture the behavior of CMA close to an optimum

solution. Thus, (7) was approximated by

ei(n) ≈ γ(n)ea,i(n) + β(n), (8)
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where

γ(n) , 3a2(n − τd) − r (9)

and

β(n) , ra(n − τd) − a3(n − τd). (10)

The variableβ(n) is identically zero for constant-modulus constellations,so the variability in the modulus ofa(n) (as measured

by β(n)) plays the role of measurement noise for constant-modulus based algorithms. Model (8) was proposed in [10] to study

convex combinations of constant-modulus-based algorithms and extended in [26] to obtain explicit stability conditions for

CMA. The main assumptions and the derivation of this model are summarized in Appendix A.

To update the mixing parameter in order to combine two CMA equalizers, we could use a gradient rule to minimize the

instantaneous constant-modulus costĴcm(n) = [r − y2(n)]2, as considered in the convex combination of [27]. However,

we observed through simulations that the resulting algorithm does not always ensure the desired universal behavior of the

combination, specially for nonconstant modulus signals. Thus, we propose a stochastic gradient algorithm to minimizethe

instantaneous square decision errorĴd(n) = e2
d(n), where ed(n) , â(n− τd)−y(n) and â(n− τd) is the estimate of the

transmitted signal at the output of the decision device. This results in the following update equation

η(n + 1) = η(n) + µηed(n) [y1(n) − y2(n)] . (11)

We observed through simulations that the decision-error-based adaptation ensures a more adequate behavior than that of the

constant-modulus-based adaptation, even in presence of noise and/or when both component filters are far from convergence.

Assuming that̂a(n−τd)=a(n−τd) and that the optimal solution achieves perfect equalization (see Assumption B1 in Appendix

A), the minimization ofJd(n) is equivalent to the minimization of the squarea priori error, since under these assumptions

ed(n) ≈ ea(n).

C. A common formulation

Comparing (8) to (5), we can write the following general expression

ei(n) = κ(n)ea,i(n) + ϕ(n), i = 1, 2, (12)

whereκ = 1 and ϕ(n) = v(n) for a supervised algorithm orκ(n) = γ(n) and ϕ(n) = β(n) for a blind one. In both cases

E{ϕ(n)} = 0. This model also holds for the overall scheme, i.e.,

e(n) = κ(n)ea(n) + ϕ(n), (13)

wheree(n) represents the error of the combined filter:e(n) = d(n) − y(n) for supervised algorithms ore(n) = [r − y2(n)]y(n)

for constant-modulus-based algorithms, andea(n) is the a priori error of the overall scheme. It should be noticed that (12)

and (13) are approximations in the blind case. For the sake ofsimplicity, we use the equality sign here and in the expressions

derived from (12) and (13).

The supervised LMS and NLMS algorithms and the blind CMA employ the step-sizesρi(n) and the estimation errorsei(n)

as in Table I, whereǫN is a regularization factor and‖ · ‖ represents the Euclidean norm. The models for the errorsei(n) of
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these algorithms are also shown in this table for convenientreference. The step-size interval which ensures the convergence

and stability is different for each algorithm. For the LMS and NLMS algorithms, the step-size intervals are well-known in the

literature [16], [17], whereas for CMA, the derivation of this interval was shown recently in [26].

TABLE I

PARAMETERS OF THE CONSIDERED ALGORITHMS AND ERROR MODELS.

Alg. ρ(n) ei(n) Model for ei(n)

LMS µi

NLMS
µi

ǫN + ‖u(n)‖2

d(n) − yi(n) ea,i(n) + v(n)

CMA µi [r − y2
i (n)]yi(n) γ(n)ea,i(n) + β(n)

Using model (5) in the supervised case, and the fact thated(n) ≈ ea(n) in the blind case, we can write a general expression

for updating the mixing parameter, i.e.,

η(n + 1) = η(n) + µηeg(n)[y1(n) − y2(n)], (14)

where

eg(n) = ea(n) + b(n) (15)

and b(n) = v(n) for the combination of supervised algorithms orb(n) = 0 for the combination of constant-modulus-based

algorithms. In both cases,η(n) is constrained to be less than or equal to1 for all n [12]. Algorithm (14) is denoted here by

η-LMS.

To close this section, it is important to observe that:

1) In order to simplify the arguments, we assume that all the quantities are real. In the case of blind equalization of complex

constellations, complex extensions may be developed, provided signal circularity conditions are satisfied [28];

2) The analyses provided here can be extended straightforwardly to the affine combination of two RLS filters [1], of two

Shalvi-Weinstein equalizers [10], [29], and also to the combination of algorithms of different families, as is the caseof

the combination of one LMS with one RLS or of the combination of one CMA with one Shalvi-Weinstein algorithm

[10];

3) Besides theη-LMS algorithm, [12] proposed a scheme based on error powersto update the mixing parameter. Although

this scheme also presents performance close to the optimum under certain circumstances, its structure is significantly

different from that ofη-LMS, so we leave its analysis for a future work.

III. T HE OPTIMUM MIXING PARAMETER AND EMSE

An analytical expression for the optimum mixing parameterηo(n) can be obtained equating to zero the expected value of

the gradient used to updateη(n) in (14), i.e.,

E {eg(n)[y1(n) − y2(n)]} = 0. (16)

The erroreg(n) in (16) can be rewritten as a function of thea priori errorsea,i(n), i = 1, 2, as follows.
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Using (1), (12), and (13), thea priori error ea(n) of the overall scheme can be written as

ea(n) = η(n)ea,1(n) + [1 − η(n)]ea,2(n)

= ea,2(n) + η(n) [ea,1(n) − ea,2(n)] . (17)

Replacing (17) in (15), and remarking thaty1(n) − y2(n) = ea,2(n) − ea,1(n), (16) can be rewritten as

E
{
e2
a,2(n) − ea,1(n)ea,2(n)

}

− E
{
ηo(n)[ea,2(n) − ea,1(n)]2

}

+ E {b(n)[ea,2(n) − ea,1(n)]} = 0. (18)

In the blind case,b(n) = 0 and in the supervised case,b(n) = v(n), which is assumed independent ofea,i(n), i = 1, 2. Hence,

in both cases the third term on the l.h.s. of (18) is equal to zero.

To proceed, we remark that the EMSE of the component filters and the cross-EMSE can be calculated [8], respectively as

ζii(n) , E{e2
a,i(n)}, i = 1, 2, and (19)

ζ12(n) , E{ea,1(n)ea,2(n)}. (20)

Introducing the differences

∆ζii(n) , ζii(n) − ζ12(n), i = 1, 2, (21)

and using (19)-(21) in (18), we arrive at

ηo(n) =
∆ζ22(n)

∆ζ11(n) + ∆ζ22(n)
. (22)

A similar expression was also obtained in [8, Eq.(29)] for the convex combination of two LMS filters at the steady-state. We

should notice that (22) is more general: it holds for alln ≥ 0 (not only at the steady-state) and the mixing parameter is not

restricted to the interval[0, 1].

Defining the EMSE of the overall combined scheme as

ζ(n) = E{e2
a(n)}, (23)

we now obtain an analytical expression for its optimum value. By squaring both sides of (17) withη(n) = ηo(n) and taking

expectations, we arrive at

E{e2
a(n)}=η2

o(n)E{e2
a,1(n)}+[1−ηo(n)]2E{e2

a,2(n)}

+ 2ηo(n)[1−ηo(n)]E{ea,1(n)ea,2(n)}. (24)

Using (19)-(22) in (24), we obtain

ζo(n) = ζ22(n) − ηo(n)∆ζ22(n). (25)

After some algebraic manipulations, (25) can be rewritten as

ζo(n) = ζ12(n) +
∆ζ11(n)∆ζ22(n)

∆ζ11(n) + ∆ζ22(n)
. (26)
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This expression was obtained in [8, Eq. (33)] for the convex combination of two LMS filters at the steady-state, but again it

also holds for alln ≥ 0.

As already mentioned in [8], (22) and (26) hold for the combination of any two algorithms that satisfy (12). The values

of ∆ζii(n), i = 1, 2 however do depend on the actual algorithms that are being combined. Thus, provided approximations

for ζij(n), i, j = 1, 2 are available, (22) and (26) can be applied to the affine combination of different algorithms, including

combinations of algorithms of different families.

IV. STEADY-STATE ANALYSIS OF THE OPTIMUM COMBINER

In this section, the optimum mixing parameter and the optimum EMSE of the combination, given respectively by expressions

(22) and (26), are particularized for the combination of twoLMS filters, two NLMS filters, and two CMA equalizers in steady-

state for stationary and nonstationary environments. We donot rederive the steady-state expressions forζij(∞), i, j = 1, 2

here, only use the best approximations from the literature.As in [12], we assume that the algorithm which updates the mixing

parameter is able to achieve the optimum value in steady-state. Realizable schemes for adaptation ofη(n) are taken into

account in Section V.

We assume that in a nonstationary environment, the variation in the optimal solutionwo follows a random-walk model [17,

p. 359], that is,

wo(n) = wo(n − 1) + q(n). (27)

In this model,q(n) is an i.i.d. vector with positive-definite autocorrelationmatrix Q = E{q(n)qT (n)}, independent of the

initial conditions{wo(−1),w(−1), η(−1)} and of{u(l)} for all l [17, Sec. 7.4]. In supervised filtering,q(n) is also assumed

independent of the desired response{d(l)} for all l < n. In blind equalization,wo(n) represents the zero-forcing solution and

q(n) models the channel variation.

Table II lists analytical expressions ofζ12(∞) for some pairs of filters. Expressions forζii(∞) can be obtained from Table II

making µ1 = µ2. Details about the derivation of these expressions can be found in [8], [10], [13] for the cross-terms and

in [16], [17], [23], [28], [30]–[34] for the caseµ1 = µ2. In this table,R , E{u(n)uT (n)} is the autocorrelation matrix of

the input signal,Tr(A) stands for the trace of matrixA, andνu , E
{
‖u(n)‖−2

}
. For Gaussian inputs and large number of

coefficients,νu can be approximated by1/[σ2
u(M−2)] with σ2

u = E{u2(n)} [13], [35]. The constantsσ2
β , γ̄, and ξ, which

appear in the expression for the EMSE of CMA, depend on statistics of the transmitted signal and are defined in Appendix A.

TABLE II

ANALYTICAL EXPRESSIONS FOR THE STEADY-STATE CROSS-EMSE OF THE CONSIDERED COMBINATIONS.

Combination ζ12(∞)

µ1-LMS andµ2-LMS
µ1µ2σ2

vTr(R) + Tr(Q)

µ1 + µ2 − µ1µ2Tr(R)

µ1-NLMS andµ2-NLMS
Tr(R)

[
µ1µ2σ2

vνu +Tr(Q)
]

µ1+µ2−µ1µ2

µ1-CMA and µ2-CMA
µ1µ2σ2

βTr(R) + Tr(Q)

γ̄(µ1 + µ2) − µ1µ2Tr(R)ξ



10 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010

A. Stationary environments

Replacing the expressions of Table II withQ = 0 in (22) and (26), we obtain analytical expressions for the steady-state

optimum mixing parameterηo(∞) and for the steady-state optimum EMSEζo(∞) in stationary environments. The resulting

expressions are shown in Table III, where we definedδ , µ2/µ1 with 0 < δ < 1. It is worth to notice that the second filter

of the combination is always assumed to be the slower filter (µ2 < µ1) which consequently presents the lower steady-state

EMSE in a stationary environment.
TABLE III

ANALYTICAL EXPRESSIONS FORηo(∞) AND ζo(∞).

Combination ηo(∞) ζo(∞)

(µ1 andµ2)-LMS
δ[2 − µ1Tr(R)]

2(δ − 1)

1

2

[
µ2σ2

vTr(R)

δ+1−µ2Tr(R)

]

(µ1 andµ2)-NLMS
δ[2 − µ1]

2(δ − 1)

1

2

[
Tr(R)µ2σ2

vνu

δ + 1 − µ2

]

(µ1 andµ2)-CMA
δ[2−µ1Tr(R)ξ(γ̄)−1]

2(δ − 1)

1

2

[
µ2σ2

βTr(R)

(δ+1)γ̄−µ2Tr(R)ξ

]

The expressions of Table III show two interesting properties:

i) ηo(∞) is negative for all considered combinations, which can be verified through the stability conditions of the algorithms.

To ensure the stability ofµ1-LMS andµ1-NLMS, the step-sizes should be chosen respectively in the following ranges

0 < µ1 < 2/Tr(R) and0 < µ1 < 2 [19]. In the case ofµ1-CMA, assuming model (8), it was shown in [26, Eq. (14)]

that the range of step-sizes0 < µ1 < 2γ̄/[3Tr(R)ξ] guarantees good performance. Choosing the step-sizes in these

ranges, we can verify from the expressions of Table III thatηo(∞) < 0.

ii) δ≈1 yields ζo(∞)≈ζ2(∞)/2. Sinceζ2(∞)<ζ1(∞) for all combinations, the affine combination provides a 3dB gain

in relation to the best component filter. In this case,ηo(∞)→−∞.

Property i) was observed in [12] for the combination of two LMS filters, assuming Gaussian and white inputs, and additional

assumptions equivalent to choosing the LMS step-size for maximum convergence speed. If we considerµ1 = 1/Tr(R) in

the expression of Table III, we recover the result of [12, Eq.(26)]. The same property was observed in [13] for the affine

combination of two NLMS filters, also assuming white and Gaussian inputs.

An intuitive explanation for Property ii) can be found as follows. Using (12), the overall steady-state error is writtenas

e(n)=e2(n)︸ ︷︷ ︸
dη(n)

+η(n)κ(n)[w2(n)−w1(n)]T u(n)︸ ︷︷ ︸
−uη(n)

. (28)

From the point of view of the computation ofη(n), dη(n) represents the signal which has to be estimated, anduη(n) plays the

role of input signal. Assuming thatwi(n), i = 1, 2 vary slowly compared toη(n), (28) has a simple geometric interpretation

as shown in Fig. 4. The affine combination seeks the best weight vector in the linew2 + η(w1 −w2). In Fig. 4-(a), the best

linear combination ofw1 andw2 is w. In the case of close step-sizes, we also have close coefficient vectors in steady-state1,

1It is possible to prove using the results of Tables II and V that if two stable adaptive filters are initialized with the same vector and adapted with close

step-sizes the following limit holds

lim
δ→1

{
lim

n→∞

E{‖w̃1(n) − w̃2(n)‖2}

E{‖w̃1(n)‖2}

}
= 0.

In other words, close step-sizes imply close coefficient vectors in steady-state.
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i.e., w1 ≈ w2 (Fig. 4-(b)), andη has to assume a large value to take the combined vector close to w, since the input signal

uη(n) depends on the difference betweenw1 andw2. Thus, if (w1 − w2) → 0, |η| → ∞.

Fig. 4. Geometric interpretation of the affine combination.

B. Nonstationary environments

In a nonstationary environment, the largest EMSE reductionof the affine combination in relation to its components occurs

whenζ11(∞) ≈ ζ22(∞). This can happen in two situations (see Table IV):

i) when the step-sizes are not close to one another andTr(Q) = q12, whereq12 is the value ofTr(Q) for which ζ11(∞) ≈

ζ22(∞);

ii) when the component filters are adapted with close step-sizes (δ ≈ 1). However, whenδ ≈ 1 andTr(Q) ≈ q12, the gain

is small.

Replacing the expressions of Table II under the small step-size approximation2 in (22) and (26), we obtain analytical

expressions forq12 and ζo(∞) shown in Table IV. From these expressions, we can observe that the EMSE reduction in all

cases is limited by 3 dB. A reduction close to 3 dB will occur when δ → 0 in case (i) or when the environment tends to

be stationary (Tr(Q) ≈ 0) in case (ii). It is relevant to notice that case (i) also occurs in the convex combination of adaptive

filters since in this case0 < ηo(∞) < 1. On the other hand, case (ii) occurs only in the affine combination sinceηo(∞) does

not lie in the interval[0, 1].

The 3 dB gain is an interesting property inherent to the affine combination. However, we should emphasize that using the

affine combination with the filters adapted with different step-sizes is more worthwhile than using it with close step-sizes. In

the stationary case forµ2 < µ1, the closerζ22(∞) to ζ11(∞) the closer the EMSE gain to 3 dB. Although a gain increase

can be obtained with close step-sizes, the EMSE of the combination is higher in absolute terms asζ22(∞) becomes closer to

ζ11(∞). On the other hand, for a single adaptive filter in nonstationary environments there is an optimal value of the step-size

for which the steady-state EMSE is minimum [16], [17]. The EMSE of the combination achieves its smallest value when one

of its component filters is adapted with this optimum step-size. In this case, the combined estimate is as good as that of the

optimum component, and there is no EMSE gain, as is illustrated in a simulation of Section VI-D (see Fig. 17). Moreover, it

was shown analytically in [36] that a combination of two filters from the same family (i.e., two LMS or two RLS filters) cannot

improve the performance over that of a single filter of the same type with optimal selection of the step-size (or forgetting

factor).

2The small step-size approximation was assumed in order to obtain simpler expressions.
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TABLE IV

ANALYTICAL EXPRESSIONS FORq12 AND ζo(∞) FOR CASES(i) AND (ii) IN A NONSTATIONARY ENVIRONMENT.

Combination (i) (ii)

q12 ζo(∞) ζo(∞)

µ1-LMS µ1µ2σ2
v ζ22(∞)/2 ζ22(∞)/2

andµ2-LMS ×Tr(R) +
2δζ22(∞)

(1 + δ)2
+

σ2
vTr(R)Tr(Q)

2ζ22(∞)

µ1-NLMS µ1µ2σ2
v ζ22(∞)/2 ζ22(∞)/2

andµ2-NLMS ×νu +
2δζ22(∞)

(1 + δ)2
+

σ2
v [Tr(R)]2Tr(Q)νu

2ζ22(∞)

µ1-CMA µ1µ2σ2
β ζ22(∞)/2 ζ22(∞)/2

andµ2-CMA ×Tr(R) +
2δζ22(∞)

(1 + δ)2
+

σ2
βTr(R)Tr(Q)

2γ̄ζ22(∞)

V. TRANSIENT ANALYSIS OF REALIZABLE SCHEMES

In this section, we take into account the adaptation ofη(n) in the analysis. Our focus will be on how much a realizable

estimate forηo(n) deviates from the optimum, and how this affects the combination’s overall performance.

By squaring both sides of (17) and taking expectations, we obtain

E
{
e2
a(n)

}
=E

{
e2
a,2(n)

}
+E

{
η2(n)[ea,1(n)−ea,2(n)]

2}

+ 2E
{
η(n)

[
ea,2(n)ea,1(n)−e2

a,2(n)
]}

. (29)

To proceed, we assume that:

A1. The adaptation ofη(n) is slow so that the correlation between it andea,i(n)ea,j(n), i, j = 1, 2 can be disregarded.

This assumption follows from observations: simulations show thatη(n) converges slowly compared to variations in the input

u(n) and thus to variations on thea-priori errors.

Using A1, (19)-(21) and (23), we can rewrite (29) as

ζ(n)≈ζ22(n)+E
{
η2(n)

}
α(n)−2E {η(n)}∆ζ22(n), (30)

where we defined

α(n) , E{[y1(n) − y2(n)]2} = ∆ζ11(n) + ∆ζ22(n). (31)

To estimate the EMSE of the combination for alln ≥ 0 using (30), analytical expressions forζij(n), i = 1, 2, E{η(n)}, and

E{η2(n)} should be obtained.

It is common in the literature to evaluate the EMSE as

ζij(n) , E{ea,i(n)ea,j(n)} ≈ Tr(RSij(n − 1)), (32)

where

Sij(n) , E{w̃i(n)w̃T

j (n)}, i = 1, 2 (33)

is the covariance (i = j) or the cross-variance (i 6= j) matrix of the weight-error vector. This approach is based on the

independence assumption between the regressor vectoru(n) and weight-error vectors̃wi(n − 1), i = 1, 2 and is justified for
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small step-sizes due to the different time-scales for variations in u(n) and w̃i(n − 1). This condition is a part of the widely

used independence assumptions in adaptive filter theory [16]–[19], [37]. Recursions forSii(n), i = 1, 2 are generally obtained

in the transient analysis of adaptive filters (see, e.g, [16], [18], [26], [35] and their references). In the transient analysis of

linear combinations of two adaptive filters, an estimate ofSij(n), i 6= j should also be obtained, which is a straightforward

extension from the casei = j [10]. In Table V, we show the recursions for the cross-variance matrixS12(n). Expressions for

the covariance matrixSii(n), i = 1, 2 can be obtained from this table, makingµ1 = µ2. Using the expressions of Table V

in conjunction with (32),ζij(n), i, j = 1, 2 can be estimated for alln ≥ 0. The expression forS12(n) considering the

combination of two NLMS was derived using the approach from [35], under the assumptions of Gaussian inputs and large

number of coefficients. We should notice that steady-state approximations for the EMSE and cross-EMSE of the component

filters can be obtained from the expressions of Table V, i.e.,ζij(∞) ≈ Tr(RSij(∞)), i, j = 1, 2. However, this procedure

leads to more complex expressions than those of Table III.

TABLE V

RECURRENT EXPRESSIONS FOR CROSS-VARIANCE MATRIX S12(n).

Combination S12(n)

µ1-LMS S12(n) ≈ S12(n−1)−µ1RS12(n−1)

and −µ2S12(n−1)R+µ1µ2[2RS12(n − 1)R

µ2-LMS +RTr (RS12(n − 1))+σ2
vR] + Q

µ1-NLMS S12(n) ≈ S12(n−1) −
µ1

σ2
u(M−2)

RS12(n−1)

and −
µ2

σ2
u(M−2)

S12(n−1)R+
µ1µ2

σ4
u(M−2)(M−4)

µ2-NLMS ×
[
2RS12(n−1)R+RTr (RS12(n−1))+σ2

vR
]
+Q

µ1-CMA S12(n) ≈ S12(n−1)−µ1γ̄RS12(n−1)

and −µ2γ̄S12(n−1)R+µ1µ2[2ξRS12(n−1)R

µ2-CMA +ξRTr (RS12(n−1))+σ2
βR] + Q

Expressions forE{η(n)} and E{η2(n)} depend on the mixing parameter adaptation. In the next section, we assume that

η(n) is updated with theη-LMS algorithm.

A. Adaptation of the mixing parameter usingη-LMS

Replacing (17) in (15), we get

eg(n) = ea,2(n) − η(n)[ea,2(n) − ea,1(n)] + b(n). (34)

Using (34) and remarking thaty1(n) − y2(n) = ea,2(n) − ea,1(n), the update equation ofη-LMS, given by (14), can be

rewritten as

η(n + 1) =

A︷ ︸︸ ︷
η(n)

(
1 − µη[ea,2(n) − ea,1(n)]2

)

+

B︷ ︸︸ ︷
µη[e2

a,2(n) − ea,1(n)ea,2(n)]

+

C︷ ︸︸ ︷
µηb(n)[ea,2(n) − ea,1(n)] . (35)

Using (35), we can obtain recursions for the first and the second moments ofη(n).
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1) First-order analysis: Using the same arguments of Section III, we remark thatE{C} = 0. Assuming A1 and taking

expectations in (35), we get

E {η(n+1)}=E {η(n)}[1−µηα(n)] + µη∆ζ22(n). (36)

Since the constraintη(n) ≤ 1 is imposed in theη-LMS algorithm, we truncate at each iteration the theoretical value of

E{η(n+1)} estimated by (36), so thatE{η(n+1)} ≤ 1.

Taking the limit forn → ∞ on both sides of (36), we obtain

lim
n→∞

E {η(n)} = ηo(∞). (37)

Thus, as observed in [12], theη-LMS algorithm converges in the average to the optimum mixing parameter at the steady-state.

A sufficient condition for the exponential stability of (36)is given by [38, p. 73]

|1 − µηα(n)| < 1 − ε, ∀n, (38)

whereε is a small positive constant. In particular, for a constant step-size, a sufficient condition is

0 < µη <
2

max{α(n)}
. (39)

2) Second-order analysis:Squaring (35) and taking expectations, we obtain

E
{
η2(n+1)

}
= E

{
A2

}
+E

{
B2

}
+E

{
C2

}
+E{2AB}

+ E{2AC} + E{2BC} . (40)

To evaluate the terms of (40), we assume that

A2. The a priori errorsea,1(n) andea,2(n) are jointly Gaussian with zero-mean, which implies [39]

E
{
e3
a,i(n)ea,j(n)

}
= 3ζii(n)ζij(n), i, j = 1, 2, (41)

E
{
[ea,2(n)−ea,1(n)]4

}
= 3α2(n), (42)

E
{
e2
a,1(n)e2

a,2(n)
}

= ζ11(n)ζ22(n) + 2ζ2
12(n). (43)

Although this condition is violated in general, it is frequently used to make the transient analysis of adaptive filters more

tractable [16]–[19]. This assumption tends to be reasonable for small step-sizes and long filters [17].

Now, using A1 and A2 we can evaluate the terms of (40):

E{A2}: Using A1 and (42), we obtain

E{A2} = E
{

η2(n)
(
1−µη[ea,2(n)−ea,1(n)]2

)2
}

≈ E{η2(n)}
[
1−2µηα(n) + 3µ2

ηα2(n)
]
. (44)

E{B2}: Using (41) and (43), we have

E{B2} = µ2
ηE

{
[e2

a,2(n) − ea,1(n)ea,2(n)]2
}

≈ µ2
ηζ22(n)α(n)+2µ2

η∆ζ2
22(n). (45)
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E{C2} : Sinceb(n) is assumed independent ofea,i(n), i = 1, 2, E{b(n)} = 0, andE{b2(n)} = σ2
b , we get

E
{
C2

}
= E

{
µ2

ηb2(n)[ea,2(n) − ea,1(n)]2
}

≈ µ2
ησ2

bα(n). (46)

For the combination of two CMA equalizers this term is null, since b(n) ≡ 0.

E{2AB} : Using A1, (41) and (43), we obtain

E{2AB} = 2µηE{η(n)}E
{(

1−µη[ea,2(n)−ea,1(n)]2
)

× [e2
a,2(n)−ea,1(n)ea,2(n)]

}

≈ 2µηE{η(n)} [ζ22(n)−3µη∆ζ22(n)α(n)] . (47)

E{2AC} and E{2BC}: Since b(n) is assumed independent ofea,i(n), i = 1, 2 and E{b(n)} = 0, these terms are null.

Again, for the combination of two CMA equalizers these termsare null by definition, sinceb(n) ≡ 0.

Replacing the approximations (44)-(47) in (40), we finally arrive at

E{η2(n + 1)} ≈ E{η2(n)}
[
1−2µηα(n) + 3µ2

ηα2(n)
]

+ 2µηE{η(n)} [ζ22(n)−3µη∆ζ22(n)α(n)]

+ µ2
η

(
ζ22(n) + σ2

b

)
α(n) + 2µ2

η∆ζ2
22(n). (48)

Using (48) and (36) in conjunction with the expressions of Table V, the EMSE of the combination for alln ≥ 0 considering

the η-LMS algorithm can be estimated via (30).

From (48), the range of step-sizes to ensure the mean-squarestability of η-LMS is given by [38]

0 < µη <
2

3max{α(n)}
, (49)

which is more restrictive than (39).

The stability ofη-LMS depends onα(n). From Fig. 1-(c), we can see thatα(n) = E{[y1(n) − y2(n)]2} is large at first

when the fast filter has almost converged but the slow filter isstill far from the optimum solution. At this point,µη should be

small, as required by (49). However, when the EMSE of the slowand fast filters are similar,α(n) is small. At this point, a

largeµη is required so the combination will switch to the slow filter.This is the reason why [12] needs to constrainη(n) ≤ 1.

To guarantee thatη-LMS switches quickly to the slow filter at the proper time,µη must be chosen so large thatη-LMS will

be unstable at the beginning, whenα(n) is large. Therefore, some sort of normalization is necessary for the estimation ofη.

Thus, we propose in the following sections two normalized algorithms to update the mixing parameter.

B. Adaptation of the mixing parameter usingη-PN-LMS

Using an instantaneous normalization, i.e., replacing thestep-size byµη(n)= µ̃η/[y1(n)−y2(n)]2, can also lead to divergence

(see, e.g, [40]). One possible solution is to normalize the algorithm using an estimate ofα(n), as in [9]. The resulting normalized
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algorithm is called power normalized least mean-square (η-PN-LMS) algorithm and updates the mixing parameter via the

recursion

η(n + 1) = η(n) + µη(n)eg(n)[y1(n) − y2(n)] (50)

where

µη(n) ,
µ̃η

ǫ + p(n)
, (51)

p(n) = λp(n − 1) + (1 − λ)[y1(n) − y2(n)]2 (52)

is a low-pass filtered estimate for the power ofy1(n) − y2(n), ǫ is a small positive constant used to avoid large step-sizes

whenp(n) becomes small, and0 ≪ λ < 1 is a forgetting factor. The stability of (50) is ensured for0 < µ̃η < 2 [38] and no

constraint onη(n) is necessary.

In the analysis of theη-PN-LMS algorithm, we assume that

A3. The forgetting factorλ is sufficiently close to one, so that the variance ofp(n) is small and the step-sizeµη(n) is weakly

correlated with thea priori errorsea,i(n), i = 1, 2 and the mixing parameterη(n).

Using A3, the analysis ofη-LMS can be directly extended toη-PN-LMS, replacingµk
η by [E{µη(n)}]

k, k = 1, 2 in the

expressions of Section V-A. Hence, we only need to estimateE{µη(n)}, as shown in the sequel.

Expandingµη(n) as a Taylor series, around the expected valueE{p(n)} , p̄(n), we obtain

µη(n)≈
µ̃η

ǫ+p̄(n)
−

µ̃η [p(n)−p̄(n)]

[ǫ+p̄(n)]
2 +

µ̃η [p(n)−p̄(n)]
2

[ǫ+p̄(n)]
3 . (53)

Taking expectations on both sides of (53), we arrive at

E{µη(n)}≈
µ̃η

ǫ+p̄(n)
+

µ̃ησ2
p(n)

[ǫ+p̄(n)]
3 , (54)

where we denotedσ2
p(n) = E{[p(n) − p̄(n)]

2
}. Assuming A3, the second term on the r.h.s. of (54) can be disregarded, which

leads to

E {µη(n)} ≈
µ̃η

ǫ + p̄(n)
. (55)

Using the same arguments, the second moment of the step-sizeµη(n) can be approximated byE{µ2
η(n)} ≈ [E{µη(n)}]

2.

Now, we obtain a recursion for̄p(n). Taking expectations on both sides of (52), we get

p̄(n)=λp̄(n−1)+(1−λ)E
{
[y1(n)−y2(n)]2

}
. (56)

Remarking thaty1(n)−y2(n)=ea,2(n)−ea,1(n), the following recursion holds

p̄(n)=λp̄(n−1)+(1−λ)α(n). (57)

At steady-state, we havēp(∞) = α(∞).
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C. Adaptation of the mixing parameter usingη-SR-LMS

Althoughη-PN-LMS circumvents the problem encountered in the convergence ofη-LMS, three parameters must be adjusted:

µ̃η, λ, and ǫ. The forgetting factorλ is relatively easy to be adjusted (e.g.,λ = 0.99). However, the choice of the step-size

µ̃η and of the regularization factorǫ needs some care, as we show through the simulations of Section VI. In order to avoid

these extra adjustments and since a normalization is necessary, we can employ a partial instantaneous normalization using

µη(n) = µηs/|y1(n) − y2(n)| as step-size. With this choice, the update rule (50) reducesto

η(n + 1) = η(n) + µηseg(n)sign[y1(n) − y2(n)] , (58)

where sign[·] is the sign function defined as

sign[x] ,





+1, x > 0

0, x = 0

−1, x < 0

. (59)

We call this algorithm sign regressor least mean-square algorithm (η-SR-LMS).

Using (34) and remarking thatx sign[x] = |x| and thaty1(n)−y2(n)=ea,2(n)−ea,1(n), (58) can be rewritten as

η(n + 1) =

D︷ ︸︸ ︷
η(n) (1 − µηs|ea,2(n)−ea,1(n)|)

+

E︷ ︸︸ ︷
µηsea,2(n)sign[ea,2(n)−ea,1(n)]

+

F︷ ︸︸ ︷
µηsb(n)sign[ea,2(n)−ea,1(n)] . (60)

Using (60), we can obtain recursions for the first and second moments ofη(n).

1) First-order analysis:Assuming A1, taking expectations in (60), and remarking that E{F} = 0, we obtain

E{η(n+1)}=E {η(n)}
(
1−µηsE {|ea,2(n)−ea,1(n)|}

)

+µηsE {ea,2(n)sign[ea,2(n)−ea,1(n)]} . (61)

Assuming A2 and using a special case of Price’s theorem (see,e.g, [39], [17, p. 306]), the following approximations hold

E {|ea,2(n)−ea,1(n)|} ≈

√
2α(n)

π
, (62)

and

E {ea,2(n)sign[ea,2(n)−ea,1(n)]} ≈
∆ζ22(n)√
πα(n)/2

. (63)

Replacing (62) and (63) in (61), we arrive at

E{η(n+1)}≈E{η(n)}

[
1−µηs

√
2α(n)

π

]
+µηs

∆ζ22(n)√
πα(n)/2

. (64)

Taking the limit forn → ∞ on both sides of (64), we obtainlimn→∞ E{η(n)} = ηo(∞). Hence, theη-SR-LMS algorithm

also converges in the average to the optimum mixing parameter at the steady-state.

The range of step-sizes that guarantees stability of (64) isgiven by [38]

0 < µηs <

√
2π

max{α(n)}
. (65)
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2) Second-order analysis:Squaring (60) and taking expectations, we obtain

E
{
η2(n+1)

}
= E

{
D2

}
+E

{
E2

}
+E

{
F2

}
+E{2DE}

+ E{2DF} + E{2EF} . (66)

Using A1 and A2, we can evaluate the terms of (66):

E{D2}: Using A1 and (62), we obtain

E{D2} = E
{

η2(n)
[
1−µηs|ea,2(n)−ea,1(n)|

]2}

≈ E{η2(n)}
[
1−µηs

√
8α(n)/π + µ2

ηsα(n)
]
. (67)

E{E2} andE{F2}: Using the fact that sign2[x] = 1 almost everywhere on the real line, we get

E{E2} = E
{
µ2

ηse
2
a,2(n)sign2 [ea,2(n) − ea,1(n)]

}

≈ µ2
ηsζ22(n), (68)

and

E
{
F2

}
= E

{
µ2

ηsb
2(n)sign2 [ea,2(n) − ea,1(n)]

}

≈ µ2
ηsσ

2
b . (69)

E{2DE}: Using A1 and (63), we obtain

E{2DE}=2µηsE
{

η(n)
(
1−µηs|ea,2(n)−ea,1(n)|

)

× ea,2(n)sign[ea,2(n)−ea,1(n)]
}

≈ 2µηsE{η(n)}

[
∆ζ22(n)√
πα(n)/2

− µηs∆ζ22(n)

]
. (70)

Sinceb(n) is assumed independent ofea,i(n), i = 1, 2 andE{b(n)} = 0, we haveE{2DF} ≈ 0 andE{2EF} ≈ 0. Replacing

the approximations (67)-(70) in (66), we finally arrive at

E{η2(n+1)}≈E{η2(n)}

[
1−µηs

√
8α(n)

π
+µ2

ηsα(n)

]

+ 2µηsE{η(n)}

[
∆ζ22(n)√
πα(n)/2

− µηs∆ζ22(n)

]

+ µ2
ηs

[
σ2

b + ζ22(n)
]
. (71)

The range of step-sizes that guarantees stability of (71) isgiven by [38]

0 < µηs <

√
8

π max{α(n)}
. (72)

It should be noticed that this range is more restrictive than(65). Although the step sizeµηs still depends on an estimate of

α(n), this dependence is weaker than that of theη-LMS algorithm due to the square-root in (72). Furthermore,µηs can be

adjusted based on the analytical EMSE of the combination (see Fig. 11). Thus, theη-SR-LMS algorithm can perform better

than η-LMS, following quickly the variations onηo(n) with a small EMSE and with only one free parameter to adjust, as

shown in the simulations of Section VI-A.
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VI. SIMULATION RESULTS

The simulations are divided into four parts. First, we verify the accuracy of the transient analysis for the introductory

simulations shown in Fig. 1. We also verify the behavior of the proposed algorithmsη-PN-LMS andη-SR-LMS in the same

simulation scenario. In the second part, we show some results concerning the analysis of combinations of NLMS filters and

CMA equalizers. In the third part, we verify the validity of the analysis of combinations of LMS filters with close step-sizes.

Finally, we focus on the tracking analysis and compare the performances of the affine and convex combinations.

A. Recalling the introductory simulation

To verify the validity of the transient analysis in the supervised case, we consider the identification of a time-invariant

system. The optimum solution is formed withM = 7 independent random values between -1 an 1, and is given by

wo = [+0.90 −0.54 −0.03 +0.78 +0.52 −0.09]. (73)

We assume white Gaussian input with variance1/M so thatTr(R) = 1, and an average of 500 runs. Moreover, i.i.d. noise

v(n) with varianceσ2
v = 0.01 is added to form the desired signal.

Figures 5 and 6 show the results of the EMSE and the mixing parameter for the affine combination of two LMS filters in

the same situations considered in Figures 1-(a) and (b), in which the mixing parameter is updated with theη-LMS algorithm.

In Fig. 5, whereµη = 3, the analysis can predict that the performance of the combination is far from universal in the initial

iterations. Similarly, withµη = 0.1, the analysis can predict that the combination is not able toswitch to the slow filter, as

shown in Fig. 6. We should notice that, due to the constraint imposed in theη-LMS algorithm (η(n) ≤ 1), these situations

become difficult to model and there is a small gap between the experimental and theoretical EMSE during the initial iterations.

Moreover, the mixing parameter does not achieve the optimumvalue obtained in the analysis, which is higher than one in the

initial iterations.
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Fig. 5. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-LMS algorithm and theoreticalηo(n);

µ1 = 0.01, µ2 = 0.001, µη = 3, M = 7; identification of the system given by (73),σ2
v = 0.01, white input with varianceσ2

u = 1/7; 500 independent

runs.

In the same scenario, the algorithmsη-PN-LMS or η-SR-LMS can circumvent the problem, as shown in Figures 7 and8

respectively. These two algorithms have a similar performance, which is predicted by the analysis with a good accuracy in both

cases. In addition, the experimental mixing parameter is higher than one in the initial iterations, being far from its theoretical
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optimum value during the very first iterations, as shown in Figures 7-(c) and 8-(c). However, this does not represent an issue

since the combination presents a close to universal performance.
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Fig. 6. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-LMS algorithm and theoreticalηo(n);

µ1 = 0.01, µ2 = 0.001, µη = 0.1, M = 7; identification of the system given by (73),σ2
v = 0.01, white input with varianceσ2

u = 1/7; 500 independent

runs.
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Fig. 7. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-PN-LMS algorithm and theoretical

ηo(n); µ1 = 0.01, µ2 = 0.001, µ̃η = 3 × 10−3, ǫ = 5 × 10−4, λ = 0.99, M = 7; identification of the system given by (73),σ2
v = 0.01, white input

with varianceσ2
u = 1/7; 500 independent runs; c) detail of b) fromn = 0 until n = 0.5×104 (note the different x-scaling).

To illustrate the influence of the parametersǫ and µ̃η in the performance of theη-PN-LMS algorithm, Figures 9 and 10

show the theoretical, experimental, and optimal EMSE of thecombination at three time instants as a function ofǫ (Fig. 9)

and of µ̃η (Fig. 10). The time instants were chosen in order to check theaccuracy of the analysis in three different situations:

at n = 15×103 the slower filter has not converged yet, the time instantn = 40×103 is close to the switching between the

faster to the slower filter, and atn = 65×103 both filters have converged. The same simulation setting of Fig. 7 is considered.

Similarly, Fig. 11 shows the results on the influence ofµηs for the η-SR-LMS algorithm, considering the same simulation
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setting of Fig. 8. The analysis provides an accurate estimation of the EMSE in all cases, which enables the adjustment of the

parameters through the analytical results. We can also observe that the optimum value ofǫ, µ̃η, or µηs is different for each

time instant considered in the simulations. However, it is possible to choose an intermediate value to obtain a tradeoffin these

three situations.
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Fig. 8. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-SR-LMS algorithm and theoretical

ηo(n); µ1 = 0.01, µ2 = 0.001, µηs = 2.5 × 10−2, M = 7; identification of the system given by (73),σ2
v = 0.01, white input with varianceσ2

u = 1/7;

500 independent runs; c) detail of b) fromn = 0 until n = 0.5×104 (note the different x-scaling).
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Fig. 9. Theoretical, experimental and optimal EMSE at three different time instants for the affine combination ofµ1-LMS andµ2-LMS using theη-PN-LMS

for different values ofǫ; µ1 = 0.01, µ2 = 0.001, µ̃η = 3, λ = 0.99, M = 7; identification of the system given by (73),σ2
v = 0.01, white input with

varianceσ2
u = 1/7; 500 independent runs; each experimental value was calculated bythe mean EMSE of 50 samples around the considered time instant.
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Fig. 10. Theoretical, experimental and optimal EMSE at three different time instants for the affine combination ofµ1-LMS andµ2-LMS using theη-PN-LMS

for different values of̃µη ; µ1 = 0.01, µ2 = 0.001, ǫ = 5 × 10−4, λ = 0.99, M = 7; identification of the system given by (73),σ2
v = 0.01, white input

with varianceσ2
u = 1/7; 500 independent runs; each experimental value was calculated bythe mean EMSE of 50 samples around the considered time instant.
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Fig. 11. Theoretical, experimental and optimal EMSE at three different time instants for the affine combination ofµ1-LMS andµ2-LMS using theη-SR-LMS

for different values ofµηs; µ1 = 0.01, µ2 = 0.001, M = 7; identification of the system given by (73),σ2
v = 0.01, white input with varianceσ2

u = 1/7;

500 independent runs; each experimental value was calculated bythe mean EMSE of 50 samples around the considered time instant.

B. Combinations of two NLMS filters and two CMA equalizers

To verify that the transient analysis is also accurate for the affine combination of the other algorithms, Fig. 12 and Fig.13

show the results for combination of two NLMS filters with theη-PN-LMS algorithm and two CMA equalizers with theη-

SR-LMS algorithm, respectively. For the NLMS case, to obtain a better estimate for the EMSE of the component filters

using the expression of Table V, we considerM = 32 coefficients and the optimum solution (wo) from [12, Fig. 2].

Again, we can observe a good agreement between analysis and simulation. In the CMA case, we assume the channels

h1 = [+0.1 +0.3 +1.0 −0.1 +0.5 +0.2]
T and h2 = [+0.25 +0.64 +0.80 −0.55]

T [27], [33] in the absence of noise
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and the transmission of a 4-PAM (pulse amplitude modulation) signal, i.e.,a(n) = ±1 or a(n) = ±3, with statisticsr = 8.2,

σ2
β = 28.8, and γ̄ = 6.8. In the combination, each component filter hasM =4 coefficients implemented as a T/2-fractionally

spaced equalizer (FSE) and is initialized with only one non-null and unitary element in the second position. Fig. 13 shows

the results for the EMSE and the mixing parameter considering the channelh1 until n = 4×104 and the channelh2 after

that. To smooth the EMSE curves, they were filtered by a moving-average filter of32 coefficients. Although there is no exact

agreement between analysis and simulation, the predicted values model the overall behavior of the combination, considering

that a difference of a few dB is common in models of blind algorithms due to the strong assumptions necessary for the analysis.
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Fig. 12. a) EMSE forµ1-NLMS, µ2-NLMS and their affine combination; b) ensemble average ofη(n) adapted with theη-PN-LMS algorithm and theoretical

ηo(n); µ1 = 0.1, µ2 = 0.01, µ̃η = 3 × 10−3, ǫ = 5 × 10−4, λ = 0.99, M = 32; identification of the system considered in [12],σ2
v = 0.01, white input

with varianceσ2
u = 1/32, Q = 0; 500 independent runs.
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Fig. 13. a) EMSE forµ1-CMA, µ2-CMA and their affine combination; b) ensemble average ofη(n) adapted with theη-SR-LMS algorithm and theoretical

ηo(n); µ1 = 1×10−3, µ2 = 1×10−4, µηs = 0.5; Equalizers withM = 4 as T/2-FSE, initialized with[0 1 0 0]T ; channelh1 =[0.1 0.3 1.0 −0.1 0.5 0.2]T

until n = 4×104 andh2 =[0.25 0.64 0.80 −0.55]T after n =4 ×104; Q = 0; 4-PAM transmitted signal;500 independent runs; EMSE curves filtered by a

moving-average filter of 32 coefficients.

C. Affine combination of filters with close step-sizes

We now consider an affine combination of two LMS filters with close step-sizes in a stationary environment. We assume that

the optimum solution is given by (73) and the inputu(n) is generated using a first-order autoregressive model, whose transfer
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function is
√

1−̺2/(1−̺z−1), with ̺ = 0.8. This model is fed with and i.i.d. Gaussian random process, whose variance is

1/M , such thatTr(R) = 1. Again, to form the desired signal, white noisev(n) with varianceσ2
v = 0.01 is added. Fig. 14

shows the EMSE and the mixing parameter along the iterationsfor two LMS filters with step-sizesµ1 = 0.01 andµ2 = 0.009,

using theη-LMS algorithm withµη = 600. This high value ofµη is needed in order to ensure a high convergence rate for the

combination since[y1(n)−y2(n)] is small. In this situation, the performances of the component filters are very close and the

combination provides a3 dB EMSE gain in steady-state, as shown in Fig. 14-(a) and predicted by the analysis. To smooth the

EMSE curves, they were filtered by a moving-average filter with 256 coefficients. We can observe that, due to the constraint

(η(n) ≤ 1) imposed in theη-LMS algorithm, the mixing parameter does not achieve its optimum value, which may be close

to 25 in some time instants, as shown in Fig. 14-(b). Consequently, the EMSE of the combination is far from the optimum

EMSE in some time instants.
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Fig. 14. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-LMS algorithm and theoretical

ηo(n); µ1 = 0.01, µ2 = 0.009, µη = 600, M = 7; identification of the system given by (73),σ2
v = 0.01, colored input (AR model, 1st order, pole at

0.8) with varianceσ2
u = 1/7; 500 independent runs; EMSE curves filtered by a moving-average filter with 256 coefficients.

In the same scenario, theη-PN-LMS andη-SR-LMS algorithms circumvent the problem since no constraint in η(n) is

necessarily used, as show respectively in Figures 15 and 16.A 3 dB EMSE gain can be observed in steady-state and there is

also an EMSE gain in the transient, being both well predictedby the analysis.
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Fig. 15. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-PN-LMS algorithm and theoretical

ηo(n); µ1 = 0.01, µ2 = 0.009, µ̃η = 0.4, ǫ = 9 × 10−4, λ = 0.99, M = 7; identification of the system given by (73),σ2
v = 0.01, colored input (AR

model, 1st order, pole at0.8) with varianceσ2
u = 1/7; 500 independent runs; EMSE curves filtered by a moving-average filter with 256 coefficients.
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Fig. 16. a) EMSE forµ1-LMS, µ2-LMS and their affine combination; b) ensemble average ofη(n) adapted with theη-SR-LMS algorithm and theoretical

ηo(n); µ1 = 0.01, µ2 = 0.009, µηs = 0.5, M = 7; identification of the system given by (73),σ2
v = 0.01, colored input (AR model, 1st order, pole at

0.8) with varianceσ2
u = 1/7; 500 independent runs; EMSE curves filtered by a moving-average filter with 256 coefficients.

D. Accuracy of tracking analysis

To verify the validity of the tracking analysis, the affine combination is compared to the convex combination assuming

two LMS filters with different step-sizes. The same simulation setting of Fig. 14 is considered, but with fixedµ1 = 0.1

and µ2 = δµ1. Fig. 17-(a) shows the theoretical and experimental valuesof ζii(∞), i = 1, 2 for the component filters and

the values ofζ(∞) for the affine and convex combinations as functions ofδ, considering a nonstationary environment with

Q = 4×10−7I. The ratioζ(∞)/min{ζii(∞)} is also shown in Fig. 17-(b). It can be noticed that there is anEMSE reduction

for both the affine and convex combinations whenTr(Q) = q12 = µ1µ2σ
2
vTr(R), which corresponds toδ = 0.025 in this case.

An EMSE reduction for the affine combination also occurs whenµ1 ≈ µ2, i.e.,δ ≈ 1. In this case, the convex combination can

only perform as its best component filter, since the mixing parameter needs to be negative to cause the EMSE reduction, as

shown in Fig. 17-(c). In both cases, the reduction is limitedto 3 dB, which agrees with the results of Table IV. The theoretical

results for the convex combination were obtained truncating the value of the optimal mixing parameter to the interval[0, 1].

It is important to remark, though, that both points at which the largest EMSE reduction happens do not represent optimal

situations, as can be seen in Fig. 17-(a). For a single LMS filter in a nonstationary environment, there is an optimum valueof

the step-size that minimizes the EMSE. The minimum EMSE value for the affine and convex combinations (≈ −38 dB) occurs

exactly whenµ2 assumes this optimum value, which happens forδ = 0.17 in this example. In this case, both combinations

perform as their best component filterµ2-LMS. Therefore, using the affine combination of filters of the same family updated

with different step-sizes is more worthwhile than using it with close step-sizes.

VII. C ONCLUSION

As an extension of [12] and [13], we proposed transient and steady-state analyses for the EMSE and the mixing parameter

of the affine combination, based on the theoretical EMSE and cross-EMSE of the component filters and on the adaptation of

the mixing parameter. This allows the application to different combinations of algorithms, such as LMS, NLMS and CMA,

considering white or colored inputs and stationary or nonstationary environments. Good agreement between the analysis and

the simulations was always observed. Moreover, we proposedand analyzed two normalized algorithms for updating the mixing
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Fig. 17. Theoretical and experimental values of a)ζii(∞), i = 1, 2 and ζ(∞); b) ζ(∞)/ min{ζii(∞)}, i = 1, 2; and c)E{η(∞)} for the affine

(µη = 1) and convex (µa = 100, a+ = 4 and ǫ = 0.1 [8]) combinations of two LMS filters withµ1 = 0.1, µ2 = δµ1 andM = 7; identification of the

system given by (73),σ2
v = 0.01, colored input (AR model, 1st order, pole at0.8) with varianceσ2

u = 1/7; Q = 4×10−7I; 50 independent runs. The

theoretical values are indicated by lines and the experimental values by△, �, ©, and∗.

parameter. The theoretical models can predict situations in which these algorithms can achieve a better performance, being

useful for the designer.

APPENDIX A

ASSUMPTIONS FOR THECMA ANALYSIS

Model (8) is based on the following assumption:

B1. The channel noise power is small enough for the zero-forcing solutionwo to be one of the global minimizers of the

constant-modulus cost function. In other words, the optimal solution achieves perfect equalization, i.e.,a(n − τd) ≈

uT (n)wo(n − 1) [10], [23], [26], [33].

Using B1, the filter output can be approximated by

yi(n) ≈ a(n − τd) − ea,i(n), i = 1, 2. (74)

Equation (8) is obtained replacing (74) in (7) and assuming that terms depending onek
a,i(n), k ≥ 2 are sufficiently small to be

disregarded for alln ≥ 0. In other words, we assume that the deviation between the component equalizers and the zero-forcing

solution is always small.

To calculate the first and second moments of the random i.i.d.variablesγ(n) andβ(n), we assume that

B2. The constellation used to generate thea(n) has circular symmetry, so thatE{ak(n)} = 0 for all odd integersk > 0.

This assumption is not restrictive, since this condition istrue for practical constellations.
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Using B2, we find thatE{β(n)} = 0,

σ2
β , E{β2(n)} = E{a6(n) − r2a2(n)}, (75)

γ̄ , E{γ(n)} = 3E{a2(n)} − r, (76)

and

ξ , E{γ2(n)} = 3rE{a2(n)} + r2. (77)
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