
Adaptive Diffusion Networks: An Overview

Daniel Gilio Tiglea�, Renato Candido, Magno T. M. Silva

Escola Politécnica, University of São Paulo, São Paulo, Brazil

Abstract

This work provides a comprehensive overview of adaptive diffusion networks, from the first papers published

on the subject to state-of-the-art solutions and current challenges. These networks consist of a collection

of agents that can measure and learn from streaming data locally, and cooperate to improve the overall

performance. Since their inception, adaptive diffusion networks have consolidated themselves as interesting

tools for distributed estimation and learning, and have spun several types of solutions for these problems.

We begin by discussing the technological advances that led to their emergence, and present the many

ramifications of the area. We also discuss some of the most critical limitations of these types of networks

in practical situations, such as energy consumption, and show techniques that have been proposed to cope

with them. Finally, simulations with real-world data are presented in order to illustrate in practice the

opportunities and challenges that they pose.

Keywords: Diffusion networks, distributed estimation, distributed signal processing, multitask learning,

kernel adaptive filtering, graph signal processing.

1. Introduction

More than one decade after their inception, adaptive diffusion networks have become a consolidated

tool in the signal processing literature [1–6]. Widely regarded as an effective tool for distributed parameter

estimation and signal processing, they gained widespread attention due to their advantages over centralized

approaches and branched out into many different research topics, such as multitask networks [7–18], nonlinear

adaptive networks [19–27], among others. Moreover, the field of graph signal processing (GSP) has oftentimes

been inspired by these techniques, since it deals with applications that are usually distributed in nature [28–

31]. As a result, many graph adaptive filtering algorithms can be seen as an extension of adaptive diffusion

networks to domains where space, as well as time, plays a role in the development of the signals of interest.

Yet, there are still many open research topics on the area of adaptive diffusion networks, whose relevance

is only increased by the multitude of applications and solutions inspired by them. For instance, the energy

�Corresponding author.
Email addresses: dtiglea@lps.usp.br (Daniel Gilio Tiglea), renatocan@lps.usp.br (Renato Candido),

magno.silva@usp.br (Magno T. M. Silva)

Preprint submitted to Elsevier June 11, 2024

and computation constraints involved in distributed signal processing tasks still pose a challenge that is a

topic of research to this day. Moreover, additional challenges arise when the nodes have potentially different

tasks, or when there are significant nonlinearities in the environment, for instance. Consequently, new

algorithms continue to be proposed to deal with these types of circumstances, as well as other challenging

scenarios.

Inspired by the influence of adaptive diffusion networks on distributed signal processing over the last

decade, the goal of this paper is to provide a review on these powerful tools. Starting from the emergence

of adaptive diffusion networks in the literature and some of the seminal algorithms, we study the many

ramifications that these solutions have spun. The opportunities and challenges posed by these tools are

examined, and we seek to point out what type of problems each one of the solutions presented in the

paper is best suited for. It is worth noting that we are primarily concerned with adaptive diffusion networks

designed for distributed linear and nonlinear adaptive filtering. In recent years, the term “adaptive networks”

has sometimes been employed in a wider sense to refer to networked strategies for, e.g., optimization [32, 33]

and social learning [34–36]. However, covering these topics would turn an already wide scope into an

unmanageable one, at least for a single paper.

Organization of the paper and major contributions

This paper is organized as follows. In Sec. 2, we examine the historical development of adaptive diffusion

networks in the literature. In Sec. 3, we review the single-task adaptive diffusion networks for linear adaptive

filtering. In Sec. 4, we provide an overview of techniques for restricting the number of communication

processes between the nodes of a network, which is important for their feasibility in practical applications.

In Sec. 5, we review multitask adaptive diffusion networks, whereas in Sec. 6 we study kernel-based adaptive

diffusion networks. In Sec. 7, we discuss adaptive diffusion networks that incorporate aspects from the GSP

framework. Finally, in Sec. 8 we present simulation results to illustrate the behavior of the solutions covered,

and Sec. 9 closes the paper with the conclusions.

As can be attested from the organization of the paper, this work aims to be as comprehensive as possible

within the scope of adaptive diffusion networks. Consequently, it distinguishes itself from other review

papers published on the field, such as [3, 37–40], by presenting simultaneously all of the following features:

1. Technological background: in addition to reviewing the algorithms proposed for adaptive diffusion

networks, we also examine the technological developments that lead to the emergence of adaptive

diffusion networks from a hardware perspective, including the evolution of wireless communication

networks, embedded systems, low-power devices, and so on. Unlike the present paper, this discussion

is not covered in [3, 37–40];

2

2. Comprehensiveness: By addressing multitask [7–14] and kernel-based [19–27] networks, as well

as diffusion solutions for GSP [28–31] in a single paper, the present work is more comprehensive

than others published previously. For instance, the focus of [3, 37] is on the single-task networks

for linear adaptive filtering covered in Sec. 3. The same can be said about [39], which specifically

emphasizes robust algorithms for these networks. In contrast, in [38, 40], the authors focus mainly

on multitask solutions. Kernel-based adaptive diffusion networks are not covered in [3, 37–40]. By

gathering information on all of these different solutions in one paper, it becomes easier for the reader to

understand what types of problems each of the solutions is aimed at, and to obtain a general overview

of the area;

3. Concerns with practical implementations: the attention devoted to restrictive communication

policies – a concern that arises from the energy consumption due to the communication between nodes,

which poses a critical constraint in battery-operated devices – is another difference in comparison with

other papers. These techniques are not covered in [3, 37–40];

4. Real-world data: the simulations presented in Sec. 8 are based on real-world data, enabling us to

we compare the several solutions addressed in this paper in a realistic scenario. This is different from,

e.g., [3, 37, 39].

2. Brief History of Adaptive Diffusion Networks

In this section, we present an overview of the timeline of adaptive diffusion networks, as well as correlated

research areas and technological advances. For ease of reading, we have divided it in the following subsections.

In Sec. 2.1, we explore the context that lead to the inception of adaptive diffusion networks, which is then

addressed in Sec. 2.2, along with other strategies for distributed signal processing. In Sec. 2.3, we examine

the consolidation of these tools in the literature and some of the research topics that were spanned by it

in the following years after its emergence. Finally, in Sec. 2.4, we address other innovations that happened

in parallel with the consolidation of adaptive diffusion networks, and the birth of other research fields that

drew inspiration from them at some point.

2.1. Technological Background: The Emergence of Wireless Sensor Networks

The late 1990’s and early 2000’s were marked by rapid progress in the fields of electronics and wireless

communications. Advances in commercial integrated circuit fabrication and in very large-scale integration

(VLSI) technologies enabled the combination of wireless transceivers, processors, and sensors on a single

chip and amplified the usage of computing and communication devices in commercial applications [41, 42].

There were also remarkable breakthroughs in wireless communications technologies. Just to put things in

3

perspective, in 1998, the Bluetooth technology was launched as an open standard for wireless communica-

tions [42]. Another project, initiated in 1990 by the IEEE, would lead to the release of a wireless networking

standard in 1997: the IEEE 802.11 [43]. This, in its turn, would become the basis for wireless local access

areas (WLANs), and give rise to a family of wireless network protocols that received the brand name of

Wi-Fi™ in 1999 [44]. In 2001, the first commercial 3G mobile service was launched in Japan [66].

Such advances would lead to the development of low-cost, low-power micro-sensors with embedded

processors and radios [46–49]. Thus, these devices were capable of sensing and processing data, as well

as communicating untethered over short distances [50, 51]. This made them promising mainly for three

reasons:

1. Their low cost facilitated the deployment of numerous sensors over an area in order to monitor a

signal of interest, which is particularly beneficial when the exact location of such signal is not known

beforehand. In this case, the placement of many sensors can lead to improved opportunities for line

of sight as well as signal-to-noise ratio (SNR) [51].

2. Their capability of wireless communications enabled their use in areas where wired networking was

impractical.

3. Their low power consumption allowed them to run on small energy sources, dismissing the need for a

continuous connection to the energy infrastructure (e.g., the power grid).

These features enabled the use of such micro-sensors in remote regions and made them suitable for envi-

ronmental monitoring, precision agriculture, smart homes, military applications, among many other appli-

cations [50, 51].

Thus, although energy consumption and production costs were still too high to make them feasible for

large-scale applications in the short term [52], expectations arose that Wireless Sensor Networks (WSN’s)

would emerge in the following years or decades and revolutionize our relations with complex systems [51].

Indeed, over the 2000’s, some of the initial shortcomings were addressed. For instance, although Bluetooth

and WLAN are not specifically suitable for low-power networks, other standardization attempts would arise

in order to meet the needs of WSN’s, such as ZigBee [53], WirelessHART [54], and SP100.11a [55]. Moreover,

the 6LoWPAN standard would be proposed in order to make WSN’s compatible with the internet [56].

Among the technical challenges posed by WSN’s, energy consumption was the most demanding. This

was mainly due to their reliance on small power sources and on wireless communications. Besides presenting

short range, the minimum output power required to transmit a signal over a distance d is proportional to

dn, where 2 ¤ n 4 [50]. For low-lying antennae and near-ground channels, as is the case in most sensor

networks, the exponent n is close to 4 due to ground reflections [49–51].

4

As a result, distributed signal processing techniques were soon perceived to be more appropriate than

centralized approaches for WSN’s [57–60]. In a distributed setting, each sensor node only communicates

with its immediate neighbors. On the other hand, in the centralized framework, every node must send its

data to a central processing unit, sometimes called a fusion center. However, due to the energy constraints,

it is desirable to process the data as much as possible within the network, in order to limit the amount of bits

transmitted over long distances [51]. Another disadvantage associated with this approach resides in the fact

that it inserts a critical point of failure in the setting, namely, the fusion center. Furthermore, the central

unit must be capable of dealing with large amounts of data, meaning that it requires more sophisticated

processors and communication modules. Lastly, the short range of the radio components in the sensors

limits the scalability of the network in the centralized setting.

Furthermore, there was a concern that the mass production of micro-sensors and their large-scale usage in

future applications would create an impracticable demand on cable installation and network bandwidth [49].

Thus, by processing as much data as possible locally, the financial, computational, and management burden

on communication systems and networks could be significantly alleviated.

The quickly-developing nature of this topic sparked the interest of the academic community. In 2000,

the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) had a section

entitled “Signal Processing and Protocols for Wireless Sensors”. It was the first edition of the conference to

dedicate an entire section to this topic. In the following year, there were three sections dedicated to wireless

networks, communications, and systems in ICASSP. That same year, a workshop entitled Collaborative Signal

Processing was held in Palo Alto, California. This would later be renamed as the IEEE/ACM International

Conference on Information Processing in Sensor Networks, a symposium that has been held every year

since then. In 2002, the Association for Computing Machinery held its 1st ACM International Workshop

on Wireless Sensor Networks and Applications. In 2004, the European Association for Signal Processing

(EURASIP) launched an open-access journal entitled Eurasip Journal on Wireless Communications and

Networking, which places an emphasis on signal processing techniques for these technologies [61]. It is

interesting to note that, around the same time, the interest of the scientific community in complex networks

began to rise for a number of factors. Firstly, the study of complex systems in general was aided by the

increasing availability of powerful computers. In particular, this facilitated computations involving networks

with millions of nodes. Moreover, the popularization of the internet also played a role, by enabling the

exchange of databases among researchers. In fact, the internet itself was an example of a complex network,

and was the subject of a handful of studies [62–64].

The prominence that the aforementioned conferences gave to the topic of wireless sensor networks is

an indication of the interest that it sparked among the engineering and computer science communities.

This enthusiasm would not fade in the following years – rather, it would skyrocket. As depicted in Fig. 1,

between 2002 and 2005 the number of academic publications with the words “wireless sensor networks” in

5

their title escalated from a few tens to more than a thousand, including conference and journal papers,

editorials, books and book chapters, among others [65]. Furthermore, attention on the topic continued to

grow steadily throughout the 2000’s, and it maintained the widespread interest of the scientific community

during the 2010’s.

1990 1995 2000 2005 2010 2015 2020

Year

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

er
of

N
ew

P
u

b
li
ca

ti
on

s
p

er
Y

ea
r

Figure 1: Number of publications with the words “wireless sensor networks” in their title from 1991 through 2022 [65].

2.2. How to Distribute the Processing?

Up until the mid 2000’s, wireless sensor networks were oftentimes considered as a tool for directly

estimating a certain signal of interest. Thus, the main tasks of WSN’s were typically to filter the mea-

surement noise out using, e.g., linear filtering, and to estimate a parameter of interest utilizing the max-

imum likelihood method, for instance. The results corresponding to different spatial locations were then

averaged [67–71]. In the second half of the decade, adaptive sensor networks with distributed processing

were proposed [1–6, 72, 73]. These solutions consisted in the extension of well-established adaptive filter-

ing algorithms, such as least-mean-squares (LMS) and recursive least-squares (RLS) algorithms [74, 75], to

distributed problems over sensor networks. With this fusion of ideas, WSN’s could be endowed with the

ability to solve optimization problems in an adaptive manner, which enabled them to follow changes in the

environment, improved their overall flexibility, and broadened their scope of applications, including, e.g.,

the study of biological and social networks, system identification problems, distributed spectrum sensing in

cognitive radio networks, environmental monitoring, among others [1, 9, 10, 20, 76].

In parallel, another question was the subject of much scrutiny throughout the 2000’s: how exactly to

carry out the processing in a distributed manner. More specifically, researchers sought to determine how to

organize the communication between nodes and how to incorporate their cooperation in the processing of

the data in an efficient manner, ensuring satisfactory performance as well as low power consumption and

computational cost. Some of the earliest approaches to data fusion in sensor networks were the so-called

6

flooding techniques, such as the ones used in conventional ad hoc networks. In its purest form, flooding

works as follows: each node keeps a table where it stores all its known data. At every time instant, each

node then broadcasts this table to its neighbors. In a stationary environment, this means that eventually

every node will be able to act as a fusion center and estimate the parameters of interest [67]. Naturally,

this procedure demands high storage and communication capabilities and generates a large overhead [68].

More efficient versions of flooding were proposed over the years [77–80], but the potential for increased node

density in WSN’s and the technical limitations of each individual sensor made this technique unappealing

in the field.

In the mid 2000’s, two approaches for communication and cooperation between nodes began to attract

attention in the context of wireless sensor networks: the consensus [67–69, 81–84] and incremental [60, 72, 73,

85] strategies. Both approaches predate the emergence of WSN’s, hailing from the fields of statistics [86, 87]

and optimization theory [85], respectively. However, as will be seen in Sec. 3, they present some shortcomings

that hindered their potential for application in the specific context of WSN’s. The incremental strategy is

not robust to link and node failures, since the breakdown of a single node or link halts the entire learning

process due to the disruption of the information chain. Moreover, it requires that the nodes be arranged in a

Hamiltonian cycle, which is, in general, an NP-hard problem [88]. In contrast, in consensus techniques, the

nodes are allowed to communicate with each other according to a predefined topology. As a result, they may

cooperate with multiple peers, which eliminates some of the issues associated with the incremental strategy.

However, they also present some drawbacks. Initially, they required the existence of two time-scales: one

for the processing of the data, and the other for reaching a consensus between the nodes at each iteration

of the adaptation problem [68, 89]. Furthermore, the step sizes in traditional consensus techniques diminish

over time. It was noted that both of these traits could be problematic when dealing with online applications

with streaming data. As a result, adjustments were proposed to the consensus schemes in order to alleviate

some of these challenges, but some discrepancies remained [90, 91]. A more direct technique for adaptation

over networks was proposed earlier leading to the diffusion strategies [4–6, 60, 92]. Later, it was shown

that the diffusion strategies provided better stability than their consensus counterparts for adaptation with

in-network processing [93]. As a result, diffusion strategies remained the predominant technique for the use

in adaptive networks, although incremental and consensus strategies continued to be considered over the

following years [94–99]. For this reason, in this paper, we focus mainly on diffusion techniques. An excellent,

in-depth comparison of incremental, consensus, and diffusion strategies can be seen in [3].

Thus, by endowing the networks with the ability to adapt to the signals of interest at hand, and by

adopting diffusion strategies to disseminate information throughout the network, the backbones of adaptive

diffusion networks were laid out [4–6, 60, 92], and they began to popularize.

7

2.3. Diffusion strategies consolidate and are extended

Diffusion strategies soon became the most widely used protocol in adaptive sensor networks [1–6]. From

this point on, much of the research done on adaptive sensor networks focused on them – either expanding

their methods to other fields of the distributed signal processing area, or attempting to address some of

their limitations. For example, despite their advantages over centralized approaches and other distributed

schemes, diffusion networks may require a high number of communications. For this reason, over the

2010s decade, several techniques were proposed to reduce the energy consumption associated with the

communication processes. Some aimed to reduce the amount of information sent in each transmission [100–

108], whereas others shut links off according to selective communication policies [109–117]. Last but not

least, there is a group of solutions known as censoring techniques. They seek to cut the transmission from

certain nodes to any of their neighbors [118–128], hence allowing censored nodes to turn their transmitters

off. This saves energy and reduces the amount of information used in the processing [120, 121]. The search

for efficient mechanisms that reduce the energy consumption associated with the communication between

nodes while preserving the performance of adaptive diffusion networks is a topic that continues to inspire

the distributed signal processing community to this day [106–108, 124, 125, 127–130].

Meanwhile, other works sought to investigate the impact of some forms of uncertainty on the behavior

of adaptive diffusion networks, which may be inevitable in practical implementations. These uncertainties

included changes in the network topology during the operation of the adaptive algorithms [109, 111], random

link failures, random data arrival times, and agents turning on and off randomly [131–133]. Since these effects

are asynchronous in nature due to their randomness, networks where these occurrences can be observed were

named as asynchronous networks in the literature [1, 3, 131–133].

Furthermore, from the mid 2010’s onward, extensions of adaptive diffusion networks began to be pro-

posed. For instance, the topic of multitask networks received considerable attention from 2014 onward [7–18].

These networks can be seen as a generalization of the solutions that had been previously studied, which,

in the multitask literature, are named as single-task networks for distinction. In contrast with single-task

solutions, the multitask approach considers a network of nodes that do not share the same exact objective,

but rather have overlapping (albeit distinct) estimation interests [10]. Hence, there are multiple parameter

vectors to be inferred simultaneously and in a collaborative manner [9]. This situation is oftentimes ob-

served in distributed temperature estimation problems where the parameters that determine the evolution

of temperature over time vary in space [9]. Other examples of applications include target tracking problems

in which there are multiple targets to be tracked simultaneously, and spectrum sensing over cognitive radio

networks, for instance [9, 10].

Around the same period, diffusion networks with nonlinear processing began to be proposed. In particu-

lar, solutions based on kernel methods became popular in the diffusion networks literature [19–23]. Some of

the first solutions of this kind can be viewed as an extension of kernel adaptive filters [134–136] to the con-

8

text of diffusion networks [19–21]. Kernel adaptive filters map the input signal to a vector space of higher

dimension (typically through a nonlinear mapping function), where a linear adaptive filter is employed.

Thus, nonlinear filtering can be achieved by the use of linear techniques on the mapped signals. Moreover,

by making use of the kernel trick [134, 136], kernel adaptive filters typically do not calculate the mapping

of the inputs explicitly, which saves computational power. Evidently, the utility of these solutions stems

from the fact that nonlinear functions are oftentimes better models for physical phenomena than linear

ones. This also holds in many sensor networks applications. One possible example is that of environmental

monitoring, where a network of sensors is deployed to observe an oftentimes nonlinear diffusion field [137].

Thus, kernel-based adaptive networks seek to address the needs of applications where the signal processing

must be simultaneously nonlinear and carried out in a distributed manner [19–23].

The aforementioned research topics are not isolated from each other. For example, there have been

proposals of multitask kernel networks [138] and multitask asynchronous networks [139] in the literature.

Finally, one cannot review the mid 2010’s in the adaptive diffusion networks literature and not mention one

of the main milestones achieved by the area around this time. In 2015, the first large-scale journal dedicated

specifically to the subject was launched: the IEEE Transactions on Signal and Information Processing

over Networks [140], which covers topics such as distributed algorithms for filtering, detection, estimation,

adaptation and learning, model selection, data fusion, diffusion or evolution of information over networks,

applications of distributed signal processing, among others.

2.4. Other Advances Span Correlated Tools

Evidently, while the theory and many solutions of adaptive diffusion networks were being developed, tech-

nological and scientific advances in other areas continued to unfold. During this period, smartphones stormed

the mobile phone market and the number of mobile users across the globe skyrocketed [141], social media were

developed and rapidly grew [142], big data and data mining applications became commonplace [143, 144],

and the technologies that enable 5G communication networks were continuously developed [145], facilitating

the implementation of the internet of things (IoT) in many applications [146, 147]. Moreover, in this period,

the usage of WSN’s in practical applications was heavily explored. Examples include, e.g., wireless body area

networks (WBANs) [148, 149], which rose as appealing solutions in, e.g., healthcare and security applica-

tions [150]. Among these, one could mention for instance the wireless electroencephalography (EEG) sensor

networks (WESNs), which were proposed for neuromonitoring applications [151]. Furthermore, WSN’s were

also employed in agriculture [152], speech, video and image enhancement, spectrum sensing, power system

state estimation, among many other applications (see, e.g., [153] and the references therein).

Due to the inherent connectivity between the elements that comprise these technologies, they share an

interesting trait: they can be well represented by graphs. For example, in the context of social networks,

each user can be represented by a node, and the existence of an edge connecting two nodes can be used to

9

indicate that they are friends on that platform [154]. Analogously, each end user in a communication network

can be represented by a node, and an edge linking two users could indicate that they are geographically

close to one another, and, therefore, the power of the signal received by them must be similar [155].

As a result, a field of research emerged and quickly attracted widespread attention in the signal processing

community: the field of graph signal processing [28–31, 154–161]. Broadly speaking, GSP techniques seek to

explore the relationships between elements of a networked system and from (potentially partial) observations

collected by them to extract useful information. In some cases, the goal is to reconstruct a certain signal

defined over the graph (also known as graph signal in the literature) [30, 31, 155], in others, it is to infer

the underlying graph topology from the resulting graph signal [157–159], and in others, it is even to identify

the system that dictates the dynamics of a signal defined over a spatially distributed set of sensors [28, 29].

The field of GSP has grown to become a vast research area, with many variations and nuances. Since in this

paper our focus lies on adaptive diffusion networks, we restrict our review to the topics of GSP that have a

clear interface with those networks.

For example, the solutions aimed at system identification for graph signals usually assume that there is

a graph shift operator [154] that influences the behavior of a signal of reference over time. Hence, both the

topology of the network and the temporal factor play a major role in how the reference signal unfolds at

each node. For this reason, this approach has enjoyed success in meteorology applications [28]. Furthermore,

these solutions also took heavy inspiration from adaptive diffusion networks. In fact, they explicitly sought

to develop diffusion versions of classical adaptive filtering algorithms for use in GSP [28, 29]. Consequently,

these solutions bear striking similarities to many previous diffusion adaptive algorithms, despite the obvious

differences that arise from the GSP context. The use of adaptive diffusion strategies in the GSP field

represents yet another reason why these strategies are as relevant today as they have ever been. In fact,

they have become commonplace in papers of the area [26, 28–31]. This is only one of the factors that makes

them such an interesting subject.

More recently, some strategies have been proposed for the distributed training of neural networks [162–

165]. The reasoning behind this concept is that, even when the training of neural networks is done offline, it

may be advantageous to carry it out in a distributed manner if the scale of the problem is too large or if there

are privacy concerns involved. In the former case, hardware and software limitations can make it infeasible

for one single device to handle massive amounts of data. At the same time, the growing availability of devices

offers an opportunity for distributing the learning task among many agents. In the latter case, sending a great

deal of raw sensitive information to a single processing unit may be undesirable due to security concerns.

Examples include, e.g., data related to personal behaviors or medical conditions [163, 166]. Yet, we would

still like to train the network using all the data available in these cases. Furthermore, it has been shown that

diffusion strategies can escape from saddle points in non-convex optimization problems [167, 168]. Since

neural networks oftentimes struggle with the existence of local minima in their respective loss functions, this

10

is another reason why the topic has a great potential to be explored in future research.

These are some of the primary concerns of the field of Federated Learning [166, 169–173], a promising

and relatively young research area – its name was coined in a 2016 paper [170] –, which emerged in the

wake of the same technological developments previously mentioned, i.e., the increasing ubiquity of smart

devices and the auspicious promise of IoT. In the past few years, it has attracted a growing interest in

the machine learning and signal processing communities. In Fig. 2, we depict a timeline with some of the

main developments in wireless communication technology, network applications, and some milestones for

the adaptive diffusion networks and related fields.

Release of the
Bluetooth

technology [42]

Release of Wi-
Fi [43, 44]

Release of the
IEEE

Transactions on
Signal and
Information

Processing Over
Networks [140]

The diffusion LMS
algorithm is

proposed [60, 92],
marking the first

appearence of
adaptive diffusion

networks in the
literature

Foundation of
some of the first

social media
websites, such as

MySpace,
Facebook and

Twitter

First
commercial 3G
networks [45]

Deployment
of the first-

release Long
Term

Evolution
standard of

4G networks

Publication of
some

early papers
on Graph

Signal
Processing,

e.g., [154,156]

First commercial
deployments of

5G networks

Release of the
EURASIP
Journal on

Wireless
Communications

and
Networking [61]

For the first time,
there are more

devices connected
to the internet than

people; this was
later labeled the

birth of the Internet
of Things [146]

The
expression
Federated
Learning is
coined [170]

Figure 2: A timeline with several of the main events related to wireless communication technology and network applications,

as well as some milestones of the adaptive diffusion network and graph signal processing fields.

Overall, many research topics remain open in the area of distributed learning. Many possible appli-

cations are becoming more viable, and the growing potential of the correlated fields is deemed promising.

Efficient techniques for reducing the communication costs in adaptive diffusion networks and for sampling

over diffusion GSP solutions continue to inspire the search for novel solutions, as well as the extension of

these networks to more complex and challenging scenarios. For this reason, it is only fair we devote more

time and space to their understanding.

Notation. We use lowercase normal font letters to denote scalars, boldface lowercase letters for vectors,

boldface uppercase letters for matrices, and calligraphic fonts for sets. To simplify the arguments, we assume

real data throughout the paper. In Tab. 1, we provide a summary of the notation used in the paper.

11

Table 1: Summary of the notation used in the paper.

Symbol Meaning

rXsij pi,jq-th entry of the matrix X

p�qT Transposition operator

p�q� Complex conjugate

IN N �N identity matrix

1N N � 1 vector whose entries are all equal to 1

0N N � 1 vector whose entries are all equal to 0

Et�u Mathematical expectation

∥�∥ Euclidean norm

| � | Cardinality if the argument is a set, or absolute value

if the argument is a scalar

X {Y Difference between the sets X and Y
expp�q Exponential function

3. Adaptive Diffusion Networks

Let us consider a collection of V labeled nodes or agents. As illustrated in Fig. 3, in most adaptive

diffusion network applications we consider that each node k, k � 1, � � � , V , has access at each time instant

n to an input signal ukpnq and to a desired signal dkpnq, modeled as [1–5]

dkpnq � uT
kpnqwo � vkpnq, (1)

where wo and ukpnq are M -length column vectors that represent respectively an unknown system and the

input vector at node k. In particular, ukpnq oftentimes represents a regressor vector formed by the last

M samples of the input signal ukpnq, i.e., ukpnq � rukpnq ukpn � 1q � � � ukpn �M � 1qs, although this is

not necessarily the case in every application [1–3]. Furthermore, vkpnq is the measurement noise at node

k, which is assumed to be independent and identically distributed (iid), zero-mean with variance σ2
vk
, and

independent of the other variables.

The goal of the agents is to obtain an estimate w � rw0, � � � , wM�1sT of wo. To this end, it is customary

to introduce a cost function J such that [2]

wo � argmin
w

Jpwq. (2)

For this reason, the coefficient vector wo is oftentimes referred to as the “optimal system” in the literature.

One of the most widely adopted cost functions is the mean-squared error (MSE). In the case of single-agent

12

Figure 3: A collection of nodes with their respective desired signals d and input signals u.

learning, this cost function is given by Jpwq�Etrdpnq�uTpnqws2u, where we have dropped the index due to

the existence of only one agent, and is used in the derivation of many classical adaptive filtering algorithms,

such as those of the LMS and RLS types, for example. Since we are interested in working with the multiple

agents that form the network, we introduce a local cost function Jkpwq for each node k, which is then given

by [2, 74]

Jkpwq�Etrdkpnq�uT
kpnqws2u. (3)

The first idea that may come to mind in face of (3) is to minimize Jkpwq in each node k by implementing

a stochastic gradient descent algorithm in each agent using only the locally available information. Following

this approach, if we denote the gradient of Jk with respect to w by [75]

∇wJkpwq � BJkpwq
Bw �

�BJkpwq
Bw0

, � � � , BJkpwqBwM�1

�T
, (4)

and its approximate value evaluated at node k by p∇wJkrwkpn�1qs, we get, for k � 1, � � � ,V , [2]

wkpnq � wkpn� 1q � µk
p∇wJkrwkpn� 1qs, (5)

where µk is a step size and wkpnq the coefficient vector at node k. The expression for p∇wJkrwkpn � 1qs
depends on the approximations made in the stochastic descent algorithm. For example, following an LMS

approach, (5) could be recast as [2, 74]

wkpnq � wkpn� 1q�µkekpnqukpnq, (6)

where

ekpnq � dkpnq � uT
kpnqwkpn�1q (7)

13

is the estimation error.

We should notice that in (5) we are not assuming any form of communication between the different

nodes. In fact, each node is acting as an individual adaptive filter, and they are not working together as a

network. For this reason, this approach is referred to as the non-cooperative setup in the literature [1–5].

Although this solution can be effective in many situations, if the nodes have the ability to communicate

with one another, not doing so can be seen as a waste of potential. After all, it is expected that the sharing

of data between the nodes should improve their performances, since this means that more information is

being used in the update process.

Hence, we now seek to analyze configurations in which the nodes cooperate. To do so, we describe the

objective of the network as a whole by the optimization problem [1–5]

min
w

Jglobalpwq�min
w

V̧

k�1

Jkpwq. (8)

Let us now assume that the nodes can communicate with one another through a given topology. For

any node k, the subset of nodes it can communicate with (including node k itself) is called its neighborhood,

which is denoted by Nk. Furthermore, the nodes that it can communicate with are called its neighbors. An

example is depicted in Fig. 4. It is important to note that a common assumption in the literature is that

the network is strongly connected, i.e., given any pair of nodes k and i, there is a path from node k to node

i and vice-versa, and at least one node has a self-loop [1–3].

Figure 4: A network of nodes with their respective desired signals d and input signals u and a predefined topology. In particular,

the neighborhood of node k is highlighted.

In this scenario, if we employ a stochastic gradient approach to solve (8), the cooperation between the

14

nodes can be enforced by adopting [1–3]

$''&
''%
ψkpnq � wkpn� 1q � µk

p∇wJkrwkpn� 1qs
wkpnq �

¸
iPNk

cikψipnq,
(9a)

(9b)

where tciku are convex combination weights satisfying the following set of conditions:

$''''&
''''%

cik�0 if i R Nk¸
iPNk

cik�1

cik¥0, @i,k.

(10a)

(10b)

(10c)

Evidently, (10a) incorporates the constraints related to the network topology. On the other hand, (10b) is

used to ensure that the combined estimates wkpnq are unbiased estimators of wo.

Eqs. (9a) and (9b) are known as the adaptation and combination steps, respectively of adaptive diffusion

networks. The order of (9a) and (9b) characterize a configuration that is known as adapt-then-combine

(ATC) in the literature [1–6]. One could also switch their order: in this case, the adaptation step precedes

the combination one, leading to the combine-then-adapt (CTA) configuration, given by

$'&
'%

wkpn� 1q �
¸
iPNk

cikψipn� 1q

ψkpnq � wkpn� 1q � µk
p∇wJkrwkpn� 1qs.

(11a)

(11b)

It is worth mentioning that the ATC protocol is the one most commonly adopted in the literature [100,

102, 106, 109, 111, 113–115, 118–121]. For example, the ATC diffusion LMS (dLMS) algorithm is given

by [1–5] $'&
'%
ψkpnq�wkpn� 1q�µkekpnqukpnq
wkpnq �

¸
iPNk

cikψipnq.
(12a)

(12b)

For convenience, we also provide a pseudo-code representation of the ATC dLMS as Algorithm 1 next.

Besides the dLMS algorithm, diffusion versions of other adaptive algorithms were proposed in the liter-

ature, such as diffusion RLS [6, 175–177], diffusion Normalized LMS (dNLMS) [109, 178, 179], the diffusion

Affine Projection Algorithm (dAPA) [180], among others [96, 110].

Eqs. (11) and (9) are the basis for diffusion adaptive networks, and form the groundwork for many

diffusion solutions that were proposed over the following years. They allow us to attain the good perfor-

mance of centralized solutions in a fully distributed way, without many of their limitations. The difference

between the diffusion strategies and the non-cooperative approach described by (5) lies in the existence of

the combination step, which allows the knowledge gained by a node to disseminate throughout the whole

15

Algorithm 1 The ATC dLMS Algorithm of Eq. (12).

1: % Initialization - for each node k � 1, � � � , V , select a step size µk and combination weights cik satisfy-

ing (10) for i � 1, � � � , V , and set ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: % Adaptation Step

4: for k � 1, � � � , V do

5: Update ukpnq
6: % Calculating the estimation error:

7: ekpnq Ð dkpnq � uT
k pnqwkpn� 1q

8: % Adapting the local estimate ψkpnq:
9: ψkpnq Ð wkpn� 1q � µkekpnqukpnq

10: end for

11: % The nodes transmit their local estimates ψ to their neighbors

12: % Combination Step

13: for k � 1, � � � , V do

14: % Forming the combined estimate wkpnq:
15: wkpnq Ð 0M

16: for i P Nk do

17: wkpnq Ð wkpnq � cikψipnq
18: end for

19: end for

20: end for

network, enabling a better performance. It is worth noting, nonetheless, that the potentially high number

of communication processes between the nodes can pose a challenge in terms of bandwidth requirements

and especially energy consumption – which will be addressed in Sec. 4.

There is a generalized form of the diffusion strategies of (9) and (11) that is worth mentioning. In

addition to the exchange of local estimates ψi prior to the combination step, we could also allow each node

to share its approximate gradient p∇wJirwipn�1qs before the adaptation step. Then, each node k can perform

a combination of these approximate gradients in the update of ψkpnq. Following the ATC configuration,

this leads to [1] $'''&
'''%
ψkpnq�wkpn�1q�µk

¸
iPNk

bik p∇wJirwkpn� 1qs

wkpnq �
¸
iPNk

cikψipnq,

(13a)

(13b)

16

where bik are combination weights satisfying (10). Evidently, an analogous version of (13) can be obtained

for CTA. These schemes are sometimes referred to as diffusion strategies with enlarged cooperation [1, 3].

It should be noted that (13) implies that the nodes communicate twice per iteration: first, before (13a) is

executed, each node i must share its local data tdipnq,uipnqu with its neighbors to enable the calculation ofp∇wJirwkpn � 1qs. After (13a) is carried out, they must then share their local estimates ψ before (13b) is

run. Since this can be very costly from an energetic point of view, the diffusion strategies of the forms (9)

and (11) are more common in the literature, see e.g. [100, 102, 106, 109, 111, 113–115, 118–121].

It can be shown that the stability of the standard diffusion LMS algorithm is ensured in the mean sense

if each step size µk satisfies [2, 5]

0 µk 2

λmax

�
Ruk

� , (14)

where λmaxp�q denotes the maximum eigenvalue, and Ruk
� EtukpnquT

k pnqu is the autocorrelation matrix

of the input signal at node k. There is a clear analogy between (14) and the stability condition for a single

LMS adaptive filter (see, e.g., [74, 75]). In fact, adaptive diffusion networks inherit many of the traits of

the adaptive filters that inspired them. Typically, the greater the step sizes µk, the faster the convergence

rate of the network in the transient phase. After a while, the performance of the network stabilizes and a

steady state is achieved. In general, the greater the step sizes, the worse the steady-state performance [1–3].

This will become clear in Sec. 4.2, when we introduce some performance indicators and present theoretical

predictions for them based on the step sizes, filter length M , and combination weights. Moreover, due to

their adaptive nature, the algorithms of Eqs. (9) and (11) are able to track changes in the environment. In

this regard, it is interesting to notice that this is only possible if the step sizes do not diminish indefinitely

over time – which was a trait of the first consensus strategies that proved detrimental to their usage in

adaptive networks.

As is known since the inception of the first adaptive filtering algorithms [74, 75], adaptation is a powerful

feature for online learning. The ability to track changes in the environment, along with the fact that we do

not need to have prior knowledge on the statistics of the signals involved, is one of the many features that

made the extension of adaptive signal processing techniques to WSN’s so appealing.

Besides the standard diffusion strategies shown so far, modified versions of these schemes continued to

be proposed over the years with different purposes. Next, we mention a few of these modified diffusion

protocols. For instance, a group of adaptive algorithms for diffusion networks was proposed in [181]. These

algorithms sought to improve the robustness of the networks in a scenario where nodes can fail and the

data collected are very noisy. To this end, each node projects its combined estimate onto a hyperslab or a

halfspace, and then uses the latest q projections in the adaptation. By adopting cost functions common in

the robust statistics field, such as a modified version of the Huber cost [182], the combined estimates can

be projected on halfspaces that simultaneously reduce the MSE and mitigate the effect of outliers in the

17

data, which may be present due to malfunctioning nodes or noisy measurements. Other robust diffusion

algorithms based on the Huber cost function were also proposed in [183, 184]. Furthermore, several robust

diffusion techniques have also been proposed to deal with errors-in-variable (EIV) models based on the total

least-squares approach [185]. EIV models can be used to represent, e.g., situations in which the input signal

is subject to noise, as well as the desired signal. Representative examples include, e.g., the solutions proposed

in [186–190]. The interested reader can find a review focused primarily on robust diffusion solutions in [39].

In addition to the distributed estimation algorithms that have been discussed so far, diffusion-based

detection solutions have also been proposed [191–194]. In these cases, the goal of each agent in the network

is to provide a decision about the state of a system, which can vary over time. It was shown in [191] that, by

adopting a similar strategy to the diffusion schemes for estimation, one can achieve the same performance

of a centralized stochastic-gradient approach in terms of detection error exponents. Thus, despite their

peculiarities, these solutions consist in i) updating the estimates about the current state of the system

locally at each node, and ii) enabling the agents to exchange and combine their estimates [191–194].

Furthermore, one could mention the sparse diffusion solutions [177, 195–198], which aim to take advan-

tage of the inherent sparsity of many signals and system models, i.e., the presence of only a small number

of nonzero entries. When the optimal system wo is sparse, these solutions present a faster convergence rate

and can outperform the standard diffusion solutions of (11) and (9).

Lastly, it is worth noting that, in the solutions examined thus far, the raw data are distributed among

the nodes, since each node k has access to dkpnq and ukpnq. However, other solutions have been recently

proposed in which certain features are first extracted from the available data, and it is the information from

these features that is distributed throughout the network, rather than the unprocessed data. Thus, if we

aggregated the information from the features into a feature vector, each node would only have access to a

certain block of entries in that vector. This approach can be adopted in scenarios in which there are privacy

concerns, for example, or in which the data are already collected in a distributed manner, as is the case in

spatial filters and sensor array processing. Examples of these solutions include, e.g., [199–201]. In particular,

it is worth noting that in [199] a diffusion-based approach is adopted to address this scenario in which the

features are distributed among the nodes, in a similar manner to Eq. (9).

3.1. The selection of the combination weights and the steady-state performance

There are several possible rules for the selection of tciku, which can play a significant role in the behavior

of diffusion adaptive networks. Among the most widely adopted strategies found in the literature are the

Uniform or Averaging [202], Laplacian [67], Metropolis [67, 203, 204], Maximum-Degree [67] and Relative

Degree [6] rules. For ease of reference, they are summarized as rules 1–5 in Table 2.

Although it is not the goal of this paper to provide an in-depth theoretical analysis of each solution

that we will review, it may be interesting to compare the performances of the non-cooperative and diffusion

18

Table 2: Summary of the some rules for the selection of the combination weights most widely adopted in the literature.

Name Equations

1) Uniform or Average [202] cik �

$''&
''%

1

|Nk| , if i P Nk

0, otherwise

2) Metropolis [67, 203, 204] cik �

$''''''&
''''''%

1

maxt|Nk|,|Ni|u , if i P Nk{tku

1�°iPNk
cik, if i � k

0, otherwise

3) Relative-Degree [6] cik �

$''&
''%

|Nl|°
iPNk

|Ni| , if i P Nk

0, otherwise

4) Laplacian [67] cik �

$''''''&
''''''%

1

maxi�1,��� ,V |Ni| , if i P Nk{tku

1� |Nk| � 1

maxi�1,��� ,V |Ni| , if i � k

0, otherwise

5) Maximum-Degree [82] cik �

$'''''&
'''''%

1

V
, if i P Nk{tku

1� |Nk| � 1

V
, if i � k

0, otherwise

6) Hastings [205] cik �

$''''''&
''''''%

σ2
vk

maxt|Nk|σ2
vk
,|Ni|σ2

viu
, if i P Nk{tku

0, if i R Nk

1�°iPNk
cik, if i � k

7) Relative Variance [206–208] cik �

$'''&
'''%

pσ2
viq�1°

iPNk
pσ2

vi
q�1

, if i P Nk

0, otherwise

8) Adaptive Combination

Weights (ACW) [206]

pσ2
ikpnq�p1�νkqpσ2

ikpn� 1q�νk∥ψipnq�wkpn� 1q∥2

cikpnq �

$''&
''%

rpσ2
ikpnqs�1°

iPNk
rpσ2

ikpnqs�1
, if i P Nk

0, otherwise

approaches. Thus, we will present some of the main results of the analysis on these solutions without

extensively deriving them. For a detailed theoretical study of the techniques addressed in this paper, we

suggest the reader refers to [1–3] and references therein. For simplicity, we will focus on implementations of

19

the LMS type in the form of (6). Furthermore, we limit our attention to a performance indicator commonly

adopted in the adaptive networks literature, the network mean-square deviation (NMSD), given by [1]

NMSDpnq � 1

V

V̧

k�1

Et∥rwkpnq∥2u, (15)

where we have introduced the weight-error vector

rwkpnq � wo �wkpnq. (16)

Since the non-cooperative case (5) corresponds to a situation in which there are V adaptive filters running

separately, the NMSD defined by (15) will be equal to the average of the MSDs of each individual filter.

This is reasonable, since they act as isolated agents. For sufficiently small step sizes µ, it can be shown that

the MSD of a single LMS adaptive filter is given by [74, 75]

MSDkp8q � µkM

2
σ2
vk
, (17)

where MSDkpnq � Et}rwkpnq}2u. For simplicity, let us now assume that the step sizes µk are the same for

every node k, i.e., µ1�� � ��µV �µ, since this will make the comparison with the other strategies easier to

understand. In this case, summing the right-hand side of (17) for k � 1, � � � , V leads to [1–3]

NMSDncoopp8q � µM

2

�
� 1

V

V̧

k�1

σ2
vk

�

. (18)

In contrast, assuming that the input signals have the same positive definite autocorrelation matrix Ruk

at every node k, i.e., Ruk
� Ru ¡ 0 for k � 1, � � � ,V , it can be shown that, when the diffusion LMS

algorithm is implemented with Uniform or Metropolis combination weights, its steady-state NMSD can be

well approximated by [1, 3]

NMSDunif.
diff. p8q � NMSDmetr.

diff. p8q�
µM

2V

�
� 1

V

V̧

k�1

σ2
vk

�

. (19)

We remark that the difference between Eqs. (18) and (19) lies in the presence of a factor of V in the

denominator of the fraction outside the parentheses in (19), which is absent in (18). Hence, in comparison

with the non-cooperative scheme, the NMSD is reduced by a factor of 1
V . Furthermore, if cik � cki, for any

k and i, it can be shown that the steady-state NMSD of the diffusion strategies is similar to that of the

centralized and incremental approaches [1, 3, 205].

As can be seen from Table 2, the aforementioned rules use information from the network topology to

determine the combination weights. As evidenced by (19), this can already lead to a significant improvement

in performance in comparison with the non-cooperative scheme. However, the network topology is evidently

not the only factor that influences the performance of the diffusion algorithms. If we incorporate more

20

information into the tciku, we should be able to assign greater weights to the nodes that are somehow

expected to perform better. For example, it is intuitive that we should privilege nodes that are subject to

lower noise powers in the combination step, since they are expected to present the more refined local estimates

ψ. For this reason, some policies that incorporate information from the noise profile across the network

were proposed. One possible example is the Hastings rule [1, 3, 205]. Assuming that the noise variances

σ2
v1 , � � � , σ2

vV are not all equal, i.e., at least one σ2
vk

is different from the others, the Hastings weights can be

obtained by seeking to minimize the Network Excess MSE (NEMSE), which is given by [1, 3, 205]

NEMSE � lim
nÑ8

V̧

k�1

Etrekpnq � vkpnqs2u. (20)

Incorporating the constraints of (10), this leads to an optimization problem that can be solved using a

procedure proposed by Hastings [204, 209], thus yielding Rule 6) of Table 2 [205]. It is easy to see from the

table that the Hastings rule assigns greater weights to the least noisy neighbors, which is in accordance with

our expectations. If all the nodes are subject to the same noise power, i.e., σ2
vk
� σ2

v for k � 1, � � � ,V , the

Hastings weights coincide with the Metropolis ones.

It can be shown that, if the Hastings weights are used, the diffusion LMS generally outperforms the same

strategy with Uniform or Metropolis weights, i.e., [1, 3, 205]

NMSDHastings
diff. p8q NMSDunif.

diff. p8q NMSDncoopp8q. (21)

One important aspect of the Hastings rule is that it requires the a priori knowledge of the noise variances

across all nodes, i.e., σ2
v1 , � � � , σ2

vV
. However, this information may not always be known beforehand. For

this reason, several adaptive combination weights (ACW) algorithms were proposed for the selection of the

combination weights in an adaptive manner, while seeking to incorporate information from the noise profile

in the network. Some early examples of this strategy were proposed in [174] and [206].

For instance, the algorithm of [206], which was later analyzed in more detail in [207], seeks to minimize

TrpCTRvCq subject to (10), where Trp�q denotes the trace of a matrix, C is a V � V matrix aggregating

the combination weights, such that rCsik � cik, and Rv is a diagonal matrix whose entries are equal to

σ2
v1 , � � � , σ2

vV . Hence, it incorporates information from the noise power profile directly into the combination

weights, similarly to the Hastings rule. It can be shown that the solution to this optimization problem leads

to Rule 7) of Table 2 [206, 207], which is named as relative variance rule in the literature [206–208]. In

order to eliminate the need for a priori knowledge of the noise powers, in the algorithm of [206], each node k

implements Rule 8) of Table 2, where 0 νk 1 for k�1, � � � ,V [206] is a parameter to aid in the estimation

of the noise variance. Oftentimes, νk � 0.2 is adopted in the literature [118, 206, 208]. The improvement

in NMSD brought by the adoption of this adaptive algorithm for the selection of the combination weights

comes at the expense of a slower convergence rate in comparison with static combination rules [208, 210].

21

Furthermore, it has been noted that if the nodes use different step sizes µk, the algorithm of [206] can

privilege the slower nodes in the combination step [211], and that the performance of the algorithm may

be affected by the initial values assigned to each pσ2
ik [212]. Nonetheless, due to its relative simplicity and

the improvement in steady-state performance that it produces, the algorithm of [206] is widely used in the

literature [113, 118, 120, 205, 207, 210, 212, 213].

Many other techniques were proposed over the years for the adaptive selection of the combination weights.

As mentioned previously, in [213], the tciku are updated at every iteration following the APA algorithm or

a LS method in order to minimize instantaneous approximations of the MSE at node k and time instant n.

In [208] and [210], adaptive algorithms were proposed to take advantage of the improvement in steady-

state NMSD due to the adaptive combination weights while seeking to mitigate the deterioration in the

convergence rate that arises from its adoption. For this purpose, they implemented switching mechanisms

that adapt the combination weights in steady state, but lead to the adoption of static rules in the transient.

In [212], an algorithm for the selection of the combination weights was proposed to minimize the steady-state

NMSD based on the consensus propagation technique, which is typically used for averaging results across

a network of agents [214], and was shown capable of outperforming the algorithm of [206]. In [215], an

algorithm for the selection of the tciku that takes the communication channel distortion into consideration

was proposed. These are only a few of the solutions that can be found in the literature, and although

it is out of the scope of this paper to provide an exhaustive list, the reader is encouraged to consult,

e.g., [211, 216–218] and the references therein.

3.2. Simulations – Exploring the Theoretical Results

In this subsection, we provide some simulation results to illustrate the main arguments made so far.

We consider the network of Fig. 5, which has V � 20 nodes, and was generated randomly according to

the Erdös-Renyi model [28]. The average neighborhood size throughout the network is 1
V

°V
k�1 |Nk| � 4.7.

Furthermore, we consider distributed implementations of the LMS algorithm.

The simulation results were obtained over an average of 100 independent realizations in a system iden-

tification setup. We set the length of both the filter and the optimal system wo to M � 64. Moreover,

the coefficients of wo are generated randomly following a uniform distribution in the range r�1,1s, and

later normalized so that wo has unit norm. We consider a white Gaussian distribution for ukpnq with zero

mean and unit variance. Lastly, we consider a white Gaussian distribution for vkpnq with zero mean and

a different noise variance σ2
vk

for k�1, � � � ,V , drawn from a uniform distribution in the range r10�3,10�2s.
As a performance indicator, we use the NMSD given by (15).

In order to validate (18), (19), and (21), in Fig. 6, we present the steady-state NMSD (in dB) obtained in

the simulations considering the non-cooperative LMS strategy of (5) and the ATC dLMS of (9), respectively.

For the latter, we consider the Metropolis rule, as well as the ACW algorithm depicted in Table 2. In all

22

Figure 5: Network used in all simulations with synthetic data. The neighborhood of node 1 is highlighted in red.

cases, we employ the same step size µk � µ for every node k, k � 1, � � � , 20. Moreover, as a benchmark, we

also consider a centralized solution in which a single unit employs the data from all of the nodes to adapt

its model, given by

wpnq � wpn� 1q � µ � 1
V

V̧

k�1

rdkpnq � uT
k pnqwpn� 1qsukpnq.

The results are presented for different values of µ in the range r10�4, 10�2s. We considered a stationary

environment and 120 � 103 iterations per realization. The results presented were obtained by calculating the

average NMSD during the last 24 �103 iterations of each realization, after the algorithms have converged. In

addition to the simulation results, we also show the theoretical steady-state NMSD levels obtained from (18)

and (19), which are presented in dashed lines.

We can observe from Fig. 6 that, for every value of µ, the non-cooperative strategy is outperformed

by the cooperative schemes, as expected. Furthermore, the simulation results match well with Eqs. (18)

and (19), especially for lower values of µ. This is reasonable, since (18) and (19) were obtained under the

assumption of small step sizes. As µ increases, the simulation results for the non-cooperative and diffusion

strategies deteriorate progressively in comparison with the theoretical predictions. Finally, we remark that

the diffusion strategy with ACW clearly outperforms all other techniques for µ ¡ 7 � 10�4. This is in

accordance with (21), if we take into account the fact that ACW aims at implementing the Hastings weights

of Rule 7) of Table 2 without prior knowledge of the noise variance in the network. For lower values of µ,

the difference in performance entailed by the adoption of ACW is marginal.

From Fig. 6, we can see that the adoption of small step sizes leads to lower steady-state levels of NMSD.

On the other hand, this also slows down the convergence rate. To illustrate this, in Fig. 7 we show the

NMSD along the iterations obtained with the same techniques used in the simulations of Fig. 6, considering

two values for the step sizes: µ � 10�3 in Fig. 7(a) and µ � 10�2 in Fig. 7(b). We consider 50 � 103

23

10−4 10−3 10−2

µ

−50

−45

−40

−35

−30

−25

−20

−15

N
M

S
D

(∞
)

10−4 10−3 10−2

µ

−50

−45

−40

−35

−30

−25

−20

−15

N
M

S
D

(∞
)

Non-coop.

Centralized

Diff. (Metropolis)

Diff. (ACW [206])

Theoretical Non-coop. (18)

Theoretical Diffusion Uniform (19)

Figure 6: Steady-state NMSD (in dB) versus step size µ for various strategies, as well as the theoretical results from (18)

and (19).

iterations in each realization and, to simulate an abrupt change in the environment, in the middle of each

experiment we flip the vector wo. From Figs. 7(a) and (b) we can also see that the diffusion strategy with

ACW presents a slightly slower convergence rate in comparison with the same technique with Metropolis

weights. Nevertheless, with a step size of µ � 10�2, the diffusion algorithm with ACW achieves a noticeably

lower level of steady-state NMSD in comparison with the case in which Metropolis weights are employed,

as can be seen from Fig. 7(b).

4. Restricting Communication Policies

From the previous discussion, we observe from Eqs. (18), (19) and (21) that the exchange of information

between the nodes can reduce the steady-state NMSD by a factor of 1
V or more. Unfortunately, allowing the

permanent cooperation between the nodes can be challenging in practice. This is because energy consump-

tion is oftentimes the most critical constraint in WSN’s, and the communication between different agents

is frequently the most energy-demanding task associated with the learning process. Furthermore, a high

number of communication processes between the nodes demands the allocation of sufficient bandwidth for

the exchange of information between them. For this reason, several solutions were proposed in the litera-

ture over the years to seek a compromise between the energy consumption and the benefits of cooperation

to the performance. They allow the nodes to communicate with one another, but attempt to restrict the

24

0 10 20 30 40 50

Iterations (×103)

−40

−30

−20

−10

0

10
N

M
S

D
(d

B
)

(a) µ = 10−3

Non-coop. Centralized Diff. (Metropolis) Diff. (ACW [206])

0 10 20 30 40 50

Iterations (×103)

(b) µ = 10−2

Figure 7: NMSD along the iteration obtained with various strategies, considering two different step sizes.

communication processes across the network in diffusion strategies. Although there is not an “official” dis-

tinction in the literature between these solutions, we classify them in three general categories: the packet

size reducing techniques, the link selection policies, and the censoring strategies, which we review in detail in

the following subsections. The goal of this section is not to provide an exhaustive review of every solution

proposed in the literature for restricting communication policies, but rather to showcase some of the main

ideas behind them, and to illustrate some of the most prominent characteristics that are common to most

of these solutions.

4.1. Packet Size Reducing Techniques

The packet size reducing schemes aim to reduce the amount of information sent in each transmission by

the nodes. Thus, by reducing the length of the messages, they enable a reduction in energy consumption and

bandwidth usage, since the energy associated with the transmission of a package oftentimes scales linearly

with its size in wireless communications [219, 220]. Examples of this strategy include, e.g., [100–108].

For instance, in [100], the authors propose to select L M entries of the local estimates ψ for transmission

at every iteration. For this purpose, they introduce an M�M entry-selection matrix ∆kpnq in each node

k, k� 1, � � � ,V . The matrix ∆kpnq is diagonal, and its elements are equal to 1 or 0. If r∆kpnqsm,m � 1,

the node k will send the m-th entry of ψkpnq to its neighbors. Otherwise, rψkpnqsm will not be sent, and

is replaced by the corresponding entry of the local estimate of the receiving node. Thus, following an ATC

strategy, (9b) is replaced with [100]

wkpnq�ckkψkpnq�
¸

iPNk{tku

cikt∆ipnqψipnq�rIM�∆ipnqsψkpnqu. (22)

25

In principle, each node should inform which entries it is sending to its neighbors. However, two methods

for the selection of the matrices ∆kpnq are suggested in [100] that eliminate the need for this additional

overhead. One of them consists in a stochastic approach in which the nodes use pseudorandom number

generators (PRNGs) for the entry selection process, and share their PRNG seeds with their neighbors once,

before the adaptation begins. The other approach consists in selecting the entries sequentially in a round-

robin manner over the time instants n. Thus, the entries are placed in M groups of size L such that each

entry is present in L groups, which are then ordered in a predetermined sequence. These groupings and their

sequence are the same across all nodes, which allows them to identify which entries they are receiving [100].

As one could expect, this reduction in data exchange leads to a deterioration in steady-state performance

in comparison with the standard diffusion procedure. The lower the value of L in comparison with M , the

higher the steady-state NMSD becomes. Thus, there is a trade-off between energy savings and performance.

This trait is not specific to the algorithm of [100], but rather common to most restrictive communication

policies. The goal of these procedures is to limit the amount of information transmitted across the network

while maintaining the performance of the standard diffusion schemes as much as possible.

Furthermore, many of the solutions that fit into this category seek to somehow compress the local

estimates before transmitting them [103, 104, 106–108]. For example, in [107, 108], the authors consider

an adapt-compress-then-combine protocol. In this solution, the compression stems from the usage of a

quantized version of the local estimate. This quantized estimate is initialized in an arbitrary manner at

n � 0, and then updated along the iterations with the usage of a certain compression operator. The choice

of this operator is up to the filter designer, with possible solutions such as, e.g., [221, 222]. Moreover, the

compression operator is applied to the difference between the current compressed estimate and the local

uncompressed one produced by the adaptation step. Then, the output of the compression operator is scaled

by a factor between zero and one, and added to the previous compressed estimate.

4.2. Link Selection Policies

As their name suggests, link selection policies seek to turn certain communication links on or off, according

to predefined criteria, in order to reduce the traffic of information throughout the network [109–117]. For

this, (9b) is replaced by

wkpnq�
¸

iPNkpnq

cikpnqψipnq, (23)

in which the neighborhood Nkpnq varies along the iterations due to the possible deactivation of the links.

In this case, the combination weights also change from one time instant to another, since (10a)–(10c) need

to hold at every iteration.

The possibility of deactivating communication links was first analyzed in [109], where networks with

time-varying topologies were considered. In that work, the availability of the communication links between

26

two neighboring nodes i and k is modeled as Bernoulli random variable with a success probability pik � pki.

Although the main goal of [109] was to analyze the behavior of the network with link failures occurring at

random, this idea was later widely employed as a benchmark for comparing the performance of link selection

policies. For example, building upon this concept, a mechanism was proposed in [111] for controlling the

probability of success of each link in an adaptive manner. In this solution, each node k assigns a probability

pmin ¤ pjkpnq ¤ pmax to each link associated with the nodes j P Nkpnq{tku, where pmin and pmax must be

selected by the filter designer. It is worth noting that pkkpnq � 1 for every n. The probabilities pjkpnq are
updated based on the performance gain associated with it and on the resource constraints of the network,

such as the amount of energy available at each node.

4.3. Censoring Strategies

Censoring strategies aim to prevent certain nodes from transmitting their local estimates to any of their

neighbors, enabling them to temporarily turn their transmitters off and, consequently, save energy [118–127].

Usually, it is assumed that the node k still receives the data from its uncensored neighbors even when it

does not send its own local estimate to them [118, 119, 124, 126, 127]. However, stricter versions in which

the nodes cut their communications completely when they are censored have also been proposed [119].

Generically, some of these techniques can also be described by (23) with the additional restriction that

cjkpnq � 0 for every node j P Nkpnq{tku if node k is censored at iteration n [118, 124]. Another approach

consists in assuming that the nodes can store the past local estimates from their neighbors [119, 127]. In

this case, (52b) can be interpreted as

wkpnq�
¸
iPNk

cikstipnqψipnq � r1� stipnqssψipnq, (24)

where stipnq � 0 if node i is censored at iteration n and stipnq � 1 otherwise, and sψipnq is the last estimate

received from node i.

One example of this technique was proposed in [119], which uses game theory, as well as information

about the energy level at each node and performance indicators to determine whether each node should be

censored or not. Another solution was proposed in [127] and later extended in [128]. In this technique, the

nodes share their local estimates while the squared error is high in magnitude and are censored otherwise.

To control the censoring of the nodes, the binary variable stkpnq P t0,1u is introduced in (9a) at each node

k. Hence, (9a) is recast as [127]

ψkpnq � r1�stkpnqsψkpn� 1q � stkpnq!wkpn� 1q � µk
p∇wJkrwkpn� 1qs

)
. (25)

Thus, when stkpnq � 1, (25) coincides with (9a). On the other hand, when stkpnq � 0, ψkpnq is kept fixed.

Moreover, µk
p∇wJkrwkpn � 1qs does not need to be calculated, which saves computation, and dkpnq does

27

not have to be sampled. Hence, the algorithm can also be used as a sampling mechanism for, e.g., GSP

applications [127]. If the nodes can store past information sent by their neighbors, there is no need for node

k to re-transmit its local estimate. In this case, its neighbors should simply use the latest ψk that they have

received from node k in (9b), enabling it to shut its transmitter off [127].

Instead of directly adapting stkpnq, an auxiliary variable αkpnq P r�α�,α�s is introduced such that

stkpnq�0 for ϕrαkpnqs 0.5 and stkpnq�1 otherwise, with ϕr�s given by [223]

ϕrαkpnqs � sgmrαkpnqs � sgmr�α�s
sgmrα�s � sgmr�α�s , (26)

where sgmrxs�r1�expp�xqs�1 is a sigmoidal function. In the literature, α��4 is usually adopted [223]. For

compactness of notation, we write ϕrαkpnqs as ϕkpnq. Then, the following cost function is introduced [127,

128]:

Jαk
pnq�ϕkpnqβt̄kpnq�

�
1�ϕkpnq

� ¸
iPNk

cikpnqe2i pnq, (27)

where β¡0 is a parameter that controls how much the censoring of the nodes is penalized. When the error

is high in magnitude, Jαk
pnq is minimized by making ϕkpnq close to one, and thus node k is not censored.

The same applies when node k is censored (t̄k � 0), which ensures that the nodes do not remain censored

permanently. On the other hand, when node k is not censored and the error is small in magnitude, Jαk
pnq

is minimized by making ϕkpnq closer to zero, and the algorithm eventually censors node k [127].

The censoring mechanism is then obtained by taking the derivative of (27) with respect to αkpnq. Since
eipnq may be unknown when stipnq � 0, eipnq is replaced by its latest measurement εipnq, i.e. εipnq �stipnqeipnq � r1� stipnqsεipn� 1q. Thus, the following stochastic gradient descent rule is obtained [127]:

αkpn�1q�αkpnq � µtϕ
1
kpnq

�
� ¸

iPNk

cikpnqε2i pnq�βstkpnq
�
� . (28)

where µt ¡ 0 is a step size and [223]

ϕ1kpnq�
dϕrαkpnqs
dαkpnq � sgmrαkpnqst1�sgmrαkpnqsu

sgmrα�s�sgmr�α�s . (29)

From (28) we can see that the algorithm requires that every uncensored node i is required to transmit

ε2i pnq � e2i pnq to its neighbors. Nonetheless, this information can be sent bundled with the local estimates

ψi so as to not increase the number of transmissions. In [128], modifications were proposed to address

some of the weaknesses of the original algorithm. Firstly, it was observed in [127] that prior knowledge of

the measurement noise power σ2
vk

for k � 1, � � � , V was needed for a proper selection of the parameter β.

This was addressed in [128] by allowing local and time-varying parameters βkpnq at each node k, which are

updated based on estimates of σ2
vi for i P Nk. Furthermore, a change detection mechanism was incorporated

to improve the tracking capability of the algorithm [128].

28

4.4. Simulations – Effects of Restrictive Communication Policies

In this subsection, we present simulation results to illustrate some of the techniques reviewed in Secs. 4.1–

4.3, and to investigate their impacts on the performance of the ATC dLMS algorithm. We consider the same

scenario of Sec. 3.2. Furthermore, we adopt uniform combination weights [1], and four techniques for the

reducing the amount of data exchange between the nodes: the Partial-Diffusion LMS of [100], the Link

Probability Control algorithm of [111], the Energy-Aware algorithm of [119], and the Adaptive-Sampling-

and-Censoring dLMS of [127]. For comparison, we also show the results obtained with dLMS without any

restriction on the communications. In every case, we employ the same step size µk � 0.01 for every node k,

k � 1, � � � , 20. In Fig. 8(a) we present the NMSD curves, and in Fig. 8(b) the total number of coefficients

transmitted by the nodes throughout the network. In the middle of each realization, we flip the vector wo

to simulate an abrupt change in the environment. To enable a fair comparison, we adjusted the parameters

so as to obtain roughly the same savings in communications for every algorithm. The resulting values of the

parameters adopted are shown in Table 3. We can see from Fig. 8 that the restrictions on the communication

between nodes led to a deterioration in the steady-state NMSD in every solution. In this regard, the PDLMS

algorithm of [100] was the most affected, followed by the algorithms of [111], [119], and [127], respectively.

In terms of the convergence rate, the solutions of [100], [111], and [127] followed closely the unrestricted

dLMS algorithm, whereas the solution of [119] displayed a slower convergence rate. Overall, the simulations

of Fig. 8 illustrate the trade-off between performance and energy savings due to the reduction of the amount

of information exchange between the nodes. We remark that a theoretical analysis of adaptive diffusion

networks in scenarios with imperfect communications between the nodes can be seen in, e.g. [207].

0 2 4 6 8 10 12
Iterations (×103)

−40

−30

−20

−10

0

10

(a
)

N
M

S
D

(d
B

)

dLMS PDLMS [100] LPC-dLMS [111] EA-dLMS [119] ASC-dLMS [127]

0 2 4 6 8 10 12
Iterations (×103)

1

2

3

4

5

(b
)

D
at

a
T

ra
n

sm
it

te
d

p
er

It
er

at
io

n

×103

Figure 8: (a) NMSD Curves and (b) Number of coefficients transmitted throughout the network using the ATC dLMS algorithm

in conjunction with the solutions of [100, 111, 119, 127], as well as the unrestricted algorithm.

29

Table 3: Parameters of the algorithms used in the simulations of Fig. 8.

Solution Parameters

PDLMS [100] L � 16, round-robin configuration

LPC-dLMS [111]
pmin�0.25, pmax�1, aik�1@i,k, αk�3 for k�1, � � � ,V ,

αk�3 for k�1, � � � ,V , νkpnq�0.01{r10�4�∥ pQkpnqqkpnq�prkpnq∥2s, uniform initialization

EA-dNLMS [119]
EAct�33.5966 � 10�3, ETx�15.16 � 10�3, Ki,1�2, Ki,2�0.5, Kg�2,

γg�2,γi�2, δ�0.5, ρ�0.01, r�2

ASC-dLMS [127] β � 0.0148, µt � 8.3638

5. Multitask Adaptive Diffusion Networks

In Sec. 3, it was assumed that every node in the network has the common objective of estimating the

same parameter vector wo, as described by (1). However, an interesting problem arises when different nodes

try to estimate different parameters. Applications of this type are usually referred to as multitask estimation

problems in the literature, in opposition to the single-task scenario modeled by (1). Multitask models can

be useful for representing situations in which groups of agents have distinct but correlated objectives, or for

modeling regional variations in the system to be identified. This diversity in the optimal system can play

an important role in, e.g., meteorological applications, where the temperature can be governed by different

dynamics at different geographic points [9, 12]. Hence, to reflect this, we recast (1) as

dkpnq � uT
k pnqwo

k � vkpnq. (30)

Eq. (1) can be seen as a special case of (30) in which wo
1 � � � � � wo

V � wo. This corresponds to an extreme

case in which the parameter vector is the same for all nodes. The other extreme occurs when wo
k is different

for each node k. In many applications of multitask networks, an in-between case is considered, in which

there are groups or clusters of nodes whose parameter vectors share a certain degree of similarity. In some

works, networks that fall into the latter category are referred to as clustered multitask networks, and the

expression “multitask networks” is reserved for the case where wo
k is different for each node k [7, 13, 17].

For the sake of generality, in this paper we apply the term “multitask networks” to any network in which

the optimal system is not the same for all nodes, and explicitly differentiate between the clustered and

non-clustered scenarios when the context requires.

It can be shown that if the single-task diffusion LMS algorithm with static combination weights is used

in a multitask environment, it produces biased estimates of the optimal parameter vectors wo
k at each

node k [9]. If the vectors wo
k are similar across the network, this bias is small in magnitude and may be

acceptable in many applications. However, as the spatial variations between the wo
k increase in magnitude,

the bias introduced by the diffusion can cause a visible deterioration in performance. In fact, depending on

30

the local discrepancies in the optimal system, the non-cooperative approach may outperform the diffusion

strategies [9]. Intuitively, this is because each node can estimate its own parameter vector much better than

its neighbors in this scenario, and the cooperation between nodes does not disseminate any useful information

for the learning task of each individual node. For this reason, several different approaches were proposed

for the development of efficient diffusion networks for multitask problems in different scenarios [7–16].

In [7], the diffusion LMS algorithm for multitask networks is derived. It is assumed that the network is

divided into Q clusters C1, � � � , CQ, and that each cluster Ci has the same optimal system wo
Ci
, i.e., wo

k � wo
Ci

for every node k P Ci. Furthermore, if the clusters Ci and Cj are connected, i.e., there is at least one

link between any nodes k P Ci and i P Cj , it is assumed that their optimal systems are similar in some

way. Clusters that are connected to each other are also called neighbors, analogously to the notion of

neighborhood between nodes. The diffusion LMS algorithm for multitask networks is obtained by adding

a regularization term to the cost function (3) to enforce the similarity between neighboring clusters. Using

the squared Euclidean distance as a regularizer, this results in the following cost function [7]:

Jmultitask
global pwCi

, � � � ,wCQ
q �

V̧

k�1

Etrdkpnq � uT
k pnqwCpkqs2u � η

V̧

k�1

¸
iPNk{Cpkq

ρki

∥∥∥wCpkq �wCpiq
∥∥∥2 , (31)

where Cpkq denotes the cluster to which node k belongs. An example is shown in Fig. 9, in which, for

instance, Cpiq � C1 and Cpkq � C2. Furthermore, Nk{Cpkq is the set of the neighbors of node k that do not

belong to the cluster Cpkq, η ¡ 0 is a regularization parameter, and the tρkiu are non-negative weights that

adjust the regularization strength for each pair of nodes k and i. In [7], convex weights tρkiu are adopted.

Figure 9: Example of a clustered network structure.

The cost function (31) promotes a stronger degree of similarity between the estimates of clusters that

have many connections to each other, since in these cases the cardinalities of the sets Nk{Cpkq are large.

Furthermore, it enforces symmetric regularization, i.e., two neighboring clusters Ci and Cj promote the same

level of similarity between their estimates due to the summation over the V nodes of the regularization term

and to the symmetry of the term
∥∥∥wCpkq �wCpiq

∥∥∥2 with respect to the vectors wCpkq and wCpiq. Since it may

be desirable to allow asymmetric regularization terms, (31) was modified in [7] and formulated as a sum

of Nash equilibrium problems, one for each cluster Ci. By slightly relaxing the cost function to enable its

31

minimization at each node using only the data available locally, and by applying a steepest-descent approach

to the estimation of the equilibrium points of these problems and adopting stochastic approximations of the

LMS type, the diffusion LMS for clustered multitask networks in an ATC configuration is given by [7]

$''''''&
''''''%

ψkpnq�wkpn�1q�µk

$&
%

¸
iPNkXCpkq

bikrdipnq�uT
i pnqwkpn�1qsuipnq�η

¸
iPNk{Cpkq

ρkirwipn�1q�wkpn�1qs
,.
-

wkpnq �
¸

iPNkXCpkq
cikψipnq.

(32a)

(32b)

Analyzing (32a), we can see that if η � 0 is chosen, that is equivalent to running the standard ATC

dLMS within each cluster Ci, without exchange of information between different clusters. Furthermore,

the algorithm for the single-task scenario can be seen as a special case of (32) in which Nk X Cpkq � Nk

and Nk{Cpkq � H for k � 1, � � � ,V . Finally, the non-clustered multitask case can be analyzed by making

Nk X Cpkq � tku and Nk{Cpkq � Nk{tku for k � 1, � � � ,V [7]. A pseudo-code description of the multitask

version of the ATC dLMS for clustered networks is provided next in Algorithm 2.

A different approach was adopted in [9] where it was assumed that there is no prior knowledge about the

clusters in the network. Hence, an unsupervised algorithm for the adaptive clustering of diffusion networks

was proposed. The concept behind this solution is to only promote the cooperation between each node k and

its neighbors i P Nk with parameter vectors wo
i sufficiently similar to its own wo

k. Since there is no a priori

knowledge of the optimal systems wo
i , i P Nk, an approximation is obtained by adjusting the combination

weights tciku based on the norm of the difference between their local estimates ψ. This is achieved by

solving at each node k

ck � arg min
ckPRV�1

V̧

i�1

c2ik

∥∥∥xwo
k �ψipnq

∥∥∥2
subject to cik ¥ 0, 1T

V ck � 1, cik � 0 if i R Nk,

(33)

where xwo
k is an estimate of wo

k and ck is defined as

ck � rc1k � � � cV ksT. (34)

In particular, the algorithm proposed in [8] uses

xwo
kpnq � ψkpnq � µk

p∇wJkrψkpnqs � ψkpnq � µkgkpnq, (35)

with

gkpnq � rdkpnq � uT
k pnqψkpnqsukpnq. (36)

32

Algorithm 2 The ATC dLMS Algorithm of Eq. (32) for Clustered Multitask Networks.

1: % Initialization - For each node k � 1, � � � , V , determine the cluster Cpkq to which it belongs, select

a step size µk as well as the parameter η and the weights ρki, bik, and cik for i � 1, � � � ,V , and set

ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: for k � 1, � � � , V do

4: Update ukpnq
5: end for

6: % The nodes transmit their local signals u and d and their combined estimates w to their neighbors

7: % Adaptation Step

8: for k � 1, � � � , V do

9: % Adapting the local estimate ψkpnq:
10: ψkpnqÐwkpn� 1q
11: for i P Nk X Cpkq do
12: ψkpnqÐψkpnq � µkbikrdipnq�uT

i pnqwkpn�1qsuipnq
13: end for

14: for i P Nk{Cpkq do
15: ψkpnqÐψkpnq � µkηρkirwipn�1q�wkpn�1qs
16: end for

17: end for

18: % The nodes transmit their local estimates ψ to their neighbors

19: % Combination Step

20: for k � 1, � � � , V do

21: % Forming the combined estimate wkpnq:
22: wkpnq Ð 0M

23: for i P Nk X Cpkq do
24: wkpnq Ð wkpnq � cikψipnq
25: end for

26: end for

27: end for

33

Thus, one possible solution for (33) is given by

cikpnq �

$''''''''&
''''''''%

�∥∥∥xwo
kpnq �ψipnq

∥∥∥2
�1

¸
iPNk

�∥∥∥xwo
kpnq �ψipnq

∥∥∥2
�1 , if iPNk,

0, otherwise,

(37)

with xwo
kpnq given by (35). Incorporating (37) into (12) yields the ATC diffusion LMS with Adaptive

Clustering for multitask problems. It is interesting to notice that there is a certain similarity between (37)

and the ACW algorithm of Rule 8) in Table 2, despite the differences in context that motivate each solution.

As mentioned previously, multiple solutions were proposed for multitask estimation problems over diffu-

sion networks. In [8], an ATC diffusion LMS algorithm was obtained for the case where the optimal systems

wo
k can be described by the sum of a common component and a node-specific one for k � 1, � � � ,V under

some restrictions so as to ensure a unique optimal solution to the estimation problem. In [10], it is assumed

that there are parameters that are of global interest to all nodes in the network, others that are of interest

to a subset of nodes, and others that are of local interest to specific nodes, and a diffusion algorithm of the

LMS type is derived for this problem. In [11], the authors propose a diffusion strategy that promotes the

sparsity of the vector difference wCi�wCj of neighboring clusters Ci and Cj . Attempting to cover all of these

solutions in detail in this paper would not be reasonable due to the wide scope of this work. An excellent

review paper focused specifically on multitask adaptive diffusion networks can be found in [38].

6. Kernel Adaptive Diffusion Networks

In Secs. 3–5, we have discussed adaptive solutions aimed at solving linear estimation problems, as becomes

evident from the modeling of the desired signal in (1) and (30). However, it is not unusual to encounter

problems that are nonlinear in nature. To deal with this, kernel-based adaptive diffusion networks have been

proposed in the literature and attracted significant attention [19–23]. In comparison with (1), the kernel

framework for adaptive diffusion networks considers a modified model for the desired signal dkpnq, given
by [19, 22, 224]

dkpnq � φo
�
ukpnq

�� vkpnq, (38)

where φop�q typically denotes a nonlinear transformation of the input vector ukpnq. For simplicity, we restrict

our review to the single-task scenario, but an analogous model can be obtained for the multitask one if we

consider different mapping functions for different nodes [224].

Kernel-based adaptive diffusion networks are largely based on kernel adaptive filters, which over the years

became established tools for nonlinear signal processing [134–136]. The idea behind these techniques is to

34

apply a nonlinear transformation Φ : RM Ñ F to the input vectors, where F is usually a higher-dimensional

space, named feature space. Then, linear signal processing techniques are applied to the vectors mapped in

F [134–136, 225]. This way, we can perform filtering tasks that are nonlinear in U while only employing

linear procedures in the feature space.

Once a nonlinear mapping function Φp�q is adopted, the Mercer kernel κ : RM � RM Ñ R associated

with it is defined as the inner product [225]

κpu,u1q � ΦTpuqΦpu1q. (39)

Depending on how the mapping function Φp�q is defined, we may be able to calculate κpu,u1q without

explicitly knowing Φp�q. This is known as the kernel trick, which is a cornerstone of many kernel-based

methods, such as kernel adaptive filters and support vector machines (SVMs) [134–136, 225, 226]. One of

the most widely adopted kernels is the Gaussian kernel, given by

κpu,u1q � exp

�
��∥∥u� u1

∥∥2
2h2

�

, (40)

where h is the Gaussian kernel bandwidth [134–136, 225, 226]. It is worth mentioning that the feature space

F associated with the Gaussian kernel is an infinite-dimensional space. Other examples of commonly used

kernels include sigmoidal, homogeneous and non-homogeneous polynomial kernels, among many others [134,

225].

In their original forms, the computational costs of these algorithms increase linearly with every iteration,

which makes their implementation infeasible [134–136]. To deal with this, the concept of dictionaries was

introduced in the kernel literature. The idea is to use only a limited set of data in the processing, which

restricts the computational cost. Evidently, this leads to a deterioration in performance in comparison

with the case where the dictionary grows larger at every iteration, but it is crucial to enable the use of

these algorithms in practice. Several techniques have been proposed over the years for the selection of the

dictionaries, aiming to limit the growth of the computational cost while maintaining performance as much

as possible [134–136].

We then seek to estimate the desired signal by obtaining an approximation φk for φor�s in (38) in a

distributed manner in each node k. Considering a global cost function of the form (8), with [19]

Jkpφkq � E

"∣∣∣dkpnq � φk

�
ukpnq

�∣∣∣2* , (41)

and applying the stochastic gradient descent, many different algorithms can be obtained. For example,

in [19], following an LMS approach and adopting an ATC diffusion strategy with enlarged cooperation, and

assuming that there is a dictionary D � tuD1 , � � � , uDD
u of cardinality D common to all nodes in the

35

network, the Functional ATC diffusion Kernel LMS algorithm is obtained as [224]

$''''&
''''%

ψkpnq � wkpn� 1q � µk

¸
iPNk

bik

�
dipnq �wT

k pn� 1qκipnq
�
κipnq

wkpnq�
¸
iPNk

cikψipnq,

(42a)

(42b)

where

κkpnq �
�
κ
�
ukpnq,uD1

� � � � κ
�
ukpnq,uDD

��T
(43)

is a vector comprised of the kernel values computed between the current input vector ukpnq and the elements

of the dictionary D [224].

Multikernel solutions have also been proposed for diffusion-based adaptive learning [22, 227, 228]. As

their name suggests, these techniques employ more than one kernel simultaneously in the learning task. The

idea is that by using two or more kernels, we may be able to grasp nuances in the desired signal due to, e.g.,

the existence of high and low frequency components in the nonlinear function. A version of this technique

was employed in [22] for environmental monitoring.

The fact that the dictionary D is shared among all nodes has some implications on the practical im-

plementations of kernel adaptive diffusion networks. The simplest way to ensure all nodes have the same

dictionary would be to define its elements and inform them to all nodes before the learning process be-

gins [224]. Nonetheless, a general-case rule for the selection of this dictionary remains an open research topic.

Furthermore, this approach can cause a degradation in performance, especially if the scenario changes in

such a way that the predefined dictionary ceases to be representative of the streaming data. To circumvent

these issues, one might allow a time-varying dictionary using criteria such as the ones presented in [134–136].

However, in this case the necessity of sharing the dictionary with every node in the network in an online

and distributed manner poses a challenge for diffusion strategies [24]. A hybrid solution, in which each node

has access to both a shared and fixed dictionary and to a local and time-varying one was proposed in [229].

The idea is that the shared dictionary should provide the nodes with a rough estimate of the nonlinear

function over the whole network, whereas the local part could allow them to detect particularities of the

signals in its vicinity. Despite this, the handling of the dictionary in diffusion strategies is still regarded as

an open research topic [24, 224]. In order to circumvent these difficulties, Random Fourier Features (RFF)

approaches have been proposed for kernel-based adaptive diffusion networks [24–27].

In RFF solutions, instead of using the kernel trick, we apply an RFF map z : RM Ñ RD, with D ¡ M ,

to the regressor vector ukpnq based on Bochner’s Theorem [24, 230]. This theorem ensures that, if the kernel

is shift-invariant and positive definite, i.e., κpu,u1q depends exclusively on u � u1, and κpu,u1q ¡ 0 for any

u and u1, the Fourier transform ppωq of the kernel is a probability density function such that [24, 230]

κpu�u1q �
»
ppωqejωTpu�u1qdω, (44)

36

where we have written κpu,u1q as κpu�u1q for compactness [24]. We should notice that the Gaussian kernel

given by (40) is shift-invariant and positive definite.

Since ppωq and κpu�u1q are real, the integral (44) converges when the complex exponentials are replaced

by cosines. Hence, the real-valued mapping zω,θrus �
?
2 cospωTu � θq also satisfies (44) if ω is drawn

from ppωq and θ is uniformly distributed in the range r0, 2πs [24]. Thus, κpu � u1q can be computed as

κpu � u1q � Etzω,θruszω,θru1su. To reduce the variance of this estimate, a sample average of D randomly

chosen zω,br�s is used, i.e.,

κpu,u1q � 1

D

Ḑ

i�1

zωi,θiruszωi,θiru1s. (45)

Thus, the vector ukpnq can be mapped to the following D-dimensional RFF vector [24, 25]:

zkpnq �
c

2

D

�
�����

cosrωT
1ukpnq � θ1s

...

cosrωT
Dukpnq � θDs

�
����� , (46)

For the Gaussian kernel, ωi, i � 1, � � � , D are drawn from the multivariate Gaussian distribution with zero

mean and covariance matrix ID{h2 [24, 230].

Since the RFF space has a finite dimension D, we can estimate dkpnq at node k by directly using a

similar strategy to that of the linear ATC dLMS of (9). Thus, the ATC RFF-dKLMS consists in two steps

given by [24, 25] $''&
''%
ψkpnq�wkpn� 1q�µkrdkpnq�zTkpnqwkpn� 1qszkpnq
wkpnq�

¸
iPNk

cikψipnq.
(47a)

(47b)

A pseudo-code description of ATC RFF-dKLMS is presented for convenience as Algorithm 3.

The idea behind the RFF approach is that the features are selected randomly according to the afore-

mentioned distributions. This only needs to be done once, before the beginning of the learning task.

Subsequently, the selected features are informed to the nodes. Due to Bochner’s Theorem, as long as ω and

b are drawn from the appropriate distributions, this approach avoids the issue of how to select the elements

of the dictionary D of the non-RFF kernel solutions. As one might expect, the more features are used,

the better the performance of the RFF diffusion algorithms tends to be [24–27]. On the other hand, the

computational cost also increases as more features are used.

7. Graph Signal Processing and Adaptive Diffusion Networks

So far, we have been assuming that the signals at a certain node do not influence the desired signal at

the remainder of the network in any way. For instance, even if nodes k and ℓ are neighbors, ukpnq only

influences dkpnq, and uℓpnq will affect dℓpnq, in its turn. This becomes clear when we analyze Eqs. (1), (30),

37

Algorithm 3 The ATC RFF-dLMS Algorithm of Eq. (47).

1: % Initialization - draw D scalars θ1, � � � , θD from a uniform distribution in the range r0, 2πs and D

vectors ω1, � � � ,ωD from a multivariate Gaussian distribution with zero mean and covariance matrix

ID{h2. These parameters shall be common to every node in the network. Then, for each node k �
1, � � � , V , select a step size µk and combination weights cik satisfying (10) for i � 1, � � � , V , and set

ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: % Adaptation Step

4: for k � 1, � � � , V do

5: Update ukpnq
6: % Mapping ukpnq to the RFF vector zkpnq:

7: zkpnq Ð
c

2

D

�
�����

cosrωT
1ukpnq � θ1s

...

cosrωT
Dukpnq � θDs

�
�����

8: % Adapting the local estimate ψkpnq:
9: ψkpnq Ð wkpn� 1q�µkrdkpnq�zTkpnqwkpn� 1qszkpnq

10: end for

11: % The nodes transmit their local estimates ψ to their neighbors

12: % Combination Step

13: for k � 1, � � � , V do

14: % Forming the combined estimate wkpnq:
15: wkpnq Ð 0M

16: for i P Nk do

17: wkpnq Ð wkpnq � cikψipnq
18: end for

19: end for

20: end for

and (38). However, there may be situations in which the signals measured at a node do have an impact

on its neighborhood. Broadly speaking, the goal of Graph Signal Processing (GSP) is exactly to model

scenarios in which there is an underlying relationship between the data distributed over a certain domain

(such as space). For this reason, as we will see next, extensions of GSP have also been applied to adaptive

diffusion networks, in order to address problems in which the signals are spatially related to one another.

Before going forward, it is important to remark that GSP has become a broad field, with many ram-

ifications. Extensions of several classical ideas of the signal processing field to the graph framework have

38

been proposed in the literature, such as the graph Fourier transform, graph signal convolution, graph filters,

among many others [31, 154–161]. In this paper, rather than providing a comprehensive overview of GSP,

we focus on how it can be used in conjunction with adaptive diffusion networks to model certain situations

that cannot be easily represented using the theory of Secs. 3–6. For a much broader view of the GSP field,

we suggest that the reader refers to, e.g., [156, 157, 161, 231] and their references. With this in mind, we

begin our exposition on diffusion solutions for GSP in the following manner. Firstly, in Sec. 7.1, we provide

some preliminary concepts that are fundamental for the understanding of the adaptive diffusion networks

for GSP, which are reviewed in Sec. 7.2.

7.1. Preliminaries to Adaptive Diffusion over Graphs

Graphs are structures commonly used to represent interactions between objects of interest, consisting

of a set of points, called nodes, and a set of lines connecting certain pairs of points, called edges [232].

Typically, nodes in a graph represent objects and/or agents, edges describe relationships between objects or

agents, and weights represent the strength of the relation [232, 233]. Moreover, weights can be assigned to

each edge, to represent the “strength” of the link between any pair of nodes. Finally, a graph is said to be

directed if there is an orientation associated with each edge, i.e., from node i to node j or vice-versa, and if

the weights associated with one direction are different from those associated with the other [233].

The adaptive networks presented in Section 3 can be considered examples of graphs. This is not a

coincidence. Graphs are mathematical abstractions capable of representing a wide variety of real-world

situations [233]. A relevant property of graphs is that they admit matrix representations, which makes them

computationally manipulable [233]. One of the ways to represent them in this way is through the adjacency

matrix of the graph. For a simple graph with V nodes, the adjacency matrix A is a V � V matrix whose

element rAsij is equal to the value of the weight associated with the edge connecting the nodes i and j. It is

interesting to note that the adjacency matrix of an undirected graph is symmetric with respect to its main

diagonal.

The field of GSP is based upon the assumption that, at each node k and iteration n, there is a value of

interest, whose meaning may vary from one application to the other. For example, these values can represent

the temperature measured at a certain location, the power spectral density of a radio signal that a device

receives from a certain source, the affinity of a social network user for certain types of content, and so on.

The collection of these values of interest can be understood as a signal defined over a graph, or graph signal

for brevity [156]. Thus, given a graph G with V nodes labeled k� 1, 2, � � � , V and adjacency matrix A,

a signal defined over G is represented by a vector of the form upnq � ru1pnq u2pnq � � � uV pnqs, where each

element ukpnq is indexed by a node k [154].

Based on this definition, the concept of filters for graph signals, or graph filters for short, was proposed

in [154]. For this, an analogy is drawn between the adjacency matrix and the unit delay operator in

39

discrete time signal processing. To illustrate this idea, let us consider a periodic sequence with V elements

u1, u2, � � � , uV . This sequence could be represented by a graph in which each sample uk is associated

with the corresponding node k, and there is a directed edge from node k to its successor, node k� 1 (unless

k � V , in which case there is an edge connecting it to node 1). This concept is depicted in Fig. 10.

Figure 10: A discrete periodic time sequence represented as a graph.

Assigning unit weights to the edges of the graph of Fig. 10, its adjacency matrix is given by [154]

A �

�
�����������

0 0 � � � 0 1

1 0 � � � 0 0

0 1 � � � 0 0
...

...
...

...
...

0 0 � � � 1 0

�
�����������
.

Collecting the samples of the sequence into a vector u � ru1 u2 � � � uV s, we observe that by left-multiplying

u byA, we obtain the vector su � Au � ruV u1 � � � u2s. Taking into account that u is a vector representation

of a discrete time sequence, su can be understood as a version of u delayed by one time unit. Thus, the

adjacency matrix fulfills a role similar to the time delay operator in discrete time signal processing. Although

this analogy is based specifically on the graph of Fig. 10, this notion is generalized for any adjacency matrix

A in the GSP framework. In the general case, it can be understood that the multiplication of a graph signal

u by A represents a spatial shift along the graph. For this reason, the adjacency matrix is considered a

graph-shift operator. Over time, the usage of other matrices as graph shift operators was proposed in the

literature, such as the Laplacian matrix [28, 29]. Although the analogy with discrete-time signal processing

is less clear in this case, it allows for different forms of modeling the effects of the graph on the evolution of

the signals defined over it. For the sake of generality, in this paper we denote the graph shift operator by

A, but we assume that it can represent any suitable choice for this operator, not just the adjacency matrix.

Thus, we can define a linear shift-invariant graph filter as a system given by [154]

H �

M�1¸
m�0

wo
mAm, (48)

where M is the filter length and two
muM�1

m�0 denotes its coefficients. Hence, if a graph signal upnq is processed
by this system, its output hpnq can be described as [154]

hpnq �
M�1¸
m�0

wo
mAmupnq, (49)

40

as illustrated in Fig. 11.

PSfrag upnq

hpnq

wo
0 wo

1 wo
M´2 wo

M´1

A AM´1

Aupnq

p q

AM´1upnqAM´2upnq
¨ ¨ ¨

Figure 11: Schematic representation of a linear shift-invariant graph filter whose output is given by (49). The output

of each block with the matrix A, having the vector upnq as its input, is given by the left-multiplication of upnq by

A, i.e., by the vector Aupnq.

We should notice that there is a clear analogy to the tapped delay line commonly found in discrete-time

filters [74]. This motivated the proposal of adaptive filters for GSP [28, 29] based on this concept, which

will be exposed in Sec. 7.2

7.2. Diffusion Algorithms for Graph Signal Processing

Let us consider a graph with a predefined topology and V nodes labeled 1, � � � , k, � � � , V . Each

node k has access at each time instant n to an input signal ukpnq and to a desired signal dkpnq, modeled

as [26, 28, 29, 234, 235]

dkpnq � xT
kpnqwo � vkpnq, (50)

where vkpnq is the measurement noise at node k, wo is the optimal system, and the input xkpnq is given

by [26, 28, 29, 234, 235]

xkpnq �
�
rupnqsk rAupn� 1qsk � � � rAM�1upn�M � 1qsk

�T
. (51)

Eq. (51) can be interpreted as follows. The vector upnq represents the “raw” information available at each

node of the network at the iteration n, whereas xkpnq models the spreading of that information throughout

the graph, which is the result of both a temporal and spatial shift, or “delay”.

In light of (51), it may be interesting to compare (50) with (1). In the model of Eq. (1), only the input

signal ukpnq influences dkpnq, whereas in the model of Eq. (50), dkpnq is influenced by ukpnq, by uipnq for
41

i P Nk, by the input signal at the two-hop neighbors of node k, and so on. Hence, unlike (1), the model

of (50) can be used to represent situations in which the desired signal at a node is affected by what happens

around it, and, therefore, on the measurements collected by its neighbors. In other words, the defining

difference between the “classical” model and the GSP framework lies in the role of the spatial aspect of the

problem. In the former, the topology of the network does not influence the dynamics of the desired signal.

We see from (1) that dkpnq depends only on the signal ukpnq and on the measurement noise vkpnq, and is

independent of uipnq for all i� 1, � � � ,V, i� k. In this case, the information does not propagate from one

node to another. In the context of GSP, we see from (50) and (51) that if the nodes i and k are immediate

neighbors, dkpnq depends on uipn�1q, since the information from one node spreads to its neighbors over

time. Moreover, if nodes j and k are two-hop neighbors (i.e., it is possible to travel from node j to node k

in two hops), dkpnq also depends on ujpn�2q, and so on. Hence, the topology of the network plays a major

role in how the desired signal dkpnq unfolds at each node k. In its turn, the optimal system wo models

how exactly the graph topology and time lag affect the spreading of information in (50). This makes the

graph-based framework well suited for distributed problems where both time and space must be taken into

consideration, as in meteorological applications [28, 29, 127].

Furthermore, comparing (50) and (51) with (49), we can see that the model presented in this section

modifies the original concept of graph filter by incorporating a time lag. In this case, rather than spreading

instantaneously throughout the network as in (49), the information takes time to arrive at other nodes, with

distant locations being influenced later than closer ones.

Apart from these differences between the GSP problem from the original distributed signal processing

framework, the derivation of the dLMS algorithm for GSP in [28] follows an analogous path to what was

done in Sec. 3. Replacing ukpnq with xkpnq in (3) and considering (50), the adoption of an approach of the

LMS type to the minimization of (8) with an ATC configuration leads to [28, 29, 234, 235]

$''&
''%
ψkpnq�wkpn� 1q�µkrdkpnq�xT

k pnqwkpn� 1qsxkpnq
wkpnq�

¸
iPNk

cikψipnq.
(52a)

(52b)

Eqs. (52a) and (52b) form the basis for the ATC dLMS algorithm for GSP. For ease of reference, in this paper

we shall refer to the algorithm of (52) as the diffusion Graph LMS (dGLMS) algorithm, whose pseudo-code

description is presented in Algorithm 4. Comparing (52) with (12), we see that there is a clear analogy

between these solutions, with the main difference residing on the meaning of their inputs. Furthermore, it

is important to notice that the neighborhood Nk of node k in (52b) refers to the communication network of

the diffusion algorithm, which does not necessarily coincide with the graph represented by A. For example,

we may allow nodes to communicate with farther agents, whose effects on their signals are negligible. The

inverse may also happen, with nodes being unable to communicate with other agents that do affect their

42

dynamics.

Algorithm 4 The ATC dGLMS Algorithm of Eq. (52).

1: % Initialization - for each node k � 1, � � � , V , select a step size µk and combination weights cik satisfy-

ing (10) for i � 1, � � � , V , and set ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: % Adaptation Step

4: for k � 1, � � � , V do

5: Update ukpnq
6: % Calculating the vector xk:

7: xkpnq Ð
�rupnqsk rAupn� 1qsk � � � rAM�1upn�M � 1qsk

�T
.

8: % Adapting the local estimate ψkpnq:
9: ψkpnq Ð wkpn� 1q � µkrdkpnq�xT

k pnqwkpn� 1qsxkpnq
10: end for

11: % The nodes transmit their local estimates ψ to their neighbors

12: % Combination Step

13: for k � 1, � � � , V do

14: % Forming the combined estimate wkpnq:
15: wkpnq Ð 0M

16: for i P Nk do

17: wkpnq Ð wkpnq � cikψipnq
18: end for

19: end for

20: end for

Finally, it is worth mentioning that multitask [38, 234] and kernel-based [26, 236, 237] versions of graph

diffusion algorithms have also been proposed in the literature. They apply analogous lines of reasoning to

those exposed in Secs. 5 and 6 to diffusion graph adaptive filters such as (52). For instance, in [26], a Graph

Diffusion KLMS filter with a pre-selected dictionary is proposed, as well as an RFF Graph diffusion KLMS

algorithm. In this latter case, the algorithm is similar to the one described by (47), with the difference that

the mapped vector zk is calculated using xk instead of uk in (46), with xk given by (51) [26].

Besides the dLMS of (12), other types of diffusion algorithms can also be extended to the system

identification problem in GSP. For example, in [29], building from (52), an LMS-Newton type of diffusion

algorithm was proposed to improve the convergence rate of the solution.

43

8. Application Example: Temperature Prediction

In this section, we consider a temperature dataset of daily average measurements (in �F) from 12/25/2001

to 12/21/2012 at V � 100 weather stations across Brazil [238]. We consider that each station corresponds

to a node of a network. To determine the communication links, we applied the following procedure. Firstly,

we represent the network as a directed weighted graph in which each node k is connected to the six nearest

stations. Denoting this set by NAk
, each element rAskj of the adjacency matrix A is given by [28]

rAskj�

$'''''&
'''''%

expp�g2kjq¸
ℓPNAk

expp�g2ℓkq
¸

iPNAj

expp�g2jiq
, if j P NAk

0, otherwise

, (53)

where gkj is the geodesical distance between nodes k and j. Thus, we consider that nodes k and j can

communicate if k P NAj and j P NAk
simultaneously. The resulting network is depicted in Fig. 12(a), along

with the temperature measured in each station on 06/21/2002.

40

45

50

55

60

65

70

75

80

85

(a) (b) (c)

Figure 12: Network used in the simulations of Secs. 8.1 and 8.2. Edges represent communication links. The nodes that are

circled in black use a normalized step size rµk � 1, whereas the others use rµk � 0.1 in (55). (a) Daily average temperature

measured by 100 weather stations on 06/21/2002 (�F). The arrow points to the station whose data are used in Fig. 14. (b)

Clusters adopted for the multitask algorithms in Secs. 8.1 and 8.2. (c) Scenario studied in Sec. 8.2. Blue nodes are unobserved,

whereas the red ones are observed. Edges represent communication links. The arrow points to the station whose data are used

in Fig. 16. This figure was created using the GSPBOX toolkit [239].

We divided our dataset into training and testing sets. The former consists of Ntr. � 3650 measurements

from 12/25/2001 to 12/22/2011, which were periodically replicated to form a number of training epochs,

depending on the experiment. The testing set consists of the measurements from 12/23/2011 to 12/21/2012.

In both periods, we consider that dkpnq � ukpn � 1q, where ukpnq denotes the temperature measurement

at node k and time instant n. Hence, the simulation scenario could be interpreted as follows. At the dawn

of each day, the algorithms predict the average temperature for that date at all the nodes using the last

measurements available and the combined estimate calculated at the end of the previous day. At the end

44

of the day, after the average temperature for that certain date has been calculated, the algorithms compute

their estimation errors and perform their adaptation and combination steps to update their parameters ψk

and wk.

In both the training and testing periods, we conduct the adaptation of the algorithms as usual. The idea

behind the division of the data in these sets is to enable us to test the algorithms using data different from

the ones employed in the training, and also to examine the steady-state performance along 365 days. As a

performance indicator, we adopt the squared relative reconstruction error (SSRE), given by [28]

SRRE � 1

V

V̧

k�1

�
ukpn�1q�uT

k pnqwkpnq
�2

u2
kpn� 1q . (54)

We consider two types of application. In Sec. 8.1, we study the behavior of the techniques studied in

Secs. 3–7 in a scenario in which the temperature is measured daily at every node. On the other hand, in

Sec. 8.2, we consider that some of the nodes are not capable of measuring the temperature. Thus, the data

remain unobserved at these nodes throughout the training and testing sets. This model could be used to,

e.g., predict the temperature in a region where there are no weather stations. To cope with the lack of

information at these nodes, we consider different diffusion techniques that utilize the GSP framework.

8.1. Temporal Prediction with Fully Observed Nodes

In this scenario, we use the dNLMS, RFF-dKNLMS, multitask dNLMS, and the diffusion Graph NLMS

(dGNLMS) algorithms to predict the current temperature at every station, assuming that we have access to

a few past measurements at every node. We opted to use the normalized version of each algorithm due to the

fact that the input signal is not white in this scenario, which could hinder the performance otherwise [74, 75].

Hence, each node k uses

µkpnq � rµk

δ �∥ykpnq∥2
, (55)

where δ ¡ 0 is a small regularization factor, and ykpnq � ukpnq for the single-task and multitask dNLMS

algorithms, ykpnq � zkpnq for RFF-dKNLMS, and ykpnq � xkpnq for the dGNLMS algorithm. We adopted

rµk � 0.1 for half of the nodes, and rµk � 1 for the other half. This is depicted in Fig. 12, in which the nodes

that use rµk � 1 are circled in black, whereas the ones that use rµk � 0.1 are not. For every node, we set

δ � 10�5. Furthermore, instead of directly using ukpnq as the input signal for each node k, we divided by

the highest temperature measured registered during the training period, so as to ensure that |ukpnq| ¤ 1

for every k, k � 1, � � � , V . Later, the outputs of the algorithms were re-scaled. In every case, we adopted

the ATC configuration, and the ACW algorithm of Table 2 for the selection of the combination weights

cikpnq, with νk � 0.2. To avoid potential problems due to a division by zero in the ACW algorithm, we

also added the regularization factor δ to pσ2
ikpnq before calculating its reciprocal, similarly to what was done

in [127]. We also set M � 5 for every solution. For the RFF-dKNLMS algorithm, we used the Gaussian

45

kernel with D � 20. Increasing D further did not improve the performance significantly, while raising the

computational cost noticeably. Furthermore, the value of h2 � 0.1 was selected because it led to the best

steady-state performance. For the multitask case, we considered the approach of [7] with η � 0 and bik � 1 if

i � k and bik � 0 otherwise. Hence, the nodes do not exchange information during the adaptation step, only

in the combination step, and nodes from different clusters do not communicate with each other. In order

to determine the clusters, we calculated the Wiener solution for each node and ran the k-means algorithm.

Then, a few manual adjustments were made to ensure that nodes belonging to the same clusters are indeed

neighbors. The resulting clusters are depicted in Fig. 12(b). For the dGNLMS algorithm, we considered

the adjacency matrix given by (53) as the graph shift operator. This matrix was normalized by its greatest

absolute eigenvalue, which is a common practice in the literature [28, 29]. Finally, for comparison, we also

included the non-cooperative NLMS approach in the simulations. In the training period, we consider a total

of 40 epochs.

In Fig. 13 we show the SRRE curves yielded by the solutions in the training period. For the sake of

visualization, these curves were filtered by a moving-average filter with 2048 coefficients. In Table 4, we

present the average SRRE obtained with each solution during the testing period, as well as the approximate

number of multiplications required per iteration by each solution. From Fig. 13 and Table 4, we can see that

the non-cooperative NLMS achieves a higher level of SRRE in steady state in comparison with all of the

other solutions. The dNLMS, dGNLMS, and multitask dNLMS algorithms achieved similar performances,

whereas the RFF-dKNLMS algorithm slightly outperforms them in steady-state and in the testing period.

Nonetheless, it is worth noting that this improvement comes at the expense of a greater computational

cost, as is evident from Table 4. Furthermore, the usage of information from neighboring nodes in the

dGNLMS algorithm did not improve the performance in this particular scenario. Analyzing the behavior of

the single-task and multitask dNLMS algorithms, we can see that, in this case, the communication solely

within each cluster was sufficient to achieve the same performance in comparison with the case in which each

node was allowed to exchange information with all of its neighbors. In other words, the multitask dNLMS

algorithm achieved a similar performance in comparison with the single-task dNLMS while presenting lower

communication and computational burdens, as shown in Table 4.

Lastly, in order to enable a direct comparison in terms of degrees Fahrenheit, in Fig. 14, we illustrate

the behavior of the solutions by showing the estimates provided by each of them for the temperature at a

single node, which is indicated by an arrow in Fig. 12(a), in the testing set. The actual temperature, i.e.

the desired signal, is also shown. We can see that the non-cooperative approach produces a noisier estimate

in comparison with the other solutions, which match the desired signal reasonably well.

46

20 40 60 80 100 120 140

Iterations (×103)

−24

−23

−22

−21

−20

−19

S
R

R
E

(d
B

)

NLMS (Non-Coop.)
dNLMS (ACW)

RFF-dKNLMS
dGNLMS

Multitask dNLMS

Figure 13: SRRE curves along the iterations for the training dataset obtained with the dNLMS, RFF-dKNLMS, dGNLMS,

multitask dNLMS, and non-cooperative NLMS algorithms.

Table 4: Comparison between the dNLMS, RFF-dKNLMS, dGNLMS, multitask dNLMS, and non-cooperative NLMS algo-

rithms in terms of the performance on the testing set and computational cost.

Solutions
Average SRRE in the Approximate number of

testing set (dB) multiplications per iteration (�103)
NLMS (Non-cooperative) �20.6910 3.99

dNLMS (12) �22.8933 7.90

Multitask dNLMS (32) �22.8338 6.48

RFF-dKNLMS (47) �23.5502 39.54

dGNLMS (52) �22.8725 14.10

8.2. Prediction at Unobserved Nodes

In this subsection, we consider that there are 75 observed nodes, which can measure their data daily,

and 25 unobserved nodes, which are not capable of performing that measurement at all. This is depicted

in Fig. 12(c), in which observed nodes are shown in red, and unobserved ones are depicted in blue. This

situation could be used to model a scenario in which we would like to estimate the temperature in a region

in which there is no weather station, based on the measurements from the surrounding region.

In order to predict the temperature at unobserved nodes, we must rely on the information at their

neighbors. To this end, we employ the dGNLMS algorithm, similarly to what was done in Sec. 8.1, as well

as GSP-based versions of the multitask and kernel solutions of Secs. 5 and 6, respectively.

To cope with the unavailability of the information at the unobserved nodes, the vector xkpnq of (51) is
slightly modified to [234]

x1kpnq �
�
rASupnqsk � � � rAMSupn�M � 1qsk

�T
, (56)

47

0 100 200 300

Iterations

70

75

80

85

T
em

p
er

a
tu

re
(◦

F
)

300 320 340 360

Iterations

76

80

84

88

0 50 100 150 200 250 300 350

70

80

90

T
em

p
er

at
u

re
(◦

F
)

Real Data

NLMS (Non-Coop.)

dNLMS (ACW)

RFF-dKNLMS

dGNLMS

Multitask dNLMS

Figure 14: Comparison between the temperature measured at the station indicated by an arrow in Fig. 12 and the estimates

provided by the dNLMS, RFF-dKNLMS, dGNLMS, multitask dNLMS, and non-cooperative NLMS algorithms.

where S is a diagonal matrix such that rSskk � 1 if node k is observed and rSskk � 0 otherwise.

We employ a normalized version of the RFF kernel solution of [236], resulting in the RFF-dGKNLMS

algorithm. For the multitask approach, we consider the solution of (32) with the same clusters that were

used in the simulations of Sec. 8.1. In comparison with the original solutions of (32) and (47), the main

differences between the algorithms employed in this section and the ones studied previously lie in the usage of

the vector given by (56) instead of the regressor vector ukpnq in the adaptation step, and in the adoption of

a normalized step size as in (55). It is worth noting that an unsupervised clustering algorithm for multitask

diffusion solutions was proposed in [234]. Based on this method, several multitask algorithms were proposed

in the aforementioned paper specifically for diffusion adaptive graph filtering. Due to space limitations, and

since in this case we can group the nodes in clusters based on the knowledge of the Wiener solution, we

have opted to restrict our analysis to the modified version of (32). Nonetheless, we encourage the reader

interested in distributed GSP to consult [234] for the multitask solutions with unsupervised clustering.

Similarly to what was done in Sec. 8.1, we adopt a length of M � 5 for ukpnq. We also use normalized

step size rµk � 1 for half of the nodes, whereas the other half employs rµk � 0.1, as shown in Fig. 12(b).

Furthermore, we consider an ATC configuration and seek to obtain the best performance possible with each

solution. To this end, we have adopted ACW to select the weights of the dGNLMS and multitask dGNLMS

algorithms. For the latter, we adopted η � 0 and bik � cki for every k, k � 1, � � � , 100 and i, i � 1, � � � , 100.
Adopting η � 0 with weights ρik did not affect the performance significantly. For the RFF-dGKNLMS

algorithm, we adopted h2 � 10 and D � 20. Increasing D further did not improve the results noticeably.

Finally, specifically for the RFF-dGKNLMS algorithm we adopted Metropolis weights, since the adoption of

ACW did not improve the performance significantly, while increasing a computational cost that was already

comparatively high. We also tested multitask versions of RFF-dGKNLMS following different configurations

for the weights bik, cik, ρik and different values for η, but did not observe any significant improvement in

48

comparison with the single-task RFF-dGKNLMS algorithm. For this reason, these results are not depicted

in the following figures and tables.

We consider 20 epochs in the training set, and evaluate the performance of each solution by applying

the SRRE given by (54) to the unobserved nodes only. The resulting SRRE curves are presented in Fig. 15.

For the sake of visualization, these curves were filtered by a moving-average filter with 1024 coefficients.

In Table 5, we present the average SRRE measured at the unobserved nodes in the testing period, as

well as the number of multiplications required by each solution. Analyzing Fig. 15, we can see that the

multitask dGNLMS outperforms the single-task dGNLMS algorithm, but both are outperformed by the

RFF-GKNLMS solution. The same holds in the testing set, as evidenced in Table 5. On the other hand,

we can see from the same table that the computational cost of RFF-dGKNLMS is considerably greater

than that of the other solutions. It is interesting to notice that the multitask dGNLMS outperforms the

single-task version while presenting only a slightly higher computational burden.

0 20 40 60 80 100

Iterations (×103)

−26

−24

−22

−20

−18

−16

S
R

R
E

(d
B

)

dGNLMS Multitask dGNLMS RFF-dGKNLMS

Figure 15: SRRE curves for the unobserved nodes along the iterations for the training dataset obtained with the dGNLMS,

multitask dGNLMS, and RFF-dGKNLMS algorithms.

Table 5: Comparison between the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS algorithms in terms of the performance

the testing set and computational cost.

Solutions
Average SRRE in the Approximate number of

testing set (dB) multiplications per iteration (�103)
dGNLMS �20.2872 17.17

Multitask dGNLMS (32) �23.8701 20.14

RFF-dGKNLMS (47) �26.2089 299.47

Finally, similarly to what was done in Fig. 14, in Fig. 16, we show the estimates provided by the dGNLMS,

multitask dGNLMS, and RFF-dGKNLMS algorithms for the temperature at the unobserved node indicated

49

by an arrow in Fig. 12(b) in the testing set. We also show the actual temperature measured at that station.

We can see that the estimates match the actual temperature signal reasonably accurately. This is especially

true for the RFF-dGKNLMS algorithm, which supports the results of Fig. 15 and Table 5.

0 100 200 300

Iterations

70

75

80

85

T
em

p
er

at
u

re
(◦

F
)

300 320 340 360

Iterations

70.0

72.5

75.0

77.5

80.0

82.5

85.0

0 50 100 150 200 250 300 350

70

80

90
T

em
p

er
at

u
re

(◦
F

)

Real Data

dGNLMS

RFF-dGKNLMS

Multitask dGNLMS

Figure 16: Comparison between the temperature measured at the station indicated by an arrow in Fig. 12(b) and the estimates

provided by the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS algorithms.

9. Conclusions and Open Topics for Future Work

Starting with the technological developments that motivated the emergence of adaptive diffusion net-

works, we have presented the progress that has occurred in the area throughout the past fifteen years or

so. Some theoretical results were presented in order to provide some insights into their behavior. On the

other hand, a few considerations were presented regarding the feasibility of these solutions in practical

applications. In particular, significant attention was devoted to the necessity of restricting the amount of

communication between nodes, even if at the expense of some deterioration in performance, due to energy

constraints. We have also looked at advances that have been proposed in the literature and developed

into mature research topics in their own right, such as the multitask and kernel-based diffusion networks.

Furthermore, diffusion-based adaptive algorithms for Graph Signal Processing were also addressed, and the

similarities and differences in comparison with the more conventional diffusion solutions were highlighted.

In each case, we have highlighted what type of problems each of these solutions is intended for. A brief

summary is presented in Table 6 for ease of reference. Finally, simulations carried out with real-world data

exemplify the opportunities and challenges that can arise from the usage of adaptive diffusion networks in

practice.

Despite the maturity of adaptive diffusion networks as a research field, there are still many open questions

and challenges in the area, some of which are listed below.

1. Energy-efficient algorithms: as mentioned in Sec. 4, the search for restrictive communication poli-

50

Table 6: Summary of some of the techniques reviewed in the paper.

Type Techniques Comments and References

Distributed linear

filtering with a common

objective

Non-cooperative (Sec. 3)

Diffusion (Sec. 3)

Distributed linear filtering algorithms [1–3].

Distributed linear

filtering with a common

objective and strict

energy constraints

Diffusion strategies with re-

strictive communication poli-

cies (Sec. 4)

Important when the energy consumption

associated with the communication pro-

cesses within the network pose a severe lim-

itation [100–130].

Distributed linear

filtering with possibly

many distinct goals

Multitask solutions (Sec. 5) Aimed at problems of distributed nature in

which the objective can change from one

node to the other, or from a cluster of nodes

to the other. [7–18].

Distributed non-linear

signal processing

Diffusion kernel algorithms

(Sec. 6)

Aimed at problems that cannot be satis-

factorily addressed by linear solutions, and

which are of distributed nature [19–27].

Distributed spatial, as

well as temporal,

prediction

Diffusion implementations of

graph signal processing algo-

rithms (Sec. 7)

Aimed at problems in which both spatial

and temporal aspects play an important

role on the development of the signals of

interest over time [28–31].

cies that impact network performance as little as possible continues to spark research and publications

in the area, such as, e.g., [107, 108, 128–130]. The research efforts in this area will likely continue as

long as energy remains a significant constraint for battery-operated WSN’s;

2. Computational cost concerns: this aspect is applicable to adaptive diffusion networks as a whole,

due to the potentially low computational power of each node in IoT applications [127, 240–242]. For

kernel-based adaptive networks, this is an especially pressing issue, due to the high computational

burden associated with these tools, as can be seen from Tables 4 and 5. The reduction of the com-

putational cost of kernel methods has been a topic of intense research in general [243–245], as well as

estimating the number of RFF’s required for satisfactory performance [246]. In the GSP field, the idea

of sampling the nodes – i.e., measuring the data only at a subset of nodes and seeking to estimate the

behavior of the network as a whole from the acquired information – has also been a topic of constant

research [247–249]. This is important because the computational cost of GSP solutions increases with

the number of nodes, and may become prohibitively high if the network is too large [30, 31];

51

3. Opportunities for improvements in performance: there are several fronts that could be explored

to enhance the performance of adaptive diffusion networks. For multitask networks, an idea has been

raised in [38] to automatically determine the optimal regularization strength η in (31), but to the best

of our knowledge this has not been done yet. Moreover, adaptive clusterizarion algorithms continue

to be proposed for these types of networks [250, 251]. For kernel adaptive networks, multikernel

solutions [228, 252] also constitute opportunities for future research.

4. Privacy of the data: concerns regarding the potential leakage of data in distributed learning have

lead to proposals of schemes to mitigate the associated risks in adaptive diffusion networks [253–255].

As concern regarding data privacy increases in the machine learning and signal processing communities

as a whole, this topic has the potential to gather widespread attention;

5. Extensions of other tools: as mentioned in Sec. 2.4, in the past few years, many concepts of

adaptive diffusion networks have been applied to the distributed training of other machine learning

solutions, such as neural networks and generative adversarial networks (GANs) [162–165]. Hence, the

incorporation of core ideas of adaptive diffusion networks into other solutions may become yet another

topic for intense research in the near future.

Evidently, these are only some of the many open challenges and opportunities for research in the adaptive

diffusion networks. Advances in these topics, as well as in other technologies such as 5G communication

networks, wearable technology, and low-power sensors, will most likely contribute to increase the interest in

adaptive diffusion networks over the coming years.

Acknowledgment

This work was supported by CAPES under Grant 88887.512247/2020-00 and Finance Code 001, by

CNPq under Grants 303826/2022-3 and 404081/2023-1, and by FAPESP under Grant 2021/02063-6.

References

[1] A. H. Sayed, Adaptation, Learning, and Optimization over Networks, vol. 7, Foundations and Trends in Machine

Learning, now Publishers Inc., Hanover, MA, 2014.

[2] A. H. Sayed, “Diffusion adaptation over networks,” in Academic Press Library in Signal Processing: array and statistical

signal processing, R. Chellapa and S. Theodoridis, Eds., vol. 3, chapter 9, pp. 323–453. Academic Press, 2014. [pdf] Also

available as: arXiv:1205.4220 [cs.MA], May 2012.

[3] A. H. Sayed, “Adaptive networks,” Proceedings of the IEEE, vol. 102, pp. 460–497, Apr. 2014.

[4] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: Formulation and performance

analysis,” IEEE Transactions on Signal Processing, vol. 56, pp. 3122–3136, Jun. 2008.

[5] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE Transactions on Signal

Processing, vol. 58, pp. 1035–1048, Oct. 2009.

52

[6] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares for distributed estimation over adaptive

networks,” IEEE Transactions on Signal Processing, vol. 56, pp. 1865–1877, Apr. 2008.

[7] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over networks,” IEEE Transactions on Signal

Processing, vol. 62, pp. 4129–4144, Jun. 2014.

[8] J. Chen, C. Richard, A. O. Hero, and A. H. Sayed, “Diffusion LMS for multitask problems with overlapping hypothesis

subspaces,” in Proc. IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2014, pp. 1–6.

[9] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS over multitask networks,” IEEE Transactions on Signal

Processing, vol. 63, pp. 2733–2748, Mar. 2015.

[10] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed diffusion-based LMS for node-specific adaptive param-

eter estimation,” IEEE Transactions on Signal Processing, vol. 63, pp. 3448–3460, Apr. 2015.

[11] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Proximal multitask learning over networks with sparsity-inducing

coregularization,” IEEE Transactions on Signal Processing, vol. 64, pp. 6329–6344, Aug. 2016.

[12] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over networks with common latent representa-

tions,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, pp. 563–579, Feb. 2017.

[13] V. C. Gogineni and M. Chakraborty, “Partial diffusion affine projection algorithm over clustered multitask networks,”

in Proc. IEEE International Symposium on Circuits and Systems (ISCAS), 2019, pp. 1–5.

[14] D. Jin, J. Chen, C. Richard, and J. Chen, “Online proximal learning over jointly sparse multitask networks with ℓ8,1

regularization,” IEEE Transactions on Signal Processing, vol. 68, pp. 6319–6335, Sep. 2020.

[15] R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over multitask graphs – part I: Stability analysis,” IEEE

Open Journal of Signal Processing, vol. 1, pp. 28–45, Apr. 2020.

[16] R. Nassif, S. Vlaski, C. Richard, and A. H. Sayed, “Learning over multitask graphs – part II: Performance analysis,”

IEEE Open Journal of Signal Processing, vol. 1, pp. 46–63, Apr. 2020.

[17] V. C. Gogineni, S. P. Talebi, and S. Werner, “Performance of clustered multitask diffusion LMS suffering from inter-node

communication delays,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, pp. 2695–2699, Jan.

2021.

[18] S. Marano and A. H. Sayed, “Decision learning and adaptation over multi-task networks,” IEEE Transactions on Signal

Processing, vol. 69, pp. 2873–2887, May 2021.

[19] W. Gao, J. Chen, C. Richard, and J. Huang, “Diffusion adaptation over networks with kernel least-mean-square,” in Proc.

IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2015, pp.

217–220.

[20] B.-S. Shin, H. Paul, and A. Dekorsy, “Distributed kernel least squares for nonlinear regression applied to sensor networks,”

in Proc. European Signal Processing Conference (EUSIPCO), 2016, pp. 1588–1592.

[21] S. Chouvardas and M. Draief, “A diffusion kernel LMS algorithm for nonlinear adaptive networks,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2016, pp. 4164–4168.

[22] B.-S. Shin, M. Yukawa, R. L. G. Cavalcante, and A. Dekorsy, “Distributed adaptive learning with multiple kernels in

diffusion networks,” IEEE Transactions on Signal Processing, vol. 66, pp. 5505–5519, Aug. 2018.

[23] W. Gao, J. Chen, and L. Zhang, “Diffusion approximated kernel least mean P -power algorithm,” in Proc. IEEE

International Conference on Signal Processing, Communications and Computing (ICSPCC), 2019, pp. 1–6.

[24] P. Bouboulis, S. Chouvardas, and S. Theodoridis, “Online distributed learning over networks in RKH spaces using

random Fourier features,” IEEE Transactions on Signal Processing, vol. 66, pp. 1920–1932, Apr. 2018.

[25] P. Bouboulis, S. Theodoridis, and S. Chouvardas, “A random Fourier features perspective of KAFs with application to

distributed learning over networks,” in Adaptive Learning Methods for Nonlinear System Modeling, D. Comminiello and

J. C. Pŕıncipe, Eds., chapter 7, pp. 149–172. Elsevier, 2018.

53

[26] V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, “Adaptive graph filters in reproducing kernel Hilbert

spaces: Design and performance analysis,” IEEE Transactions on Signal and Information Processing over Networks,

vol. 7, pp. 62–74, Dec. 2020.

[27] R. Mitra and G. Kaddoum, “Random Fourier feature-based deep learning for wireless communications,” IEEE Trans-

actions on Cognitive Communications and Networking, vol. 8, pp. 468–479, Apr. 2022.

[28] R. Nassif, C. Richard, J. Chen, and A. H. Sayed, “Distributed diffusion adaptation over graph signals,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 4129–4133.

[29] F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “A preconditioned graph diffusion LMS for adaptive graph

signal processing,” in Proc. European Signal Processing Conference (EUSIPCO), 2018, pp. 111–115.

[30] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, “Distributed adaptive learning of graph signals,” IEEE

Transactions on Signal Processing, vol. 65, pp. 4193–4208, May 2017.

[31] P. Di Lorenzo, E. Isufi, P. Banelli, S. Barbarossa, and G. Leus, “Distributed recursive least squares strategies for adaptive

reconstruction of graph signals,” in Proc. European Signal Processing Conference (EUSIPCO), 2017, pp. 2289–2293.

[32] K. Yuan, B. Ying, X. Zhao, and A. H. Sayed, “Exact diffusion for distributed optimization and learning – part I:

Algorithm development,” IEEE Transactions on Signal Processing, vol. 67, pp. 708–723, Oct. 2018.

[33] Kun Yuan, Bicheng Ying, Xiaochuan Zhao, and Ali H Sayed, “Exact diffusion for distributed optimization and learn-

ing—part II: Convergence analysis,” IEEE Transactions on Signal Processing, vol. 67, pp. 724–739, Oct. 2018.

[34] V. Bordignon, V. Matta, and A. H. Sayed, “Adaptive social learning,” IEEE Transactions on Information Theory, vol.

67, pp. 6053–6081, Jul. 2021.

[35] Y. Inan, M. Kayaalp, E. Telatar, and A. H. Sayed, “Social learning under randomized collaborations,” in Proc. IEEE

International Symposium on Information Theory (ISIT), 2022, pp. 115–120.

[36] P. Hu, V. Bordignon, S. Vlaski, and A. H. Sayed, “Optimal combination policies for adaptive social learning,” in Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 5842–5846.

[37] A. H. Sayed, S.-Y. Tu, J. Chen, X. Zhao, and Z. J. Towfic, “Diffusion strategies for adaptation and learning over

networks,” vol. 30, pp. 155–171, May 2013.

[38] R. Nassif, S. Vlaski, C. Richard, J. Chen, and A. H. Sayed, “Multitask learning over graphs: An approach for distributed,

streaming machine learning,” IEEE Signal Processing Magazine, vol. 37, pp. 14–25, May 2020.

[39] S. Modalavalasa, U. K. Sahoo, A. K. Sahoo, and S. Baraha, “A review of robust distributed estimation strategies over

wireless sensor networks,” Signal Processing, vol. 188, pp. 108150, Nov. 2021.

[40] S. Vlaski, S. Kar, A. H. Sayed, and J. M. F. Moura, “Networked signal and information processing: Learning by

multiagent systems,” IEEE Signal Processing Magazine, vol. 40, pp. 92–105, Jul. 2023.

[41] G. J. Pottie, “Wireless sensor networks,” in Proc. IEEE Information Theory Workshop (Cat. No. 98EX131), 1998, pp.

139–140.

[42] J. C. Haartsen, “The Bluetooth radio system,” IEEE Personal Communications, vol. 7, pp. 28–36, Feb. 2000.

[43] B. P. Crow, I. Widjaja, J. G. Kim, and P. T. Sakai, “IEEE 802.11 wireless local area networks,” IEEE Communications

Magazine, vol. 35, pp. 116–126, Sep. 1997.

[44] J. Lansford, A. Stephens, and R. Nevo, “Wi-Fi (802.11b) and Bluetooth: enabling coexistence,” IEEE Network, vol. 15,

pp. 20–27, Sept.–Oct. 2001.

[45] “First 3G mobiles launched in japan.” BBC News. http://news.bbc.co.uk/2/hi/business/1572372.stm (accessed Mar.

12, 2023).

[46] K. Bult, A. Burstein, D. Chang, M. Dong, M. Fielding, E. Kruglick, J. Ho, F. Lin, T. H. Lin, W. J. Kaiser, et al.,

“Low power systems for wireless microsensors,” in Proc. IEEE International Symposium on Low Power Electronics and

Design, 1996, pp. 17–21.

54

http://news.bbc.co.uk/2/hi/business/1572372.stm

[47] M. J. Dong, K. G. Yung, and W. J. Kaiser, “Low power signal processing architectures for network microsensors,” in

Proc. IEEE International Symposium on Low Power Electronics and Design, 1997, pp. 173–177.

[48] T.-H. Lin, H. Sanchez, R. Rofougaran, and W. J. Kaiser, “CMOS front end components for micropower RF wireless

systems,” in Proc. IEEE International Symposium on Low Power Electronics and Design, 1998, pp. 11–15.

[49] G. J. Pottie and W. J. Kaiser, “Wireless integrated network sensors,” Communications of the ACM, vol. 43, pp. 51–58,

May 2000.

[50] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications

Magazine, vol. 40, pp. 102–114, Aug. 2002.

[51] D. Estrin, L. Girod, G. Pottie, and M. Srivastava, “Instrumenting the world with wireless sensor networks,” in Proc.

IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 01CH37221), 2001,

vol. 4, pp. 2033–2036.

[52] J. M. Rabaey, M. J. Ammer, J. L. Da Silva, D. Patel, and S. Roundy, “Picoradio supports ad hoc ultra-low power

wireless networking,” Computer, vol. 33, pp. 42–48, Jul. 2000.

[53] S. C. Ergen, “Zigbee/IEEE 802.15. 4 summary,” UC Berkeley, Berkeley, CA, USA, vol. 10, pp. 11, Sep. 2004.

[54] D. Carlson, M. Shamsi, T. Schnaare, D. Daugherty, J. Potter, M. Nixon, et al., “IEC 62591 WirelessHART® system

engineering guide,” Revision 3.0 ed.: Emerson Process Management, 2012.

[55] D. Sexton, “SP100. 11a overview,” DOE Award DE-FC36-02GO14001, GE Global Research, Research Triangle Park,

NC, 2007.

[56] D. Culler, and S. Chakrabarti, “6LoWPAN: Incorporating IEEE 802.15. 4 into the IP architecture.” Paris, France, IPSO

Alliance, White Paper, 2009.

[57] J. B. Predd, S. B. Kulkarni, and H. V. Poor, “Distributed learning in wireless sensor networks,” IEEE Signal Processing

Magazine, vol. 23, pp. 56–69, Jul. 2006.

[58] C. Lopes and A. H. Sayed, “Distributed processing over adaptive networks,” in Proc. Adaptive Sensor Array Processing

Workshop, 2006, pp. 1-5.

[59] C. G. Lopes and A. H. Sayed, “Distributed adaptive incremental strategies: Formulation and performance analysis,” in

Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2006, vol. 3, pp. 584–587.

[60] A. H. Sayed and C. G. Lopes, “Adaptive processing over distributed networks,” IEICE Transactions on Fundamentals

of Electronics, Communications, and Computer Sciences, vol. E90-A, pp. 1504–1510, Aug. 2007.

[61] J. K. Tugnait, H. Liu, G. Gong, and T. Li, “Editorial,” EURASIP Journal on Wireless Communications and Networking,

vol. 2004, Dec. 2004.

[62] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, pp. 268–276, Mar. 2001.

[63] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, “Graph structure

in the web,” Computer Networks, vol. 33, pp. 309–320, Jun. 2000.

[64] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the internet topology,” ACM SIGCOMM

Computer Communication Review, vol. 29, pp. 251–262, Oct. 1999.

[65] “Dimensions publications analytical views.” Dimensions. https://app.dimensions.ai/analytics/publication/

overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_

field=text_search&year_from=1990&year_to=2022 (accessed Mar. 22, 2024)

[66] British Broadcasting Company. “First 3G mobiles launched in Japan,”. BBC News. http://news.bbc.co.uk/2/hi/

business/1572372.stm (accessed Mar. 22, 2024).

[67] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems & Control Letters, vol. 53, no.1, pp.

65–78, Sep. 2004.

[68] S. Boyd L. Xiao and S. Lall, “A space-time diffusion scheme for peer-to-peer least-squares estimation,” in Proc.

55

https://app.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&year_from=1990&year_to=2022
https://app.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&year_from=1990&year_to=2022
https://app.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&year_from=1990&year_to=2022
http://news.bbc.co.uk/2/hi/business/1572372.stm
http://news.bbc.co.uk/2/hi/business/1572372.stm

International Conference on Information Processing in Sensor Networks, 2006, pp. 168–176.

[69] R. Olfati-Saber and J. S. Shamma, “Consensus filters for sensor networks and distributed sensor fusion,” in Proc. IEEE

Conference on Decision and Control, 2005, pp. 6698–6703.

[70] I. D. Schizas, A. Ribeiro, and G. B. Giannakis, “Consensus in ad hoc WSN’s with noisy links – part I: Distributed

estimation of deterministic signals,” IEEE Transactions on Signal Processing, vol. 56, pp. 350–364, Jan. 2008.

[71] I. D. Schizas, G. B. Giannakis, S. I. Roumeliotis, and A. Ribeiro, “Consensus in ad hoc WSN’s with noisy links—part

II: Distributed estimation and smoothing of random signals,” IEEE Transactions on Signal Processing, vol. 56, pp.

1650–1666, Apr. 2008.

[72] C. G. Lopes and A. H. Sayed, “Distributed adaptive incremental strategies: Formulation and performance analysis,” in

Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2006, vol. III, pp. 584–587.

[73] C. G. Lopes and A. H. Sayed, “Incremental adaptive strategies over distributed networks,” IEEE Transactions on Signal

Processing, vol. 55, no.8, pp. 4064–4077, Aug. 2007.

[74] A. H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.

[75] S. Haykin, Adaptive Filter Theory, Prentice Hall, Upper Saddle River, 4th edition, 2002.

[76] P. Di Lorenzo, S. Barbarossa and A. H. Sayed, “Decentralized resource assignment in cognitive networks based on

swarming mechanisms over random graphs,” IEEE Transactions on Signal Processing, vol. 60, pp. 3755–3769, Jul. 2012.

[77] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Directed diffusion for wireless sensor network-

ing,” IEEE/ACM Transactions on Networking, vol. 11, pp. 2–16, Feb. 2003.

[78] M. Alanyali, S. Venkatesh, O. Savas, and S. Aeron, “Distributed Bayesian hypothesis testing in sensor networks,” in

Proc. American control conference, 2004, vol. 6, pp. 5369–5374.

[79] V. Delouille, R. Neelamani, and R. Baraniuk, “Robust distributed estimation in sensor networks using the embedded

polygons algorithm,” in Proc. International Symposium on Information Processing in Sensor Networks, 2004, pp.

405–413.

[80] Z.-Q. Luo, “An isotropic universal decentralized estimation scheme for a bandwidth constrained ad hoc sensor network,”

IEEE Journal on selected areas in communications, vol. 23, no. 4, pp. 735–744, Apr. 2005.

[81] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents with switching topology and time-delays,”

IEEE Transactions on Automatic Control, vol. 49, pp. 1520–1533, Sep. 2004.

[82] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” in Proc.

International Symposium on Information Processing in Sensor Networks (ISPSN), 2005, pp. 63–70.

[83] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Dynamic consensus on mobile networks,” in IFAC World Congress,

2005, pp. 1–6.

[84] S. Barbarossa and G. Scutari, “Bio-inspired sensor network design,” IEEE Signal Processing Magazine, vol. 24, pp.

26–35, May 2007.

[85] M. G. Rabbat and R. D. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE Journal on

Selected Areas in Communications, vol. 23, no. 4, pp. 798–808, Apr. 2005.

[86] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical Association, vol. 69, no. 345, pp. 118–121,

Apr. 1974.

[87] R. L. Berger, “A necessary and sufficient condition for reaching a consensus using DeGroot’s method,” Journal of the

American Statistical Association, vol. 76, no. 374, pp. 415–418, Jun. 1981.

[88] S. Arora and B. Barak, Computational complexity: a modern approach, Cambridge University Press, 2009.

[89] B. Johansson, T. Keviczky, M. Johansson, and K. H. Johansson, “Subgradient methods and consensus algorithms for

solving convex optimization problems,” in Proc. IEEE Conference on Decision and Control, 2008, pp. 4185–4190.

[90] I. D. Schizas, G. Mateos, and G. B. Giannakis, “Distributed LMS for consensus-based in-network adaptive processing,”

56

IEEE Transactions on Signal Processing, vol. 57, pp. 2365–2382, Jun. 2009.

[91] A. G. Dimakis, S. Kar, J. M. F. Moura, M. G. Rabbat, and A. Scaglione, “Gossip algorithms for distributed signal

processing,” Proceedings of the IEEE, vol. 98, pp. 1847–1864, Nov. 2010.

[92] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2007, vol. 3, pp. 917–920.

[93] S.-Y. Tu and A. H. Sayed, “Diffusion strategies outperform consensus strategies for distributed estimation over adaptive

networks,” IEEE Transactions on Signal Processing, vol. 60, pp. 6217–6234, Dec. 2012.

[94] R. Abdolee and B. Champagne, “Distributed blind adaptive algorithms based on constant modulus for wireless sensor

networks,” in Proc. International Conference on Wireless and Mobile Communications, 2010, pp. 303–308.

[95] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed incremental-based LMS for node-specific adaptive

parameter estimation,” IEEE Transactions on Signal Processing, vol. 62, pp. 5382–5397, Oct. 2014.

[96] L. Lu and H. Zhao, “Diffusion leaky LMS algorithm: Analysis and implementation,” Signal processing, vol. 140, pp.

77–86, Nov. 2017.

[97] H. Yu and X. Xia, “Adaptive consensus of multi-agents in networks with jointly connected topologies,” Automatica, vol.

48, pp. 1783–1790, Aug. 2012.

[98] F. Xiao and T. Chen, “Adaptive consensus in leader-following networks of heterogeneous linear systems,” IEEE Trans-

actions on Control of Network Systems, vol. 5, pp. 1169–1176, Sep. 2018.

[99] H. Zhang, X. Zhou, Z. Wang, H. Yan, and J. Sun, “Adaptive consensus-based distributed target tracking with dynamic

cluster in sensor networks,” IEEE Transactions on Cybernetics, vol. 49, pp. 1580–1591, May 2019.

[100] R. Arablouei, S. Werner, Y.-F. Huang, and K. Doğançay, “Distributed least mean-square estimation with partial diffu-

sion,” IEEE Transactions on Signal Processing, vol. 62, pp. 472–484, Nov. 2013.

[101] S. Xu, R. C. De Lamare, and H. V. Poor, “Dynamic topology adaptation for distributed estimation in smart grids,”

in Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

2013, pp. 420–423.

[102] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Trading off complexity with communication costs in distributed adaptive

learning via Krylov subspaces for dimensionality reduction,” IEEE Journal of Selected Topics in Signal Processing, vol.

7, pp. 257–273, Apr. 2013.

[103] M. O. Sayin and S. S. Kozat, “Compressive diffusion strategies over distributed networks for reduced communication

load,” IEEE Transactions on Signal Processing, vol. 62, pp. 5308–5323, Oct. 2014.

[104] S. Xu, R. C. De Lamare, and H. V. Poor, “Distributed compressed estimation based on compressive sensing,” IEEE

Signal Processing Letters, vol. 22, pp. 1311–1315, Feb. 2015.

[105] S. Gupta, A. K. Sahoo, and U. K. Sahoo, “Partial diffusion over distributed networks to reduce inter-node communica-

tion,” in Proc. IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), 2017,

pp. 1–6.

[106] I. E. K. Harrane, R. Flamary, and C. Richard, “On reducing the communication cost of the diffusion LMS algorithm,”

IEEE Transactions on Signal and Information Processing over Networks, vol. 5, pp. 100–112, Mar. 2019.

[107] M. Carpentiero, V. Matta, and A. H. Sayed, “Adaptive diffusion with compressed communication,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2022, pp. 5672–5676.

[108] M. Carpentiero, V. Matta, and A. H. Sayed, “Compressed distributed regression over adaptive networks,” in Proc. IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[109] C. G. Lopes and A. H. Sayed, “Diffusion adaptive networks with changing topologies,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008, pp. 3285–3288.

[110] S. Werner, Y.-F. Huang, M. L. R. De Campos, and V. Koivunen, “Distributed parameter estimation with selective

57

cooperation,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2009, pp.

2849–2852.

[111] N. Takahashi and I. Yamada, “Link probability control for probabilistic diffusion least-mean squares over resource-

constrained networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2010, pp. 3518–3521.

[112] Ø. L. Rørtveit, J. H. Hursøy, and A. H. Sayed, “Diffusion LMS with communication constraints,” in Proc. Asilomar

Conference on Signals, Systems and Computers, 2010, pp. 1645–1649.

[113] X. Zhao and A. H. Sayed, “Single-link diffusion strategies over adaptive networks,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012, pp. 3749–3752.

[114] S. Xu, R. C. de Lamare, and H. V. Poor, “Adaptive link selection algorithms for distributed estimation,” EURASIP

Journal on Advances in Signal Processing, vol. 2015, pp. 86, Oct. 2015.

[115] R. Arablouei, S. Werner, K. Doğançay, and Y.-F. Huang, “Analysis of a reduced-communication diffusion LMS algo-

rithm,” Signal Processing, vol. 117, pp. 355–361, Dec. 2015.

[116] F. Chen and X. Shao, “Broken-motifs diffusion LMS algorithm for reducing communication load,” Signal Processing,

vol. 133, pp. 213–218, Apr. 2017.

[117] A. Rastegarnia, “Reduced-communication diffusion RLS for distributed estimation over multi-agent networks,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 67, pp. 177–181, Jan. 2020.

[118] R. Arroyo-Valles, S. Maleki, and G. Leus, “A censoring strategy for decentralized estimation in energy-constrained

adaptive diffusion networks,” in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications

(SPAWC), 2013, pp. 155–159.

[119] O. N. Gharehshiran, V. Krishnamurthy, and G. Yin, “Distributed energy-aware diffusion least mean squares: Game-

theoretic learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, pp. 821–836, Oct. 2013.

[120] J. Fernandez-Bes, R. Arroyo-Valles, J. Arenas-Garćıa, and J. Cid-Sueiro, “Censoring diffusion for harvesting WSN’s,”

in Proc. IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),

2015, pp. 237–240.

[121] D. K. Berberidis, V. Kekatos, G. Wang, and G. B. Giannakis, “Adaptive censoring for large-scale regressions,” in Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2015, pp. 5475–5479.

[122] C.-K. Yu, M. Van Der Schaar, and A. H. Sayed, “Information-sharing over adaptive networks with self-interested agents,”

IEEE Transactions on Signal and Information Processing over Networks, vol. 1, pp. 2–19, Mar. 2015.

[123] Z. Wang, Z. Yu, Q. Ling, D. Berberidis, and G. B. Giannakis, “Distributed recursive least-squares with data-adaptive

censoring,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017, pp.

5860–5864.

[124] Z. Wang, Z. Yu, Q. Ling, D. Berberidis, and G. B. Giannakis, “Decentralized RLS with data-adaptive censoring for

regressions over large-scale networks,” IEEE Transactions on Signal Processing, vol. 66, pp. 1634–1648, Mar. 2018.

[125] L. Yang, H. Zhu, K. Kang, X. Luo, H. Qian, and Y. Yang, “Distributed censoring with energy constraint in wireless

sensor networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018,

pp. 6428–6432.

[126] L. Yang, H. Zhu, H. Wang, K. Kang, and H. Qian, “Data censoring with network lifetime constraint in wireless sensor

networks,” Digital Signal Processing, vol. 92, pp. 73–81, Sep. 2019.

[127] D. G. Tiglea, R. Candido, and M. T. M. Silva, “A low-cost algorithm for adaptive sampling and censoring in diffusion

networks,” IEEE Transactions on Signal Processing, vol. 69, pp. 58–72, Jan. 2021.

[128] D. G. Tiglea, R. Candido, and M. T. M. Silva, “An adaptive algorithm for sampling over diffusion networks with dynamic

parameter tuning and change detection mechanisms,” Digital Signal Processing, vol. 127, pp. 103587, Jul. 2022.

58

[129] P. Xu, Y. Wang, X. Chen, and Z. Tian, “COKE: Communication-censored decentralized kernel learning,” Journal of

Machine Learning Research, vol. 22, pp. 1–35, Jan. 2021.

[130] D. G. Tiglea, R. Candido, L. A. Azpicueta-Ruiz, and M. T. M. Silva, “Reducing the communication and computational

cost of random Fourier features kernel LMS in diffusion networks,” in Proc. IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2023, pp. 1–5.

[131] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks – part I: Modeling and stability

analysis,” IEEE Transactions on Signal Processing, vol. 63, pp. 811–826, Feb. 2015.

[132] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks – part II: Performance analysis,” IEEE

Transactions on Signal Processing, vol. 63, pp. 827–842, Feb. 2015.

[133] X. Zhao and A. H. Sayed, “Asynchronous adaptation and learning over networks – part III: Comparison analysis,” IEEE

Transactions on Signal Processing, vol. 63, pp. 843–858, Feb. 2015.

[134] W. Liu, J. C. Principe, and S. Haykin, Kernel adaptive filtering: a comprehensive introduction, vol. 57, John Wiley &

Sons, 2011.

[135] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-squares algorithm,” IEEE Transactions on Signal

Processing, vol. 52, pp. 2275–2285, Aug. 2004.

[136] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online prediction of time series data with kernels,” IEEE Transactions

on Signal Processing, vol. 57, pp. 1058–1067, Mar. 2009.

[137] S. N. Simić and S. Sastry, “Distributed environmental monitoring using random sensor networks,” in Information

Processing in Sensor Networks. Springer, 2003, pp. 582–592.

[138] X. Li, Q. Shi, S. Xiao, S. Duan, and F. Chen, “A robust diffusion minimum kernel risk-sensitive loss algorithm over

multitask sensor networks,” Sensors, vol. 19, pp. 2339, May 2019.

[139] R. Nassif, C. Richard, A. Ferrari, and A. H. Sayed, “Multitask diffusion adaptation over asynchronous networks,” IEEE

Transactions on Signal Processing, vol. 64, pp. 2835–2850, Jun. 2016.

[140] P. M. Djurić, “Editorial,” IEEE Transactions on Signal and Information Processing over Networks, vol. 1, pp. 1–1,

2015.

[141] S. O’Dea, “Number of smartphones sold to end users worldwide from 2007 to 2021 (in million units),” Statista. https:

//www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/ (accessed on Mar. 22,

2024).

[142] A. Perrin, “Social media usage,” Pew research center, vol. 125, pp. 52–68, Oct. 2015.

[143] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, A. H. Byers, et al., Big data: The next frontier for

innovation, competition, and productivity, McKinsey Global Institute, 2011.

[144] M. Zwolenski and L. Weatherill, “The digital universe: Rich data and the increasing value of the internet of things,”

Journal of Telecommunications and the Digital Economy, vol. 2, p. 47, Sep. 2014.

[145] A. Osseiran, J. F. Monserrat, and P. Marsch, 5G mobile and wireless communications technology, Cambridge University

Press, 2016.

[146] M. H. Miraz, M. Ali, P. S. Excell, and R. Picking, “A review on internet of things (IoT), internet of everything (IoE)

and internet of nano things (IoNT),” in Proc. Internet Technologies and Applications (ITA), 2015, pp. 219–224.

[147] S. Kumar and Z. Raza, “Internet of things: possibilities and challenges,” International Journal of Systems and Service-

Oriented Engineering (IJSSOE), vol.7, pp. 1–24, Jul. 2017.

[148] B. Latré, B. Braem, I. Moerman, C. Blondia, and P. Demeester, “A survey on wireless body area networks,” Wireless

Networks, vol. 17, pp. 1–18, Nov. 2010.

[149] R. Negra, I. Jemili, and A. Belghith, “Wireless body area networks: Applications and technologies,” Procedia Computer

Science, vol. 83, pp. 1274–1281, 2016.

59

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/

[150] D. P. Tobón, T. H. Falk, and M. Maier, “Context awareness in WBANs: a survey on medical and non-medical applica-

tions,” IEEE Wireless Communications, vol. 20, pp. 30–37, Aug. 2013.

[151] A. Bertrand, “Distributed signal processing for wireless eeg sensor networks,” IEEE Transactions on Neural Systems

and Rehabilitation Engineering, vol. 23, pp. 923–935, Nov. 2015.

[152] A. Z. Abbasi, N. Islam, Z. A. Shaikh, et al., “A review of wireless sensors and networks’ applications in agriculture,”

Computer Standards & Interfaces, vol. 36, pp. 263–270, Feb. 2014.

[153] J. Plata-Chaves, A. Bertrand, M. Moonen, S. Theodoridis, and A. M. Zoubir, “Heterogeneous and multitask wireless

sensor networks—algorithms, applications, and challenges,” IEEE Journal of Selected Topics in Signal Processing, vol.

11, pp. 450–465, Apr. 2017.

[154] A. Sandryhaila and J. M. F. Moura, “Discrete signal processing on graphs,” IEEE Transactions on Signal Processing,

vol. 61, pp. 1644–1656, Apr. 2013.

[155] P. Di Lorenzo, S. Barbarossa, P. Banelli, and S. Sardellitti, “Adaptive least mean squares estimation of graph signals,”

IEEE Transactions on Signal and Information Processing over Networks, vol. 2, pp. 555–568, Dec. 2016.

[156] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “The emerging field of signal processing on

graphs: Extending high-dimensional data analysis to networks and other irregular domains,” IEEE Signal Processing

Magazine, vol. 30, pp. 83–98, May 2013.

[157] A. Ortega, P. Frossard, J. Kovačević, J. M. F. Moura, and P. Vandergheynst, “Graph signal processing: Overview,

challenges, and applications,” Proceedings of the IEEE, vol. 106, pp. 808–828, May 2018.

[158] X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from data: A signal representation perspective,”

IEEE Signal Processing Magazine, vol. 36, pp. 44–63, May 2019.

[159] G. B Giannakis, Y. Shen, and G. V. Karanikolas, “Topology identification and learning over graphs: Accounting for

nonlinearities and dynamics,” Proceedings of the IEEE, vol. 106, pp. 787–807, May 2018.

[160] A. Sandryhaila and J. M. F. Moura, “Big data analysis with signal processing on graphs: Representation and processing

of massive data sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31, pp. 80–90, Sep. 2014.

[161] J. M. F. Moura, “Chapter 8 - Graph Signal Processing,” in Cooperative and Graph Signal Processing, Petar M Djurić

and Cédric Richard, Eds., pp. 239–259. Academic Press, 2018.

[162] B. Liu, Z. Ding, and C. Lv, “Distributed training for multi-layer neural networks by consensus,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 31, pp. 1771–1778, May 2020.

[163] B. Liu and Z. Ding, “Distributed heuristic adaptive neural networks with variance reduction in switching graphs,” IEEE

Transactions on Cybernetics, vol. 51, pp. 3836–3844, Jul. 2021.

[164] S. Vlaski and A. H. Sayed, “Competing adaptive networks,” in Proc. IEEE Statistical Signal Processing Workshop

(SSP), 2021, pp. 71–75.

[165] Z. Wang, F. R. M. Pavan, and A. H. Sayed, “Decentralized GAN training through diffusion learning,” in Proc. IEEE

International Workshop on Machine Learning for Signal Processing (MLSP), 2022, pp. 1–6.

[166] N. Rieke, J. Hancox, W. Li, F. Milletari, H. R. Roth, S. Albarqouni, S. Bakas, M. N. Galtier, B. A. Landman, K.

Maier-Hein, et al., “The future of digital health with federated learning,” NPJ Digital Medicine, vol. 3, pp. 1–7, Sep.

2020.

[167] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments—part I: Agreement at a linear rate,” IEEE

Transactions on Signal Processing, vol. 69, pp. 1242–1256, Jan. 2021.

[168] S. Vlaski and A. H. Sayed, “Distributed learning in non-convex environments—part II: Polynomial escape from saddle-

points,” IEEE Transactions on Signal Processing, vol. 69, pp. 1257–1270, Jan. 2021.

[169] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon, “Federated learning: Strategies for

improving communication efficiency,” arXiv preprint arXiv:1610.05492, Oct. 2016.

60

[170] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Distributed machine learning for

on-device intelligence,” arXiv preprint arXiv:1610.02527, Oct. 2016.

[171] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Challenges, methods, and future directions,” IEEE

Signal Processing Magazine, vol. 37, pp. 50–60, May 2020.

[172] S. Niknam, H. S. Dhillon, and J. H. Reed, “Federated learning for wireless communications: Motivation, opportunities,

and challenges,” IEEE Communications Magazine, vol. 58, pp. 46–51, Jan. 2020.

[173] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon, J. Konečnỳ, S. Mazzocchi, B.

McMahan, et al., “Towards federated learning at scale: System design,” Proceedings of Machine Learning and Systems,

vol. 1, pp. 374–388, 2019.

[174] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean squares with adaptive combiners: Formulation and

performance analysis,” IEEE Transactions on Signal Processing, vol. 58, pp. 4795–4810, Sep. 2010.

[175] A. Bertrand, M. Moonen, and A. H. Sayed, “Diffusion bias-compensated RLS estimation over adaptive networks,” IEEE

Transactions on Signal Processing, vol. 59, pp. 5212–5224, Nov. 2011.

[176] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Adaptive distributed estimation based on recursive least-

squares and partial diffusion,” IEEE Transactions on Signal Processing, vol. 62, pp. 3510–3522, Jul. 2014.

[177] Z. Liu, Y. Liu, and C. Li, “Distributed sparse recursive least-squares over networks,” IEEE Transactions on Signal

Processing, vol. 62, pp. 1386–1395, Mar. 2014.

[178] S. A. Baqi, A. Zerguine, and M. O. B. Saeed, “Diffusion normalized least mean squares over wireless sensor networks,”

in Proc. International Wireless Communications and Mobile Computing Conference (IWCMC), 2013, pp. 1454–1457.

[179] S. M. Jung, J.-H. Seo, and P. G. Park, “A variable step size diffusion normalized least-mean-square algorithm with a

combination method based on mean-square deviation,” Circuits, Systems, and Signal Processing, vol. 34, pp. 3291–3304,

Feb. 2015.

[180] L. Li and J. A. Chambers, “Distributed adaptive estimation based on the APA algorithm over diffusion networks with

changing topology,” in Proc. IEEE Workshop on Statistical Signal Processing (SSP), 2009, pp. 757–760.

[181] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Adaptive robust distributed learning in diffusion sensor networks,”

IEEE Transactions on Signal Processing, vol. 59, pp. 4692–4707, Oct. 2011.

[182] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Proc. International Symposium on Infor-

mation Processing in Sensor Networks (IPSN), 2004, pp. 20–27.

[183] Z. Li and S. Guan, “Diffusion normalized Huber adaptive filtering algorithm,” Journal of the Franklin Institute, vol.

355, pp. 3812–3825, May 2018.

[184] Y. Yu, H. Zhao, W. Wang, and L. Lu, “Robust diffusion Huber-based normalized least mean square algorithm with

adjustable thresholds,” Circuits, Systems, and Signal Processing, vol. 39, pp. 2065–2093, Apr. 2020.

[185] I. Markovsky and S. Van Huffel, “Overview of total least-squares methods,” Signal Processing, vol. 87, pp. 2283–2302,

Oct. 2007.

[186] R. Arablouei, S. Werner, and K. Doğançay, “Diffusion-based distributed adaptive estimation utilizing gradient-descent

total least-squares,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

2013, pp. 5308–5312.

[187] C. Li, S. Huang, Y. Liu, and Y. Liu, “Distributed TLS over multitask networks with adaptive intertask cooperation,”

IEEE Transactions on Aerospace and Electronic Systems, vol. 52, pp. 3036–3052, Dec. 2016.

[188] Z. Wang, L. Jia, and Z. Yang, “Multi-task total least-squares adaptation over networks,” in Proc. Chinese Control

Conference (CCC), 2018, pp. 4300–4304.

[189] L. Li, H. Zhao, and S. Lv, “Diffusion recursive total least square algorithm over adaptive networks and performance

analysis,” Signal Processing, vol. 182, pp. 107954, May 2021.

61

[190] H. Zhao, Y. Chen, and S. Lv, “Robust diffusion total least mean m-estimate adaptive filtering algorithm and its

performance analysis,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, pp. 654–658, Feb. 2022.

[191] V. Matta, P. Braca, S. Marano, and A. H. Sayed, “Diffusion-based adaptive distributed detection: Steady-state per-

formance in the slow adaptation regime,” IEEE Transactions on Information Theory, vol. 62, pp. 4710–4732, Aug.

2016.

[192] V. Matta, P. Braca, S. Marano, and A. H. Sayed, “Distributed detection over adaptive networks: Refined asymptotics

and the role of connectivity,” IEEE Transactions on Signal and Information Processing over Networks, vol. 2, pp.

442–460, Dec. 2016.

[193] S. Al-Sayed, J. Plata-Chaves, M. Muma, M. Moonen, and A. M. Zoubir, “Node-specific diffusion LMS-based distributed

detection over adaptive networks,” IEEE Transactions on Signal Processing, vol. 66, pp. 682–697, Feb. 2018.

[194] A. E. Feitosa, V. H. Nascimento, and C. G. Lopes, “Adaptive detection in distributed networks using maximum likelihood

detector,” IEEE Signal Processing Letters, vol. 25, pp. 974–978, Jul. 2018.

[195] Y. Liu, C. Li, and Z. Zhang, “Diffusion sparse least-mean squares over networks,” IEEE Transactions on Signal

Processing, vol. 60, pp. 4480–4485, Aug. 2012.

[196] S. Chouvardas, K. Slavakis, Y. Kopsinis, and S. Theodoridis, “A sparsity promoting adaptive algorithm for distributed

learning,” IEEE Transactions on Signal Processing, vol. 60, pp. 5412–5425, Oct. 2012.

[197] P. Di Lorenzo and A. H. Sayed, “Sparse distributed learning based on diffusion adaptation,” IEEE Transactions on

Signal Processing, vol. 61, pp. 1419–1433, Mar. 2013.

[198] P. Di Lorenzo, “Diffusion adaptation strategies for distributed estimation over Gaussian Markov random fields,” IEEE

Transactions on Signal Processing, vol. 62, pp. 5748–5760, Nov. 2014.

[199] B. Ying, K. Yuan, and A. H. Sayed, “Supervised Learning Under Distributed Features,” IEEE Transactions on Signal

Processing, vol. 67, pp. 977–992, Feb. 2019.

[200] Y. Liu, X. Zhang, Y. Kang, L. Li, T. Chen, M. Hong, and Q. Yang, “FedBCD: A Communication-Efficient Collaborative

Learning Framework for Distributed Features,” IEEE Transactions on Signal Processing, vol. 70, pp. 4277–4290, Aug.

2022.

[201] C. A. Musluoglu, and A. Bertrand, “A Unified Algorithmic Framework for Distributed Adaptive Signal and Feature

Fusion Problems – Part I: Algorithm Derivation,” IEEE Transactions on Signal Processing, vol. 71, pp. 1863–1878, May

2023.

[202] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis, “Convergence in multiagent coordination, consensus,

and flocking,” in Proc. IEEE Conference on Decision and Control European Control Conference (CDC-ECC), 2005,

pp. 2996–3000.

[203] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, “Equation of state calculations by fast

computing machines,” The Journal of Chemical Physics, vol. 21, pp. 1087–1092, Jun. 1953.

[204] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their applications,” Biometrika, vol. 57, pp.

97–109, Apr. 1970.

[205] X. Zhao and A. H. Sayed, “Performance limits for distributed estimation over LMS adaptive networks,” IEEE Transac-

tions on Signal Processing, vol. 60, pp. 5107–5124, Oct. 2012.

[206] S.-Y. Tu and A. H. Sayed, “Optimal combination rules for adaptation and learning over networks,” in Proc. IEEE

International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2011, pp. 317–

320.

[207] X. Zhao, S.-Y. Tu, and A. H. Sayed, “Diffusion adaptation over networks under imperfect information exchange and

non-stationary data,” IEEE Transactions on Signal Processing, vol. 60, pp. 3460–3475, Jul. 2012.

[208] C.-K. Yu and A. H. Sayed, “A strategy for adjusting combination weights over adaptive networks,” in Proc. IEEE

62

International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2013, pp. 4579–4583.

[209] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a graph,” SIAM Review, vol. 46, pp. 667–689, Dec.

2004.

[210] J. Fernandez-Bes, J. Arenas-Garćıa, and A. H. Sayed, “Adjustment of combination weights over adaptive diffusion

networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp.

6409–6413.

[211] J. Fernandez-Bes, L. A. Azpicueta-Ruiz, J. Arenas-Garćıa, and M. T. M. Silva, “Distributed estimation in diffusion

networks using affine least-squares combiners,” Digital Signal Processing, vol. 36, pp. 1–14, Jan. 2015.

[212] A. Nakai and K. Hayashi, “An adaptive combination rule for diffusion LMS based on consensus propagation,” in Proc.

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2018, pp. 3839–3843.

[213] J. Fernandez-Bes, J. Arenas-Garcia, M. T. M. Silva, and L. A. Azpicueta-Ruiz, “Adaptive diffusion schemes for hetero-

geneous networks,” IEEE Transactions on Signal Processing, vol. 65, pp. 5661–5674, Nov. 2017.

[214] C. C. Moallemi and B. Van Roy, “Consensus propagation,” IEEE Transactions on Information Theory, vol. 52, pp.

4753–4766, Nov. 2006.

[215] R. Abdolee and V. Vakilian, “An iterative scheme for computing combination weights in diffusion wireless networks,”

IEEE Wireless Communications Letters, vol. 6, pp. 510–513, Aug. 2017.

[216] C. G. Lopes, L. F. O. Chamon, and V. H. Nascimento, “Towards spatially universal adaptive diffusion networks,” in

Proc. IEEE Global Conference on Signal and Information Processing (GlobalSIP), 2014, pp. 803–807.

[217] J.-H. Seo, S. M. Jung, and P.G. Park, “A diffusion subband adaptive filtering algorithm for distributed estimation using

variable step size and new combination method based on the MSD,” Digital Signal Processing, vol. 48, pp. 361–369, Jan.

2016.

[218] Y. E. Erginbas, S. Vlaski, and A. H. Sayed, “Gramian-based adaptive combination policies for diffusion learning over

networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2021, pp.

5215–5219.

[219] M. Ergen and P. Varaiya, “Decomposition of energy consumption in IEEE 802.11,” in Proc. IEEE International

Conference on Communications, 2007, pp. 403–408.

[220] L. M. Feeney and M. Nilsson, “Investigating the energy consumption of a wireless network interface in an ad hoc

networking environment,” in Proc. IEEE Conference on Computer Communications (INFOCOM), 2001, vol. 3, pp.

1548–1557.

[221] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “QSGD: Communication-efficient SGD via gradient

quantization and encoding,” Proc. Advances in Neural Information Processing Systems, 2017, pp. 1709–1720.

[222] S. U. Stich, J.-B. Cordonnier, and M. Jaggi, “Sparsified SGD with memory,” in Proc. Advances in Neural Information

Processing Systems, 2018, pp.4448–4459.

[223] M. Lázaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia, “Adaptively biasing the weights

of adaptive filters,” IEEE Transactions on Signal Processing, vol. 58, pp. 3890–3895, Jul. 2010.

[224] S. Scardapane, J. Chen, and C. Richard, “Adaptation and learning over networks for nonlinear system modeling,” in

Adaptive Learning Methods for Nonlinear System Modeling, D. Comminiello and J. C. Pŕıncipe, Eds., chapter 10, pp.

223–242. Butterworth-Heineman, 2018.

[225] B. Scholkopf and A. J. Smola, Learning with Kernels: support vector machines, regularization, optimization, and beyond,

MIT Press, Cambridge, 2002.

[226] I. Steinwart and A. Christmann, Support vector machines, Springer Science & Business Media, 2008.

[227] B.-S. Shin, H. Paul, M. Yukawa, and A. Dekorsy, “Distributed nonlinear regression using in-network processing with

multiple Gaussian kernels,” in Proc. IEEE International Workshop on Signal Processing Advances in Wireless Commu-

63

nications (SPAWC), 2017, pp. 1–5.

[228] S. Hong and J. Chae, “Distributed online learning with multiple kernels,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 34, pp. 1263-1277, Aug. 2021.

[229] B.-S. Shin, M. Yukawa, R. L. G. Cavalcante, and A. Dekorsy, “A hybrid dictionary approach for distributed kernel

adaptive filtering in diffusion networks,” in Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2018, pp. 3414–3418.

[230] P. Bouboulis, S. Pougkakiotis, and S. Theodoridis, “Efficient KLMS and KRLS algorithms: A random Fourier feature

perspective,” in Proc. IEEE Statistical Signal Processing Workshop (SSP), 2016, pp. 1–5.

[231] X. Dong, D. Thanou, L. Toni, M. Bronstein, and P. Frossard, “Graph signal processing for machine learning: A review

and new perspectives,” IEEE Signal Processing Magazine, vol. 37, pp. 117–127, Oct. 2020.

[232] P. Latouche and F. Rossi, “Graphs in machine learning: an introduction,” in Proc. European Symposium on Artificial

Neural Networks, Computational Intelligence and Machine Learning (ESANN), 2015, pp. 207–218.

[233] J. A. Bondy and U. S. R. Murty, Graph Theory With Applications, Macmillan Press Ltd, 1976.

[234] F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “Online distributed learning over graphs with multitask

graph-filter models,” IEEE Transactions on Signal and Information Processing over Networks, vol. 6, pp. 63–77, 2020.

[235] A. Alinaghi, S. Weiss, V. Stankovic, and I. Proudler, “Graph filter design for distributed network processing: a comparison

between adaptive algorithms,” in Proc. Sensor Signal Processing for Defence Conference (SSPD), 2021, pp. 1–5.

[236] V. C. Gogineni, V. R. M. Elias, W. A. Martins, and S. Werner, “Graph diffusion kernel LMS using random Fourier

features,” in Proc. Asilomar Conference on Signals, Systems, and Computers, 2020, pp. 1528–1532.

[237] V. R. M. Elias, V. C. Gogineni, W. A. Martins, and S. Werner, “Kernel regression over graphs using random Fourier

features,” IEEE Transactions on Signal Processing, vol. 70, pp. 936–949, Feb. 2022.

[238] “Historical temperature dataset,” Instituto Nacional de Meteorologia (INMET). https://portal.inmet.gov.br/

(accessed Mar. 22 2024). Data used in the simulations also available at: https://github.com/dgtiglea/

Daily-Average-Temperature-Brazilian-Stations, Sep. 2020.

[239] N. Perraudin, J. Paratte, D. I. Shuman, V. Kalofolias, P. Vandergheynst, and D.K. Hammond, “GSPBOX: A toolbox

for signal processing on graphs,” arXiv, vol. preprint:1408.5781, Aug. 2014.

[240] A. E. Feitosa, V. H. Nascimento, and C. G. Lopes, “Low complexity distributed estimation for IoT sensor networks,” in

Proc. IEEE Statistical Signal Processing Workshop (SSP), 2021, pp. 136–140.

[241] R. M. Coelho, C. G. Lopes, and H. F. Ferro, “Adaptive IIR diffusion networks for IoT applications,” in Proc. IEEE

Statistical Signal Processing Workshop (SSP), 2021, pp. 141–145.

[242] C. G. Lopes, V. H. Nascimento, and L. F. O. Chamon, “Distributed universal adaptive networks,” IEEE Transactions

on Signal Processing, vol. 71, pp. 1817 – 1832, May 2023.

[243] X. Hou, H. Zhao, and X. Long, “Graph diffusion kernel maximum correntropy criterion over sensor network and its

performance analysis,” IEEE Sensors Journal, vol. 23, pp. 14583 – 14591, May 2023.

[244] K. Xiong and S. Wang, “The online random Fourier features conjugate gradient algorithm,” IEEE Signal Processing

Letters, vol. 26, pp. 740–744, Mar. 2019.

[245] A. A. Bueno and M. T. M. Silva, “Gram-Schmidt-based sparsification for kernel dictionary,” IEEE Signal Processing

Letters, vol. 27, pp. 1130–1134, Jun. 2020.

[246] Z. Li, J.-F. Ton, D. Oglic, and D. Sejdinovic, “Towards a unified analysis of random Fourier features,” in Proc.

International Conference on Machine Learning, 2019, pp. 3905–3914.

[247] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction to deep learning for graphs,” Neural Networks,

vol. 129, pp. 203–221, Sep. 2020.

[248] X. Wei, R. Yu, and J. Sun, “View-GCN: View-based graph convolutional network for 3D shape analysis,” in Proc.

64

https://portal.inmet.gov.br/
https://github.com/dgtiglea/Daily-Average-Temperature-Brazilian-Stations
https://github.com/dgtiglea/Daily-Average-Temperature-Brazilian-Stations

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 1850–1859.

[249] Y. Xie, Z. Xu, J. Zhang, Z. Wang, and S. Ji, “Self-supervised learning of graph neural networks: A unified review,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 45, pp. 2412–2429, Apr. 2022.

[250] Q. Shi, F. Chen, X. Li, and S. Duan, “Distributed adaptive clustering learning over time-varying multitask networks,”

Information Sciences, vol. 567, pp. 278–297, Aug. 2021.

[251] J. Li, W. Wang, W. Abbas, and X. Koutsoukos, “Distributed clustering for cooperative multi-task learning networks,”

IEEE Transactions on Network Science and Engineering, vol 10, pp. 3933 – 3942, May 2023.

[252] R. A. Abbasabad and M. Azghani, “Distributed sparsity-based non-linear regression with multiple kernels in wireless

sensor networks,” Ad Hoc Networks, vol. 125, pp. 102719, Feb. 2022.

[253] I. E. K. Harrane, R. Flamary, and C. Richard, “Toward privacy-preserving diffusion strategies for adaptation and learning

over networks,” in Proc. European Signal Processing Conference (EUSIPCO), 2016, pp. 1513–1517.

[254] V. C. Gogineni, A. Moradi, N. K. D. Venkategowda, and S. Werner, “Communication-efficient and privacy-aware

distributed learning,” IEEE Transactions on Signal and Information Processing over Networks, vol. 9, pp. 705 – 720,

Oct. 2023.

[255] E. Rizk, S. Vlaskiy, and A. H. Sayed, “Enforcing privacy in distributed learning with performance guarantees,” IEEE

Transactions on Signal Processing, vol. 71, pp. 3385 – 3398, Sep. 2023.

65

	Introduction
	Brief History of Adaptive Diffusion Networks
	Technological Background: The Emergence of Wireless Sensor Networks
	How to Distribute the Processing?
	Diffusion strategies consolidate and are extended
	Other Advances Span Correlated Tools

	Adaptive Diffusion Networks
	The selection of the combination weights and the steady-state performance
	Simulations – Exploring the Theoretical Results

	Restricting Communication Policies
	Packet Size Reducing Techniques
	Link Selection Policies
	Censoring Strategies
	Simulations – Effects of Restrictive Communication Policies

	Multitask Adaptive Diffusion Networks
	Kernel Adaptive Diffusion Networks
	Graph Signal Processing and Adaptive Diffusion Networks
	Preliminaries to Adaptive Diffusion over Graphs
	Diffusion Algorithms for Graph Signal Processing

	Application Example: Temperature Prediction
	Temporal Prediction with Fully Observed Nodes
	Prediction at Unobserved Nodes

	Conclusions and Open Topics for Future Work

