
1

A Variable Step Size Adaptive Algorithm with
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Abstract—We propose a normalized least mean squares algo-
rithm with variable step size. Unlike other solutions, it has low
computational cost, only three parameters that are simple to
choose, and its steady-state performance can be easily predicted.
Simulations show a competitive performance in comparison with
other solutions, and validate our theoretical analysis.

Index Terms—Variable step size, normalized least mean
squares, adaptive filtering, steady-state analysis

I. INTRODUCTION

Since their inception, adaptive filtering algorithms have been
successfully employed in numerous signal processing applica-
tions such as equalization, active noise control, acoustic echo
cancellation, biomedical engineering, among others [1], [2].
The normalized least-mean-square (ϵ-NLMS) algorithm is one
of the most popular adaptive filters due to its simplicity and
improved robustness in comparison with its non-normalized
counterpart, the LMS algorithm [1], [2]. Its stability and
performance are governed by a fixed step size µ, whose choice
is tied to a compromise: lower step sizes lead to improved
steady-state performances, but slow down the convergence
rate [1]–[3]. Hence, several versions of the LMS and ϵ-NLMS
algorithms with variable step-sizes (VSS) have been proposed
in the literature [4]–[10]. They seek to implement time-
dependent step sizes that remain high during the transient and
decrease when the mean squared error (MSE) is sufficiently
low, thus improving the steady-state performance. These al-
gorithms introduce new parameters that control the evolution
of the step size. However, in many cases it is difficult to
determine how they should be chosen [6], with poor selections
cutting the benefit of the VSS mechanism. A “non-parametric”
VSS algorithm was proposed in [6], but in this case it is
difficult to predict the value of the step size during steady
state, and, consequently, the performance of the algorithm.
In [10], a VSS algorithm was proposed that switches from a
high step size to a lower one after a number of iterations.
Although attractive for its simplicity, it is not robust to
abrupt changes in the environment and is usually outperformed
by more sophisticated solutions, as expected [10]. Another
alternative consists in employing a convex combination of
adaptive filters [11]–[13]. In this scheme, two or more filters
with different step sizes run simultaneously, and the output
of the algorithm is formed by combining the responses of
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each filter in an adaptive manner, so as to minimize the MSE.
However, the computational cost of these approaches is at least
twice as large as that of each individual filter, assuming that
they run the same algorithm.

Inspired by an algorithm we proposed for the sampling
and censoring of adaptive diffusion networks [14], in this
letter we propose a low-cost VSS-NLMS algorithm with three
parameters that are simple to choose based on the filter length
and desired steady-state performance. It is possible to ensure
that its step size does not decrease in the mean until the
MSE drops sufficiently. Moreover, by assuming that the data
are Gaussian and that the filter length is sufficiently long, its
steady-state performance can be predicted with good accuracy.
Simulations validate the analysis even when these assumptions
do not hold, and show that its performance is competitive
in comparison with other state-of-the art solutions. Lastly, its
robustness to changes in the environment is also verified.

This letter is organized as follows. In Sec. II, the formula-
tion of the problem is presented. In Sec. III, the proposed
VSS-NLMS algorithm is introduced. In Sec. IV, we show
how the parameters of the algorithm can be easily selected
and obtain theoretical results for its steady-state performance.
Finally, in Sec. V we provide simulation results and Sec. VI
closes the paper with the main conclusions of our work.
Notation. We use normal font letters for scalars, boldface
lowercase letters for vectors, and boldface uppercase letters
for matrices. Moreover, p¨qT denotes transposition, Et¨u the
mathematical expectation, Trr¨s the trace of a matrix, and ∥¨∥
the Euclidean norm. To simplify the arguments, we assume
real data throughout the letter.

II. PROBLEM FORMULATION

Let us denote by dpnq the desired response of the filter,
which is modeled as dpnq “ uTpnqwo ` vpnq, where upnq“

rupnq upn ´ 1q ¨ ¨ ¨ upn ´ M ` 1qsT is the input regressor
vector, wo is the optimal system, and vpnq is the measurement
noise, which is assumed to be independent from any other
signal, and independent and identically distributed (iid) with
zero mean and variance σ2

v [1], [2]. Denoting by wpnq the
estimate of wo produced by the algorithm at time instant n,
the adaptation of ϵ-NLMS is given by [1], [2]

wpnq “ wpn ´ 1q `
µ

ϵ `∥upnq∥2
upnqepnq, (1)

where epnq“dpnq́ uTpnqwpń 1q is the estimation error, ϵą0
is a regularization factor, and 0ăµă2 is a step size [1], [2].

When analyzing the performance of adaptive filters, some
of the most commonly adopted metrics are the MSE and
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the excess MSE (EMSE), which are respectively given by
MSEpnq fi Ete2pnqu and EMSEpnq fi Ete2apnqu, where
eapnq fi uTpnqrwo ´wpn ´ 1qs is the a priori estimation
error [1], [2]. Since vpnq is assumed independent from any
other signal, the MSE and EMSE are related by [1], [2]

MSEpnq “ EMSEpnq ` σ2
v ą σ2

v . (2)

Thus, the measurement noise power marks a limit in the per-
formance of adaptive algorithms. Several theoretical expres-
sions have been derived for the MSE and EMSE of most adap-
tive filtering solutions. For the ϵ-NLMS with sufficiently small
ϵ and µ, its steady-state EMSE can be approximated by [1]

EMSEϵ´NLMSp8q «
µσ2

vρ

2 ´ µ
, (3)

where ρfiEt1{∥upnq∥2uTrpRuq, with Ru fiEtupnquTpnqu.
From (3) we see that the steady-state EMSE increases with
µ. However, low step sizes affect the convergence rate of
ϵ-NLMS [1], [2]. In fact, it can be shown that the fastest
convergence rate occurs by adopting µ“ 1 [3]. To conciliate
these conflicting goals, we propose in Sec. III a VSS algorithm
that ensures a high step size as long as the MSE lies above a
certain threshold, and gradually decreases it as the MSE drops.

III. THE PROPOSED VSS ALGORITHM

In order to control the step size, we multiply it by an
auxiliary variable spnqPr0,1s. Thus, (1) can be recast as

wpnq “ wpn ´ 1q `
sµpnq

ϵ `∥upnq∥2
upnqepnq, (4)

where sµpnq “µspnq. We suggest adopting µ“ 1 for optimal
convergence rate, but a lower µ can be used for better steady-
state performance. Ideally, spnq should be equal to one in
the transient, and then decrease during steady state. Inspired
by [14], we adopt the following cost function for spnq:

Jspnq “ s2pnq ¨ γσ2
v `

“

1 ´ spnq
‰

e2pnq, (5)

where γ is a positive parameter that the filter designer must
choose, and whose influence on the algorithm will be studied
in Sec. IV. The rationale behind (5) is that when e2pnq is high,
Jspnq is minimized by making spnq closer to one. In contrast,
as e2pnq becomes smaller than γσ2

v , Jspnq is minimized by
decreasing spnq. Thus, in the mean, the step size should
decrease when the MSE is sufficiently close to its minimum
value σ2

v based on our choice for γ. The reason why we adopt
s2pnq ¨ γσ2

v instead of simply spnq ¨ γσ2
v in (5) is because

the latter option encourages the algorithm to make spnq “ 0
when the MSE is smaller than γσ2

v . Hence, the adaptation
would eventually stop. In contrast, by adopting s2pnq ¨ γσ2

v ,
this problem is avoided, as will become clear further ahead.
Moreover, we show in Sec. IV that in this case we can ensure
spnqą0 in the mean during steady state.

Rather than directly adjusting spnq, we update an auxiliary
variable αpnq deterministically related to spnq via [12]

spnq “
sgmrαpnqs ´ sgmr´α`s

sgmrα`s ´ sgmr´α`s
, (6)

where sgmrxs“p1`e´xq´1 is the sigmoidal function, and α`

is the maximum value that αpnq can assume. We should notice
that spnq attains values 1 and 0 for αpnq “ α` and αpnq “

´α`, respectively. A common value adopted in the literature
is α` “4. We encourage the reader to consult, e.g., [11]–[15]
and their references for an in-depth explanation. Finally, αpnq

is truncated in the range r´α`, α`s.
By taking the derivative of (5) with respect to αpnq, we

obtain the following stochastic gradient descent rule for ně1:

αpn ` 1q“αpnq`µss
1pnqre2pnq´2γσ2

vspnqs, (7)

where µs ą0 is a step size whose selection will be discussed
in Sec. IV, αp0q“α`, and [12]

s1pnq fi
dspnq

dαpnq
“

sgmrαpnqst1 ´ sgmrαpnqsu

sgmrα`s ´ sgmr´α`s
. (8)

Eqs. (4), (6), and (7) form the basis of the proposed algo-
rithm, which we name γVSS-NLMS. Its operation in the mean
can be interpreted as follows. When the MSE is high, sµpnq

is kept at its maximum. As the MSE drops, the term between
brackets in (7) becomes negative, at which point αpnq, spnq,
and sµpnq drop as well, further decreasing the MSE. However,
as spnq drops, so does the incentive for αpnq to continue
decreasing, due to the presence of spnq in the second term
between brackets in (7). Eventually, an equilibrium is reached
and spnq stabilizes. Indeed, in Sec. IV, we show that choosing
a finite value for γ leads to Etsp8quą0, thus the adaptation
never stops completely. Moreover, since 0 ď spnq ď 1 and
sµpnq “ µspnq, the stability of the algorithm is ensured if
0 ă µ ă 2. If µss

1pnq and spnq are implemented by a
lookup table, γVSS-NLMS requires 2M `6 multiplications
and 2M `4 sums per iteration, only slightly more than the
2M`2 multiplications and 2M`2 sums of ϵ-NLMS.

IV. THEORETICAL ANALYSIS

Introducing the quantity ∆αpnqfiαpn`1q́ αpnq and taking
expectations from both sides of (7), we obtain

Et∆αpnqu “ µsEts1pnqre2pnq ´ 2γσ2
vspnqsu. (9)

To make the analysis more tractable, we assume that s1pnq is
independent from the term between brackets in (9). Since s1pnq

varies much more slowly with time than the term between
brackets, their effects can be taken into account separately,
according to the averaging principle [16]. Hence, we can write

Et∆αpnqu « µsEts1pnquEte2pnq ´ 2γσ2
vspnqu. (10)

During the initial convergence, since αp0q “ α` and we
truncate α in r´α`, α`s, we see from (10) that Etαpn`1qu“

α` as long as µsE
␣

s1pnq
(

E
␣

e2pnq´γσ2
vspnq

(

ą 0. Since
µs ą 0, Etspnqu P r0,1s and s1pnq ą 0 for α P r´α`, α`s,
we conclude that Etαpn`1qu “ α`, Etspn`1qu “ 1, and
Etsµpn`1qu“µ as long as

MSEpnq ą 2γσ2
v . (11)

Thus, we have a clear understanding of when sµpnq begins
to drop based on γ. Moreover, we can estimate the expected
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steady-state value of spnq. Since in steady state we should
have Et∆αp8qu “ 0, we conclude from (10) that

Ete2p8q ´ 2γσ2
vsp8qu « 0. (12)

Using (2), (12) can be recast as

EMSEγp8q ` σ2
v ´ 2γσ2

vEtsp8qu « 0, (13)

where EMSEγp8q is the steady-state EMSE of the proposed
algorithm. Since in steady state γVSS-NLMS should operate
as the ϵ-NLMS with a lower step size, we estimate EMSEγp8q

by replacing µ with Etsµp8qu“µEtsp8qu in (3), obtaining

EMSEγp8q«
µEtsp8quσ2

vρ

2 ´ µEtsp8qu
. (14)

Replacing (14) in (13) and taking into account that we must
have Etsp8quPr0,1s at all times, after some algebra we get

Etsp8qu«
4γ`µp1´ρq´

a

r4γ ` µp1 ´ ρqs2 ´ 16γµ

4γµ
(15)

if the right-hand side (rhs) is real and lesser than or equal to
one. Otherwise, we assume that Etsp8qu “ 1. To obtain the
minimum value γmin for γ, we must ensure that the rhs of (15)
is simultaneously: i) real, and ii) less than one. Condition i)
can be satisfied by adopting γąµ

`

1`ρ`2
?
ρ
˘

{4 for any µ.
For µěζfi2p1`

?
ρq´1, this also enforces Condition ii). For

µăζ, we must adopt the stricter rule γą 2̀ pρ́ 1qµs{r2p2́ µqs

to enforce Condition ii) (see the supplementary material for a
detailed explanation). We thus get

γmin “

#

µ
`

1 ` ρ ` 2
?
ρ
˘

{4, if ζďµă2

r2 ` pρ ´ 1qµs{r2p2 ´ µqs, otherwise
. (16)

These results can be simplified assuming that the data are
Gaussian and that the filter length M is sufficiently long.
Under these assumptions, we can write [17], [18]

ρ « M{pM ´ 2q. (17)

As shown in Sec. V, the results thus obtained hold fairly even
if these conditions are not met. Replacing (17) in (16) yields

γmin “

$

’

’

’

&

’

’

’

%

µ

2

˜

M ´ 1

M ´ 2
`

c

M

M ´ 2

¸

, if ζďµă2

rpM ´ 2q ` µs

pM ´ 2qp2 ´ µq
, otherwise

. (18)

From (17) we see that typically ρ « 1 and thus ζ « 1 for
large M . Moreover, for large γ or small µ we may assume
that µEtsp8qu!2, enabling us to recast (14) as EMSEγp8q«

µEtsp8quσ2
vρ{2. In this case, we get from (13) and (17)

Etsp8qu «
2pM ´ 2q

4pM ´ 2qγ ´ µM
. (19)

Replacing (19) in (14) and using (17), we conclude that

EMSEγp8q«
µσ2

vM

4pM ´ 2qγ ´ 2µpM ´ 1q
(20)

for large γ or small µ. Otherwise, a more precise result can
be obtained by replacing (15) and (17) in (14). From (20),

we can see that γVSS-NLMS achieves a lower EMSE than
ϵ-NLMS for large γ. Moreover, µs does not influence the
steady-state performance of γVSS-NLMS, although it can
affect its convergence. If µs is too small, sµpnq decreases very
slowly, which is undesirable. If µs is too large, sµpnq can drop
suddenly after (11) ceases to hold, harming the convergence
rate. Simulations suggest that, for 0 ă µ ď 1, the transient
performance of γVSS-NLMS is preserved by making

µs «
1

γσ2
v

¨
µ2

3 lnpMq
. (21)

This is a heuristic result that can be interpreted as fol-
lows. The first term cancels the effect of γ and σ2

v on the
convergence rate of αpnq in (7). The second term is related
to the convergence of wpnq, which slows down with the
decrease of µ or the increase of M . However, it is important
to mention that simulation results show that the performance
of γVSS-NLMS is not very sensitive to small variations in µs.

We remark that an online estimator for σ2
v can be used (see,

e.g., [7], [19] and their references) to cut the need for prior
knowledge of the noise power. In this case, one may simply
replace σ2

v with pσ2
vpnq in (7) and use µspnq “ θ{rϵ`pσ2

vpnqs,
where pσ2

vpnq is the estimate of σ2
v at iteration n and θ fi

µ2{r3γ lnpMqs, further simplifying the usage of the algorithm.

V. SIMULATION RESULTS

The following simulations were obtained over an average
of 103 independent realizations with 6¨104 iterations each in a
system identification setup. The filter length is equal to that of
wo. The coefficients of wo are generated randomly following a
uniform distribution in the range r´1,1s, and later normalized
so that wo has unit norm. Unless stated otherwise, we consider
M “128 and a Gaussian distribution for upnq with zero mean
and unit variance. Lastly, we consider a Gaussian distribution
for vpnq with zero mean. The noise power σ2

v is set to ensure
a signal-noise ratio of 20dB, and we adopt ϵ“10´5.

In the simulations of Fig. 1, we compare the EMSE curves
of γVSS-NLMS with those of other VSS algorithms and of a
convex combinations of two adaptive filters with coefficient
transfer from the fast filter to the slow one [11]. In the
simulations, the algorithm of [9] was outperformed by the
other solutions. Since this algorithm was designed for acoustic
echo cancellation with speech signals, we opted to not include
it in Fig. 1 since this comparison could be unfair. Moreover,
for the VSS algorithms of the LMS type, we adopted nor-
malized step sizes to enable the comparison with solutions
of the ϵ-NLMS kind. The parameters of every algorithm were
adjusted to achieve roughly the same steady-state performance.
For every algorithm, we set the initial step size to µ“1. For
γVSS-NLMS we adopt γ “ 12.5, which satisfies (18), and
consider two versions: i) σ2

v known a priori, and ii) estimated
online using the algorithm of [19]. Since the solutions of [4]–
[7] achieved very similar results, we opted to only depict
the EMSE curve of the algorithm of [7] in Fig. 1, as its
performance is marginally better than most others, and it is
the most recent solution among them. Otherwise, the figure
would be very polluted. In Tab. I we show the values adopted
for each parameter of the algorithms considered, keeping the
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Fig. 2: Comparison between simulation results and the analysis from Sec. IV in terms of Etsp8qu (top row) and EMSEγp8q

(bottom row) for 0.5ďγď17.5. (a) and (b): µ“0.2, M“128, and upnq„N p0,1q. (c) and (d): µ“1, M“128 and upnq„N p0,1q.
(e) and (f): µ“1, M“16 and upnq“rpnq´0.8upn´1q, with rpnq„N p0,1q. (g) and (h): µ“1, M“16 and upnqPt´1,1u.

notation of the original references. We also present the results
obtained with ϵ-NLMS with µ “ 1 as well as µ “ 0.408,
which corresponds to the steady-state step size of γVSS-
NLMS, and indicate the theoretical steady-state EMSE yielded
by (20). To simulate an abrupt change in the environment, in
the middle of each realization we divide wo by 2. We can see
that γVSS-NLMS converged as fast as the solution of [7] in
both transients, and faster than the other algorithms. Hence,
its performance is competitive with other solutions. We also
see that the steady-state EMSE matches the results yielded
by (20) closely, and that the use of an online estimator for σ2

v

had almost no impact on the performance.
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Fig. 1: Comparison between γVSS-NLMS and the VSS algo-
rithms from [7], [8], [10], as well as convex combinations of
ϵ-NLMS filters with different step sizes [11]–[13]. The curves
are filtered by a moving-average filter with 64 coefficients.

To validate the analysis of Sec. IV, in Fig. 2 we compare
simulation results to the theoretical values for Etsp8qu and
for the steady-state EMSE of γVSS-NLMS based on (15)
and (19). For this, we consider an ensemble average of the last
6000 iterations of each realization, with σ2

v known a priori and
several values for 0.5ďγď17.5 in four scenarios. In Figs. 2(a)
and (b), we adopt µ“0.2, whereas in Figs. 2(c) and (d), we
use µ“1. In Figs. 2(e) and (f), we adopt µ“1, M “16 and a

TABLE I: Parameters of the VSS algorithms and convex com-
binations of adaptive filters used in the simulations of Fig. 1.

Solution Parameters
γVSS-NLMS (σ2

v known) γ “ 12.5, µs “ 0.5496, α` “ 4
γVSS-NLMS (σ2

v esti- γ“12.5, θ“5.4960¨10´3, α` “4,
mated online using [19]) ws “0.9998, wm “0.9995, and wf “0.9984

Huang [7] µmax“1,µmin“10´5,α“0.998, β“25, ζ“0.35
Zhu [8] m “ 1, A“2, B“0.7, λ “ 0.99

Bershad [10] µ1 “0.892, µ2 “0.408, ns “ 607
Combination (with µ1 “1, µ2 “0.408, µa “ 1.5

coefficient transfer) [13] η “ 0.98, λ0 “0.8, ℓ “ 0.95

colored input given by upnq“rpnq´0.8upn´1q, where rpnq

is a Gaussian noise with zero mean and unit variance. Lastly,
in Figs. 2(g) and (h) we consider µ“1, M “16 and a binary
input upnq that can assume the values ´1 or 1 with equal
probability. In each plot, we also indicate the γmin yielded
by (18) by vertical dotted lines. For intermediate values of
γ we see that (15) provides a more precise model than (19),
albeit more complex. However, the theoretical values yielded
by both models match the simulation results closely for large
γ, i.e. γ ě 2, in all four scenarios. We can also see that
Figs. 2(a), (c), (e), and (f) validate (18). For µ“0.2 (Figs. 2(a)
and (b)), the results match closely for γě0.5 in general, which
makes sense since (3) is a better approximation for small µ.
Lastly, we see from Figs. 2(e) to (h) that the main results of
Sec. IV hold even when the assumptions of Gaussian data and
long filter lengths do not.

VI. CONCLUSIONS

Unlike most other solutions, the proposed γVSS-NLMS
algorithm has low computational cost and only three param-
eters (α`, γ, and µs) that are easy to choose. Moreover, we
obtained theoretical results for its steady-state performance
based on the value of its parameters, further aiding their
selection. Simulations show that the performance of γVSS-
NLMS is competitive in comparison with the other solutions
and validate the theoretical analysis. In future works we intend
to analyze the transient behavior of γVSS-NLMS, to derive
more precise results for the selection of µs, and to test the
algorithm in different scenarios.
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VII. SUPPLEMENTARY MATERIAL

Let us begin by analyzing the right-hand side of (15).
Condition i) can be enforced by making

r4γ ` µp1 ´ ρqs2 ´ 16γµ ą 0, (22)

which can be recast as

16γ2 ´ 8γµp1 ` ρq ` µ2p1 ´ ρq2 ą 0. (23)

Solving for γ and taking into account that this parameter
should be positive, we obtain

γ ą
µ
`

1`ρ`2
?
ρ
˘

4
“

µp1 `
?
ρq2

4
, (24)

which corresponds to the first case in (16).
To enforce Condition ii), let us firstly assume that the right-

hand side of (15) is real, i.e. Condition i) is satisfied. Then,
we simply need to enforce

4γ`µp1´ρq´
a

r4γ ` µp1 ´ ρqs2 ´ 16γµ

4γµ
ă 1. (25)

Solving for γ, we obtain after some algebraic manipulations

γ ą
2 ` pρ ´ 1qµ

2p2 ´ µq
, (26)

which corresponds to the second case in (16).
Inequality (26) represents a stricter rule for the selection of

γ than (24). Intuitively, this is reasonable, since we assumed
that Condition i) was met – which Inequality (24) enforces –
in order to obtain (24). Furthermore, there is a single value of
µ for which the Rules (24) and (26) coincide. Making

µp1 `
?
ρq2

4
“

2 ` pρ ´ 1qµ

2p2 ´ µq
(27)

and solving for µ yields

µ “ ζ fi
2

p1 `
?
ρq

, (28)

as we defined in Sec. IV.
As stated in Sec. IV, the relevance of the parameter ζ

stems from the fact that, for µ ě ζ, Inequality (24) already
enforces Condition ii) as well as Condition i). Therefore, in
these cases we can relax the selection of γ by adopting (24)
instead of (26). Taking this into account, we obtain (16) as a
whole.

To verify this, let us consider the special case µ “ ζ. In

this case, Inequality (24) yields γ ą
1 `

?
ρ

2
. If we make

γ “
1 `

?
ρ

2
,

this leads to
γµ “ 1

and
4γ`µp1´ρq “ 4.

Replacing these results in (15) yields Etsp8qu “ 1. Increas-
ing γ by just a little bit, Etsp8qu decreases, so we can
indeed enforce Condition ii) by adopting (24) in this case.
Moreover, if we increase µ further while enforcing (24),

Etsp8qu decreases. For example, if we select µ “ aζ, where
1 ă a ă 1 `

?
ρ is a constant (the condition that a ă 1 `

?
ρ

stems from the fact that we should have µ ă 2), (24) yields
γ ą ap1 `

?
ρq. If we adopt γ “ ap1 `

?
ρq, we conclude

that, in this case,
γµ “ a2.

Furthermore,
2γ ` µp1 ´ ρq “ 4a.

Replacing these results in (15), we obtain

Etsp8qu “
4a ´

a

p4aq2 ´ 16 ¨ a2

4a2
“

1

a
ă 1,

since a ą 1. Therefore, we can see that for µ ą ζ, (24) is
sufficient to enforce Condition ii). On the other hand, from
this argument we can also see that if a ă 1, i.e. µ ă ζ,
Eq. (16) would yield Etsp8qu ą 1. Thus, Condition ii) is not
satisfied. In this case, we need to adopt (26) for the selection
of γ.


