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Equalization in chaos-based communication systems

using kernel adaptive filtering
Renato Candido, Marcio Eisencraft, Magno T. M. Silva

Abstract—Chaos-based communication systems have attracted
attention of researchers in academy and industry in the last
decades. A particular family of such systems has as basic idea
to use the transmitted message to modify a known nonlinear
chaotic signal generator (CSG). In the receiver, the knowledge
of the employed nonlinear CSG in conjunction with chaotic
synchronization permits to recover the original message. These
systems are an alternative for spread spectrum communication
with a possible increase in the security in the physical layer,
since it is necessary to perfectly know the CSG in the receiver to
decode the message. However, the lack of robustness of chaotic
synchronization in relation to channel noise and intersymbol
interference still poses a barrier for their practical use. The
problem of equalization for such systems have been tackled for
a while, and algorithms based on the normalized least-mean
squares have presented auspicious results for linear channels. For
nonlinear channels, Kernel Adaptive Filters (KAFs) have been
used since they are able to solve nonlinear problems implicitly
projecting the input vector into a larger dimension space, where
they can be linearly solved. Therefore, in this paper, we propose
the use of KAFs with two purposes: to equalize linear and
nonlinear channels and, at the same time, decode the message
without knowledge of the CSG in the receiver. Simulation results
show that the proposed solution is able to perform these tasks.

Index Terms—Chaos-based communication, adaptive signal
processing, equalizers, kernel adaptive filtering.

I. INTRODUCTION

A
deterministic chaotic signal generator (CSG) produces

trajectories in the state space that are aperiodic, bounded,

and present sensitive dependence on initial conditions (SDIC)

[2]. Chaos-based communication systems (CBCSs) using the

synchronization of CSGs have been extensively investigated

in the literature (see, e.g., [3]–[15] and their references). Even

some patents were issued regarding the subject, see e.g. [16]–

[19]. Some works with a practical approach using chaotic

synchronization have also appeared, mainly in the optical

communication domain (see, e.g., [7], [8]). This is somewhat

natural since chaotic generators can be easily created using

the intrinsic nonlinear properties of lasers [8].

A particular family of CBCS has as basic idea to use the

transmitted message to modify a known nonlinear CSG. In the

receiver, the knowledge of the employed CSG in conjunction

with chaotic synchronization permits to recover the original

message. This way, chaotic signals can be used as broadband
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carriers for information signals with the potential to introduce

a level of secrecy in the physical layer, represented by the

CSG’s parameters [6], [7]. Some papers also show that chaotic

signals are optimal communication waveforms in some con-

texts [20]. Therefore, CBCSs present some interesting features

from the telecommunications point of view.

One of the major drawbacks of CBCS is the poor robustness

of the chaotic synchronization in relation to the noise level and

the intersymbol interference (ISI) introduced by the channel.

Even a small noise level or simple distortions may be sufficient

to hinder communication [11], [12], [14], [21], [22]. In Fig. 1,

we show some results to illustrate the effects of a nonideal

communication channel. We have considered the encoding

of a binary message m(n) ∈ {−1; 1} showed in Fig. 1-(a),

leading to the transmission of the chaotic signal s(n), showed

in Fig. 1-(b), considering the CBCS used in [14], described

in Sec. II. Considering an ideal communication channel, the

message is recovered without any errors as showed in Fig. 1-

(c) and Fig. 1-(d), despite the small distortion that occurs

during the synchronization of the CSGs, as shown in the

first samples of the decoded signal y(n). However, when

we consider a simple nonideal channel which attenuates the

transmitted signal by the factor of 0.9, the receiver is not able

to synchronize and decode the transmitted message, which

causes errors as shown in Fig. 1-(e) and Fig. 1-(f).

In order to mitigate the ISI, equalization schemes applied to

CBCSs have been proposed in the literature, using different ap-

proaches of message encoding (see, e.g., [10], [11], [14], [23]–

[27]). Among these references, [10], [11] and [14] consider

the equalization applied in the discrete-time domain for the

chaotic modulation that feeds back the transmitted sequence

in the CSG. However, the recovery of the message proposed

in these references depends on the good performance of the

equalizer, which in turn uses the chaotic map since the same

CSG of the transmitter is used in the receiver.

As an alternative to the adaptive equalizers of [10], [11] and

[14], it is proposed in this paper to use kernel adaptive filters

(KAFs) in the receiver. KAFs are able to tackle nonlinear

problems, implicitly projecting the input vector into a larger

dimension space, where they can be linearly solved [28]. Thus,

when using a KAF in a CBCS, it is possible to equalize

nonlinear communication channels. Besides that, it is no

longer necessary to know the CSG in the receiver since a

KAF can synchronize and decode the transmitted message

implicitly. Despite the advantage of not needing to adjust

synchronization parameters in the receiver, this result may

imply a challenge for the secrecy in CBCSs argument.

Preliminary parts of this work were published as conference
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paper [1] (in Portuguese). In this paper, we extend these

results, using an adaptive algorithm to adjust the kernel width

parameter. We also provide a more detailed comparison with

previous approaches by means of new simulations, in which

we consider bit error rate (BER) and squared error level as

performance measurements.

The paper is organized as follows. The problem is for-

mulated in Section II, where the CBCS and the KAF under

consideration are described. Simulation results are shown in

Section III. Section IV closes the paper with some conclusions

and perspectives of future works.

Fig. 1. CBCS and the effects of a nonideal communication channel.
(a) binary message, (b) transmitted signal, (c) decoded message on
an ideal channel, (d) errors after decision on an ideal channel, (e)
decoded message on the channel with transfer function H(z) = 0.9,
(f) errors after decision on the channel with transfer function H(z) =
0.9

II. PROBLEM FORMULATION

In this section, we describe the CBCS considering a CSG

in the receiver as [11], [14], [29]. In the sequel, we propose a

new receiver based on a KAF that uses no information on the

CSG. Finally, KAFs are described with focus on the quantized

kernel least-mean squares algorithm.

A. The CBCS with a CSG in the receiver

Fig. 2 shows the CBCS considered in [11], [14], and [29],

which is a discrete-time lowpass equivalent version of the one

proposed in [30]. In this scheme, a binary sequence m(n) ∈
{−1, + 1} is encoded by using the first component of the

master state vector x(n), via an encoding function

s(n) = c (x1(n), m(n)) . (1)

Then, the signal s(n) is fed back into the chaotic signal

generator (CSG) and transmitted through a communication

channel, whose model is constituted by a transfer function

H(z) and additive white Gaussian noise (AWGN). The re-

ceiver is constituted by an equalizer, a decoding function, and

the same CSG of the transmitter [11], [14], [29]. The equalizer

should mitigate the ISI introduced by the channel in order

to obtain the estimate of the transmitted signal, denoted as

ŝ(n), with an unavoidable delay of ∆ samples. The decoding

function is the inverse of (1) with respect to m(n), i.e.,

y(n) = c−1 (x̂1(n), ŝ(n)) , (2)

where x̂1(n) is the estimate of the state x1(n) and y(n) is the

estimate of the transmitted message m(n−∆). Finally, y(n)
is fed back into the CSG of the receiver to obtain the estimate

x̂1(n).
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Fig. 2. Chaotic synchronization system with an adaptive equalizer.

As in [11], [14], the Hénon map [31] is used as CSG. Its

equation is given by

x(n+ 1) = Ax(n) + b+ f (s(n)) , (3)

where x(n) , [x1(n) x2(n)]
T

, (·)T indicates transposition,

A=

[
0 1
β 0

]
,b=

[
1
0

]
, f (s(n))=

[
−αs2(n)

0

]
, (4)

being α and β real constant parameters of the map set as

α = 1.4 and β = 0.3 [2].

We also use the following encoding function

s(n) = η1x1(n)− η2 [m(n) + 1] sign [η1x1(n)] , (5)

where sign[·] is the sign function. This function was proposed

in [14] to reduce the disturbance caused by the message in

x1(n) and increase the space of the parameters {η1, η2} ,
where the generated signal is chaotic. From (5), we can

observe that, if m(n) = −1, s(n) = η1x1(n) and if m(n) = 1
a constant with the sign opposite to η1x1(n) is added to

it. Fig. 3 shows the maximum Lyapunov exponent λ of the

transmitted signal for this encoding function as a function

of η1 and η2 considering a random equiprobable binary

m(n) ∈ {−1,1}. This Lyapunov exponent was obtained using

the method described in [2, Sec. 5.2], considering m(n) as

a variable parameter. The region where λ is negative, i.e.,

the generated signals are not chaotic, is shown in gray. The

colored region indicates the area where the generated signals

are chaotic (λ > 0, i.e., the signals present SDIC). For the

values of η1 and η2 in the white area of the figure, the

transmitter diverges. To ensure the transmission of chaotic

signals and still obtain a good equalization performance, we

consider η1 =0.9 and η2 =0.3 (point indicated in the figure)

in all simulations of this paper, as done in [14].
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Fig. 3. Maximum Lyapunov exponent λ obtained when using (5)
as a function of η1 and η2. The point indicated by the × represent
the values of η1 and η2 considered in the simulations, to ensure the
transmission of chaotic signals and still obtain a good equalization
performance.

In order to update the coefficients of the equalizer, a

normalized version of the least-mean squares (LMS) algorithm

was proposed in [11], by encoding the transmitted sequence

as

s(n) = x1(n)m(n). (6)

This algorithm, denoted as cNLMS× (chaotic normalized

LMS), minimizes the instantaneous cost function Ĵ(n) =
e2(n) using the stochastic gradient descendent rule, where

e(n) is the estimation error, defined as

e(n) = m(n−∆)− y(n). (7)

The cNLMS× algorithm was extended in [14] to take into

account the encoding function (5) and the resulting algorithm

was denoted as cNLMS+. As observed in [14], the encoding

function (5) and the cNLMS+ algorithm provides better per-

formance in terms of BER and mean-square error (MSE) than

that of cNLMS× with (6). Therefore, we consider (5) with

cNLMS+ in the comparisons of this paper.

B. The CBCS with a KAF in the receiver

In this paper, we use a KAF for performing a double task in

the CBCS: (i) mitigate the ISI introduced by the communica-

tion channel and (ii) invert the chaos-based transmitter. Thus,

the transmitted message can be recovered at the receiver with

no knowledge of the CSG. Fig. 4 shows the CBCS, in which

the receiver is constituted only by a KAF with input column-

vector r(n) = [r(n) r(n− 1) · · · r(n −M + 1)]
T
∈ R

M and

output y(n). We assume that the KAF works in the training

mode, where the transmitted sequence m(n−∆) is known a

priori in the receiver. Thus, m(n −∆) plays the role of the

desired sequence d(n) and the estimation error defined in (7)

is used to update the filter. We should notice that the KAF

can be switched to the decision-directed mode, by replacing

m(n−∆) by the output of a decision device [32], [33].
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Fig. 4. Chaos-based communication system with a KAF as receiver.

C. Kernel adaptive filtering

Kernel adaptive filters have been mainly applied in sys-

tem identification [34], echo cancellation [35], time series

prediction [28], [36]–[38], and channel equalization [28],

[39]. Although KAFs may present a superior performance

when compared to the non-kernelized counterparts for solving

nonlinear problems, their main drawbacks are the selection of

an appropriate kernel and the high computational burden and

memory used, since the dictionary size grows linearly with the

incoming samples.

The LMS algorithm is the most popular adaptive filter due

to its simplicity and robustness [40]. Its kernelized version,

denoted as KLMS [39], is also the most popular among the

different kernel adaptive filters in the literature. KLMS maps

the input column-vector r(n) ∈ R
M into a high dimensional

feature space F as ϕ(r(n)), using a Mercer’s kernel. Mercer’s

kernel is a continuous, symmetric, and positive-definite func-

tion κ : RM × R
M → R, such that

κ(r, r′) = ϕ(r)Tϕ(r′) (8)

holds [28]. Eq. (8) is known as kernel trick since the inner

product of the transformed feature vectors ϕ(r) and ϕ(r′) can

be computed efficiently in the feature space F through the

kernel evaluations [28]. Consequently, the LMS algorithm can

be used in the space F to update the filter weight column-

vector Ω(n−1) in order to estimate the desired signal d(n) ∈
R, that depends nonlinearly on the input r(n), i.e.,

Ω(0) = 0, (9)

e(n) = d(n)− ϕ(r(n))TΩ(n− 1), (10)

Ω(n) = Ω(n− 1) + µe(n)ϕ(r(n)), (11)

where µ is a step size. Fig. 5 shows a scheme for this algorithm

considering equalization of communication channels.

From simple algebraic manipulations, we can write

Ω(n) =

n∑

i=1

µe(i)ϕ(r(i)), (12)
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Fig. 5. KLMS applied to supervised equalization: r(n) is the input regressor
vector constituted by samples of the output of the channel and m(n) is the
transmitted sequence.

which allows us to rewrite the estimate for d(n) as

y(n) = ϕ(r(n))TΩ(n− 1) =

n−1∑

i=1

µe(i)κ(r(n), r(i)). (13)

Using (13) and defining a(i) , µe(i), the KLMS algorithm

can be summarized as

a(1) = µd(1), (14)

y(n) =

n−1∑

i=1

a(i)κ(r(n), r(i)), (15)

e(n) = d(n)− y(n), (16)

a(n) = µe(n). (17)

Throughout this paper, we focus on the Gaussian kernel,

which is the most commonly used kernel in the literature and

is defined as

κ(r, r′) = exp
(
−ζ‖r− r

′‖2
)
, (18)

where ζ = 1/(2σ2) > 0 is the kernel parameter and σ is the

kernel width [28].

One of the main challenges of kernel adaptive filtering

is to reduce the dictionary size in order to minimize the

computational complexity. The dictionary, also known as

codebook, is defined as the set of support vectors C(n−

1) = {r(cj)}
Nc(n−1)
j=1 , where r(cj) is the j th element and

Nc(n−1) is its cardinality, which can vary with n. The index

cj ∈ {1, 2, · · · , n − 1} is used to distinguish the dictionary

elements r(c1), · · · , r(cNc(n−1)) from the input vector r(n).
With no dictionary restriction, we can observe from (13) that

to estimate d(n), we should use all the input vectors since

the algorithm initialization until the previous time instant, i.e,

C(n−1) = {r(i)}n−1
i=1 and, in this case, the dictionary size

Nc(n− 1) = n− 1 grows linearly with the incoming samples.

To avoid this linear growth, different sparsification techniques

were proposed in the literature to update the dictionary by

including in it only informative data as are the cases of the

novelty criterion [41] and the coherence criterion [42].

An efficient alternative to these techniques is the quantized

KLMS (QKLMS) algorithm, which was obtained in [43] by

quantizing the feature vector ϕ(r(n)) in the update equation

(11). To decide if the input vector must or must not be included

in the dictionary, we define

dis(r(n),C(n−1)) = min
1≤j≤Nc(n−1)

‖r(n)− r(cj)‖,

where ‖·‖ denotes the Euclidean norm. If dis(r(n), C(n−1))≤
ε, being ε a threshold, the dictionary is kept unchanged and

the coefficient of the closest vector is updated as

a(j∗)← a(j∗) + µe(n),

where

j∗ = arg min
1≤j≤Nc(n−1)

‖r(n)−r(cj)‖.

Otherwise, the input vector is included in the dictionary and

its respective coefficient stored in the memory, i.e., C(n) =
{C(n−1), r(n)} and a(Nc(n−1)+1) = µe(n). This procedure

leads to an algorithm similar to the sparsified KLMS with

novelty criterion. The main difference is that QKLMS uses

the “redundant” data to locally update the coefficient of the

closest vector. This coefficient update can enhance the use

efficiency of that vector. Therefore, better accuracy and more

compact network can be achieved [43].

To select an appropriate kernel, some adaptive multiple ker-

nel approaches have been proposed in the literature (see, e.g.,

[37], [38], [44]–[48]). The main drawback of these solutions

are the computational cost since many of them consider two

or more kernel filters in parallel, each one with a different

kernel function. Recently, some adaptive solutions to find a

proper width for the Gaussian kernel were proposed in the

literature [49], [50]. These solutions seek the minimum of the

instantaneous squared error Ĵ(n) = e2(n), using the stochastic

gradient descendent rule for updating the parameter ζ. Partic-

ularly, the exponent gradient variable normalization (EGVN)

algorithm [50] updates ζ in the space of real positive numbers

through

ζ(n) = ζ(n− 1) exp

(
−µζζ(n− 1)

∂Ĵ(n)

∂ζ(n− 1)

)
(19)

where µζ is a step size and

∂Ĵ(n)

∂ζ(n−1)
= 2e(n)

Nc(n)∑

j=1

{
aj(n−1)‖r(n)−r(cj)‖

2

× exp
(
−ζ(n−1)‖r(n)−r(cj)‖

2
)}

. (20)

This algorithm, proposed in [50], improves the exponential

gradient updates, since it is numerically stable even when ζ is

small and avoids a slow adaptation when ζ is large.

The summary of the QKLMS algorithm with EGVN for

adaptation of ζ is shown in Table I, where a(j) is the

j th element of the coefficient vector a. Due to its inherent

advantages, the algorithm of this table is used in all simulations

of this paper.

III. SIMULATION RESULTS

In order to verify the behavior of the proposed system, we

have performed some numerical simulations. At first, we verify

if the QKLMS algorithm is able to decode a binary message

m(n) ∈ {−1;+1} encoded by the chaos-based transmitter.
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TABLE I
SUMMARY OF THE QKLMS ALGORITHM WITH EGVN FOR UPDATING

THE GAUSSIAN KERNEL PARAMETER.

Input: {r(n) ∈ R
M , d(n)}, n = 1,2, . . .

Initialization: Choose step sizes µ > 0 and µζ ≥ 0,

kernel parameter ζ(1) > 0, threshold ε ≥ 0,

and initialize the dictionary C(1) = {r(1)}, Nc(1) = 1,
and coefficient vector a(1) = [µd(1)].
For n = 2, 3, · · · , do:

1) Compute the output of the adaptive filter:

y(n) =

Nc(n−1)∑

j=1

aj(n−1)κ(r(n),r(cj)),

where

κ(r(n),r(cj)) = exp
(
−ζ(n−1)‖r(n)−r(cj)‖

2
)

2) Compute the estimation error:

e(n) = d(n)− y(n)
3) Compute the gradient for updating ζ:

∂Ĵ(n)

∂ζ(n−1)
= 2e(n)

Nc(n−1)∑

j=1

{
aj(n−1)‖r(n)−r(cj)‖

2

×κ(r(n),r(cj))
}

4) Update ζ:

ζ(n) = ζ(n− 1) exp

(
−µζζ(n−1)

∂Ĵ(n)

∂ζ(n−1)

)

5) Compute the distance between r(n) and C(n−1):
dis(r(n),C(n−1)) = min

1≤j≤Nc(n−1)
‖r(n)−r(cj)‖

6) Decide if r(n) will be included in the dictionary:

If dis(r(n), C(n−1)) ≤ ε, keep the dictionary

unchanged, i.e., C(n) = C(n−1), and quantize

r(n) to the closest vector by updating the

coefficient of that vector, i.e.,

a(j∗)← a(j∗) + µe(n),
where

j∗ = arg min
1≤j≤Nc(n−1)

‖r(n)−r(cj)‖

Otherwise, assign a new vector and the

corresponding new coefficient:

C(n) = {C(n−1), r(n)}
a(n) = [a(n−1), µe(n)]
Nc(n) = Nc(n− 1) + 1

end

For that, we consider a CBCS as shown in Fig. 4 with an ideal

communication channel in the absence of noise. The results

for this scenario are shown in Fig. 6. In this case, the chaotic

encoder can be interpreted as a nonlinear channel and the KAF

acts as a chaos-based receiver. By equalizing this channel, the

KAF decodes the transmitted message from r(n), which is a

chaotic signal, obtaining the output shown in Fig. 6-(a) with

almost no errors, as shown in Fig. 6-(b). In Fig. 6-(c), the

kernel parameter ζ(n), initialized as ζ(0) = 50 (σ(0) = 0.1)
is shown along the iterations. It is possible to notice that the

adaptation of this parameter is important, since it converges

to a different value, around 13 in this case. In Fig. 6-(d), the

size of the dictionary Nc(n) along the iterations is shown. For

this scenario, about 6000 elements are necessary to decode the

transmitted message due to the severe nonlinearity introduced

by the chaos-based transmitter. It is worth to notice that the

receiver does not have any information about the parameters

used in the transmitter such as the chaotic map or the encoding

function. As a metric of the performance of the algorithm, we

consider the mean squared error (MSE) given by E{e2(n)}.
In Fig. 6-(e), an estimate of the MSE is shown considering an

ensemble average of 50 independent runs, reaching −30 dB

at n = 105.

Fig. 6. CBCS using the QKLMS algorithm considering an ideal
channel in the absence of noise (M = 5, ε = 0.1, µ = 0.5,
µζ = 0.01, ∆ = 1). (a) Recovered sequence, (b) recovery errors,
(c) evolution of the kernel parameter ζ(n), (d) size of the dictionary
Nc(n), and (e) estimated MSE considering an ensemble average of 50
independent runs. The MSE curve was filtered by a simple moving-
average filter of 64 coefficients.

Next, we consider an equalization scenario with a CBCS

system, to verify the performance of the QKLMS algorithm.

A binary message m(n) ∈ {−1;+1} is transmitted through a

linear communication channel with transfer function

H1(z) = 0.25 + z−1 + 0.25z−2 (21)

from instant n = 0 until n = 50× 103. After that, the channel

is abruptly changed to a nonlinear channel composed of a

linear part with transfer function

H2(z) = 0.1 + z−1 + 0.1z−2 (22)

followed by a cubic nonlinear part [51], [52] in which the

output is given applying the function

f(x) = x+ 0.1x2 + 0.1x3 (23)

to the input, considering a signal-to-noise ratio (SNR) of

40 dB. It is worth to notice that the linear part of this channel,

with transfer function given by (22) introduces a lower level
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of ISI than the linear channel (21), emphasizing the nonlinear

effect, given by (23).

The results are shown in Figs. 7-(a) to 7-(e). In Figs. 7-(f)

to 7-(j), as a performance benchmark, we show the results

obtained with a conventional communication system without

using chaos, but considering the same equalization scenario. In

the conventional communication system, we can notice that the

equalizer is able to mitigate the ISI introduced by the channels,

recovering the transmitted message for both channels as shown

by the output y(n) in Fig. 7-(f) and the recovery errors shown

in Fig. 7-(g). Again, the parameter ζ(n) was initialized with

ζ(0) = 50 (σ(0) = 0.1) and we observe that the value of the

parameter ζ(n) changes along the iterations and has an abrupt

variation when the communication channel is changed, which

indicates that the optimum value of this parameter depends on

the communication channel. In Fig. 7-(i), we observe that, for

this scenario, about 120 elements are necessary to equalize the

first channel and about 280 elements are necessary after the

channel is changed. In the CBCS, the nonlinearity introduced

by the chaos-based transmitter along with the distortion intro-

duced by the communication channel represent a much more

challenging situation for the equalizer. However, QKLMS is

able to recover the transmitted sequence, by equalizing the

channels and decoding the message as we can observe by the

output shown in Fig. 7-(a) and the errors shown in Fig. 7-(b),

reaching an MSE of about −20 dB at n = 50 × 103. In

this case, due to the distortion introduced by the chaotic-

transmitter along with the communication channel, the size of

the dictionary grows to about 9000 before the abrupt change

of the communication channel and to about 16000 afterwards,

as shown in Fig. 7-(d). This large number of elements in the

dictionary causes a high increase in the computational cost

of the algorithm, when compared to the solution presented in

[11], [29].

We also compare the performance of the CBCS using the

QKLMS algorithm with the performance of the cNLMS+ from

[14], considering the same scenario of Fig. 7. The results are

shown in Fig. 8. It can be noticed that the cNLMS+ algorithm

presents a better performance between n = 0 and n =
50×103, when a linear communication channel is considered.

However, for n > 50× 103, when a nonlinear communication

channel is considered, cNLMS+ is not able to obtain a good

result, since it considers a linear equalizer followed by a

chaos-based decoder. On the other hand, QKLMS can equalize

nonlinear communication channels, without any knowledge of

the parameters of the chaos-based transmitter at the burden of

a higher computational cost. We should mention that the delay

∆ was set to achieve the best performance of each algorithm.

It is well known that this parameter is essential to achieve good

equalization results and can be different for each scheme due

to their different manners to solve the problem.

In Table II, we show a performance comparison in terms

of squared error level and BER between the CBCS with

QKLMS, the CBCS with cNLMS+, and the conventional

communication system with QKLMS, considering the linear

channel (21) and the nonlinear channel composed by (22)

and (23). For each line of the table, the respective algorithm

has been run for 300× 103 iterations for convergence. Then,

the obtained parameters (the dictionary for QKLMS or the

equalizer coefficients for the cNLMS+) were kept fixed and

106 iterations were run to obtain the squared error level and

the BER. The parameters used during convergence were the

same of Figs. 7 and 8. In some cases, during the 106 iterations

used to obtain the BER, no bit errors were observed, so that

we could infer that the BER was lower than 10−6.

TABLE II
PERFORMANCE COMPARISON OF A CBCS WITH QKLMS, A CBCS WITH

CNLMS+, AND A CONVENTIONAL COMMUNICATION SYSTEM WITH

QKLMS ON THE LINEAR CHANNEL (21) AND THE NONLINEAR CHANNEL

COMPOSED BY (22) AND (23) WITH AN SNR OF 40 DB.

System Squared Error Level BER

CBCS, QKLMS,
Linear Channel

−32 dB 10−5.1

CBCS, cNLMS+,
Linear Channel

−23 dB 10−4.6

Conv., QKLMS,
Linear Channel

−43 dB < 10−6

CBCS, QKLMS,
Nonlinear Channel

−36 dB < 10−6

CBCS, cNLMS+,
Nonlinear Channel

−13 dB 10−2

Conv., QKLMS,
Nonlinear Channel

−37 dB < 10−6

When comparing the squared error levels shown in Table II

with the respective MSE levels obtained in Figs. 7 and 8,

we observe the values shown in the table are lower than the

observed MSEs in the figures. This occurs since the results

shown in the table were obtained using more iterations for

convergence than the results shown in the figures. (300× 103

instead of 50× 103). Besides that, Figs. 7 and 8 consider an

ensemble average of 50 runs to estimate the MSE whereas the

results shown in Table II consider a single run to estimate the

squared error level. During each of the 50 runs considered, the

algorithms may perform poorly at different moments, causing

the increase of the estimated MSE.

For the linear channel, we can observe that there were no

significant performance difference between the CBCS with

QKLMS, for which an MSE of −32 dB and a BER of 10−5.1

were obtained and the CBCS with cNLMS+, for which an

MSE of −23 dB and a BER of 10−4.6 were obtained. As

expected, the conventional communication system provided

the best performance with an MSE of−43 dB and no bit errors

in 106 iterations, since it represents the least severe situation

to equalize. For the nonlinear channel, we can observe that

the performance of the CBCS with QKLMS, with an MSE of

−36 dB and no bit errors in 106 iterations, was superior to the

performance of the CBCS with cNLMS+, which presented an

MSE of −13 dB and a BER of 10−2. This difference is due to

the fact that cNLMS+ is not capable of equalizing an arbitrary

nonlinear channel, since it was designed to equalize a channel

represented by the chaos-based encoding followed by a linear

channel. Furthermore, different from the linear-channel case,

a surprising result is observed: the CBCS with QKLMS

performs close to the benchmark conventional communication

system, which presented an MSE of −37 dB and no bit errors

in 106 iterations.

To illustrate the importance of the correct adjustment of

the parameter ζ(n), we present in Figs. 9 and 10 the results
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Fig. 7. CBCS and conventional communication system without using chaos using the QKLMS algorithm considering the linear channel (21)
from n = 0 until n = 50 × 103 and the nonlinear channel composed by (22) and (23) for n > 50 × 103 with an SNR of 40 dB. CBCS:
(a) Recovered sequence, (b) recovery errors, (c) ζ(n), (d) Nc(n) obtained with QKLMS algorithm (M = 5, ε = 0.1, µ = 0.5, µζ = 0.01,
∆ = 1), and (e) estimated MSE considering an ensemble average of 50 independent runs. Conventional communication system without
using chaos: (f) Recovered sequence, (g) recovery errors, (h) ζ(n), (i) Nc(n) obtained with QKLMS algorithm (M = 5, ε = 0.1, µ = 0.5,
µζ = 0.01, ∆ = 1), and (j) estimated MSE considering an ensemble average of 50 independent runs. The MSE curves were filtered by a
simple moving-average filter of 64 coefficients.

Fig. 8. CBCS using the cNLMS+ algorithm considering the linear
channel (21) from n = 0 until n = 50 × 103 and the nonlinear
channel composed by (22) and (23) for n > 50× 103 with an SNR
of 40 dB. (a) Recovered sequence, (b) recovery errors obtained with
cNLMS+ from [14] (M = 5, ε = 0.1, µ̃ = 0.01, µζ = 0.01,
δ = 10−5, ∆ = 3), and (c) Estimated MSE considering an ensemble
average of 50 independent runs. The MSE curve was filtered by a
simple moving-average filter of 64 coefficients.

obtained with the CBCS in the same scenario used in Fig. 7 but

considering a constant ζ(n), without adaptation, equals 0.5 and

0.005 respectively. As it can be noticed, both configurations

lead to poor results with a high number of errors and a high

MSE level. These results emphasize the importance of using

an adaptive algorithm to adjust the parameter ζ(n), such as

EGVN.

Fig. 9. CBCS using the QKLMS algorithm considering the linear
channel (21) from n = 0 until n = 50×103 and the nonlinear channel
composed by (22) and (23) for n > 50×103 with an SNR of 40 dB.
(a) Recovered sequence, (b) recovery errors obtained with QKLMS
algorithm considering ζ(n) = 0.5 (M = 5, ε = 0.1, µ = 0.5,
∆ = 1), and (c) Estimated MSE considering an ensemble average
of 50 independent runs. The MSE curve was filtered by a simple
moving-average filter of 64 coefficients.
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Fig. 10. CBCS using the QKLMS algorithm considering the linear
channel (21) from n = 0 until n = 50 × 103 and the nonlinear
channel composed by (22) and (23) for n > 50× 103 with an SNR
of 40 dB. (a) Recovered sequence, (b) recovery errors obtained with
QKLMS algorithm considering ζ(n) = 0.005 (M = 5, ε = 0.1,
µ = 0.5, ∆ = 1), and (c) Estimated MSE considering an ensemble
average of 50 independent runs. The MSE curve was filtered by a
simple moving-average filter of 64 coefficients.

IV. CONCLUSIONS

In this work, the message transmitted by a CBCS was

recovered at the receiver by using a supervised adaptive kernel

filter. Simulation results show that this filter is able to recover

the transmitted message with no knowledge of the chaotic

map and the coding function at the expense of a higher

computational cost. For an ideal channel, the kernel filter

can also be used to decode the message, playing the role of

the slave in the CBCS. This may imply a challenge for the

secrecy issue in CBCSs argument, which will be explored in

a future work. Another extension we intend to investigate is

the possibility of avoiding an overgrowth of the computational

cost of KAF by removing elements of the dictionary [50] and

of improving the obtained results by considering deep neural

networks.
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