
REDUCING THE COMMUNICATION AND COMPUTATIONAL COST OF RANDOM
FOURIER FEATURES KERNEL LMS IN DIFFUSION NETWORKS

Daniel G. Tiglea˚, Renato Candido˚, Luis A. Azpicueta-Ruiz:, and Magno T. M. Silva˚

˚Universidade de São Paulo, Brazil :Universidad Carlos III de Madrid, Spain
{dtiglea, renatocan, magno}@lps.usp.br azpicueta@tsc.uc3m.es

ABSTRACT
Diffusion kernel algorithms are interesting tools for distributed non-
linear estimation. However, for the sake of feasibility, it is essential
in practice to restrict their computational cost and the number of
communications. In this paper, we propose a censoring algorithm
for adaptive kernel diffusion networks based on random Fourier fea-
tures that locally adapts the number of nodes censored according to
the estimation error. It presents fast convergence during the transient
phase and a significant reduction in the number of censored nodes in
the steady state, thus reducing the energy consumption and the com-
putational cost mainly by decreasing the amount of communication
between nodes. Simulation results show that the proposed technique
can significantly decrease the computational cost with less impact
on the convergence rate when compared to existing solutions.

Index Terms— Diffusion Networks, Kernel Adaptive Filtering,
Random Fourier Features, Censoring

1. INTRODUCTION

Adaptive diffusion networks are an effective tool for distributed es-
timation and signal processing since they present better scalability,
autonomy, and flexibility in comparison with centralized approaches
[1–4]. They have been employed in many applications, such as tar-
get localization and tracking [5], spectrum sensing [6], and internet
of things (IoT) [7]. Furthermore, they are considered as effective on-
line solutions in nonlinear estimation and classification tasks [8, 9].

The aim of adaptive diffusion networks is to estimate a parame-
ter of interest in a distributed way by using a set of connected nodes.
Each node collects data to compute a local estimate in the adaptation
step. Then, it communicates with nearby nodes to obtain a global es-
timate in the combination step. The order in which these steps are
performed leads to two different schemes: the Adapt-Then-Combine
(ATC) and Combine-Then-Adapt (CTA) strategies [1].

In nonlinear estimation, where the data are generated by nonlin-
ear functions that lie in a Reproducing Kernel Hilbert Space, the lit-
erature contains distributed strategies for kernel adaptive filters [10].
The distributed kernel least mean squares (dKLMS) algorithm is the
most popular, mainly due to its simplicity [11, 12]. However, it
presents some limitations. First, its computational burden increases
linearly with time due to the growth of the dictionary [10], and, last
and most critical, the dictionary must be shared with all nodes, which
has a dramatic impact on the network traffic [9, 11]. Alternative so-
lutions have been proposed to make distributed kernel algorithms

This work was supported by CAPES under Grant 88887.512247/2020-
00 and Finance Code 001, by the São Paulo Research Foundation (FAPESP)
under Grant 2021/02063-6, and by CNPq under Grant 303826/2022-3. The
work of Azpicueta-Ruiz has been partially supported by the Spanish Min-
istry of Science and Innovation through Grant No. PID2021-124280OB-C21
(MCIU/AEI/FEDER, UE).

computationally more efficient. A preselected dictionary, fixed and
common to all nodes in the network, limits the computational cost
but causes a performance degradation [9, 11]. An interesting solu-
tion was presented in [8], where kernel adaptive filters based on ran-
dom Fourier features (RFF) were proposed for distributed nonlinear
estimation over networks. Even in this case, however, the computa-
tional cost may be prohibitively high when the number of features is
large. Therefore, to make RFF kernel diffusion networks feasible for
practical applications, a reduction in the amount of data measured,
processed, and transmitted by each node is necessary.

Moreover, adaptive diffusion networks suffer from other impor-
tant drawback, related to the battery lifetime. In particular, the power
consumption due to the communication processes poses a challenge.
Different strategies have been proposed in the literature to allow the
nodes to save energy and therefore extend the lifetime of the dif-
fusion network as a whole (see, e.g., [13–20] and their references).
One possible approach to this problem is the adoption of censoring
techniques, which cut the transmission from certain nodes to any of
their neighbors, hence allowing censored nodes to turn their trans-
mitters off. In the context of distributed RFF Kernel Adaptive Algo-
rithms, the censoring mechanism of [16] stands out, since it was pro-
posed with this type of solution in mind. Nonetheless, it requires the
calculation of the norm of the difference between the last transmitted
local estimate and the current one, which becomes costly when the
number of features is large.

Focusing on linear solutions, a censoring algorithm was pro-
posed in [19] to reduce the computational and energy cost of adap-
tive diffusion networks. The premise of this approach is to locally
adapt the number of nodes censored according to the estimation er-
ror. During the transient phase, it maintains the nodes uncensored,
which enables fast convergence. However, when the error is low in
magnitude, which generally occurs in steady state, it censors a large
number of nodes and, therefore, the communication cost associated
with the learning task is reduced. Furthermore, this algorithm was
designed so that censored nodes also avoid doing most of the com-
putation that they need to do when they are uncensored.

Since both the computational cost and the energy consumption
constraints are prominent issues in the case of diffusion kernel adap-
tive filters, in this paper, we propose to extend the censoring algo-
rithm of [19] to the RFF-KLMS algorithm of [8] to address simul-
taneously both concerns. Simulations show that the proposed tech-
nique can reduce the number of communications as much as the cen-
soring solution of [16], while significantly decreasing the computa-
tional burden and having less impact on the convergence rate.
Organization of the paper and Notation. In Section 2, the RFF-
KLMS algorithm is revisited, but considering its normalized version.
We describe our proposal to reduce the cost of such algorithm in Sec-
tion 3, followed by some simulation results and conclusions, in Sec-
tions 4 and 5, respectively. We use normal fonts for scalars and bold-



face letters for vectors. Moreover, p¨q
T denotes transposition, p¨q

˚

the complex conjugate, Et¨u the mathematical expectation, expp¨q

the exponential function, | ¨ | the cardinality of a set, and ∥¨∥ the
Euclidean norm.

2. RFF-KNLMS DIFFUSION NETWORK

In a network with V nodes connected according to a predefined
topology, two nodes are considered neighbors if they are directly
connected. The neighborhood of node k, including k itself, is de-
noted by Nk. Each node k has access to an input signal ukpnq and
to a desired signal dkpnq “ forukpnqs ` vk, where ukpnq P RM

is a column regressor vector, for¨s is an unknown nonlinear function
to be indentified, and vkpnq is the measurement noise, which is as-
sumed to be independent of the other variables and zero-mean with
variance σ2

vk .
To estimate dkpnq at node k, the input vector ukpnq can be

mapped into a high-dimensional feature space H asφrukpnqs, using
a Mercer’s kernel κ : RM

ˆRM
ÑR, such that the kernel trick holds

[10, 21], i.e., κpu,u1
q “ φT

rusφru1
s. One of the most widely uti-

lized kernels in the literature is the Gaussian kernel, which induces
an infinite-dimensional Hilbert space and is defined as κpu,u1

q “

exp
`

´ }u ´ u1
}
2
{p2σ2

q
˘

, where σ ą 0 is the kernel width [10].
Instead of using the kernel trick, ukpnq can be mapped to a

finite-dimensional Euclidean space by using an RFF map z : RM
Ñ

RD , based on Bochner’s theorem. This theorem ensures that, if the
kernel is shift invariant and positive definite, which is the case of
the Gaussian kernel, the Fourier transform ppωq of the kernel is a
probability density function such that [8, 22]

κpu,u1
q “

ż

ppωqejω
Tpu´u1qdω. (1)

Since ppωq and κpu,u1
q are real, the integral (1) converges when

the complex exponentials are replaced by cosines. Thus, the real-
valued mapping zω,brus fi

?
2 cospωTu`bq also satisfies (1) ifω is

drawn from ppωq and b from the uniform distribution on r0, 2πs [8].
Therefore, κpu,u1

q can be computed as Etzω,brusz˚
ω,bru1

su. To
reduce the variance of this estimate, a sample average of D randomly
chosen zω,br¨s is used, i.e.,

κpu,u1
q «

1

D

D
ÿ

i“1

zωi,bi ruszωi,bi ru1
s.

As a consequence, the vector ukpnq can be mapped to the following
D-dimensional RFF vector [8]:

zkpnq fi

c

2

D

»

—

—

–

cospωT
1ukpnq ` b1q

...
cospωT

Dukpnq ` bDq

fi

ffi

ffi

fl

. (2)

For the Gaussian kernel, ωi, i “ 1, ¨ ¨ ¨ , D are drawn from the mul-
tivariate Gaussian distribution with zero mean and covariance ma-
trix ID{σ2, where ID is the identity matrix with dimensions D ˆ D
[8, 22, 23].

Since the RFF space has finite dimension, it is possible to esti-
mate dkpnq at node k by directly using a similar strategy to that of
the linear ATC distributed normalized LMS (dNLMS) algorithm [1].
Thus, the ATC RFF-dKNLMS consists in two steps given by [9]

#

θkpn ` 1q“ψkpnq` µkpnqekpnqzkpnq

ψkpn ` 1q“
ř

jPNk
cjkθjpn ` 1q,

(3a)
(3b)

where θk andψk represent the local and combined D-length weight
vectors at node k, respectively, the signal ekpnq “ dkpnq ´

zTkpnqψkpnq is the estimation error, and µkpnq is a normalized
step size, i.e, µkpnq “ rµk{rδ`}zkpnq}

2
s with 0 ă rµk ă 2 and a

small regularization factor δ ą 0 [1]. Lastly, tcjku are combination
weights satisfying cjk ě 0,

ř

jPNk
cjk “ 1, and cjk “ 0 if j R Nk.

Possible choices for tcjku include fixed or adaptive rules [1]. In
particular, the Metropolis rule, which is the one used throughout this
paper, sets the combination weights as [1]

cjk “

$

’

&

’

%

1{maxt|Nk|, |Nj |u, if j P Nk andj ‰ k
0, if j R Nk

1 ´
ř

jPNk
j‰k

cjk, if j “ k.

It is important to highlight that, since the nodes share their local
estimates, the random features must be common to all of them. Fi-
nally, for the sake of simplicity, in this paper we consider only the
ATC strategy, but the results can be straightforwardly extended to
the CTA one as well.

3. REDUCED-COST RFF-DKNLMS

The censoring mechanism proposed in [19] skips the adaptation step
at node k when this node is censored. As a consequence, in the
proposed scheme, (3a) is replaced by

θkpn`1q“r1´sskpnqsθkpnq̀

sskpnq
“

ψkpnq`µkpnqekpnqzkpnq
‰

,
(4)

where sskpnqPt0, 1u is an adaptive variable to control the censoring,
i.e., such that sskpnq “ 0 when node k is censored and sskpnq “ 1
otherwise. Thus, when sskpnq “ 0, the local estimate θk remains
unchanged. Assuming that the nodes can store the local estimates
sent by their neighbors at past iterations, this means that there is no
need for node k to broadcast θk again, and thus it can shut its trans-
mitter off. Furthermore, since θk is not updated, ekpnq and µkpnq

do not have to be calculated, and the neighborhood of node k does
not need to compute cikθk in the combination step again. Finally,
if the goal of the algorithm is solely to perform nonlinear system
identification, zTkpnq and zTkpnqψkpnq do not have to be calculated
either when sskpnq“0.

Similarly to what was done in [19,20], rather than directly adapt-
ing sskpnq, we introduce an auxiliary parameter αkpnq P r´α`, α`

s

such that

sskpnq “

#

1, if αkpnq ě 0,
0, otherwise.

(5)

The following cost function [19] is then introduced as a key
component of our algorithm:

Jαk pnq“ϕkpnqβs̄kpnq`
“

1´ϕkpnq
‰

ř

jPNk
cjke

2
j pnq, (6)

where βą0 is a parameter that controls how much the communica-
tion between nodes is penalized and

ϕkpnq fi ϕrαkpnqs “
sgmrαkpnqs ´ sgmr´α`

s

sgmrα`s ´ sgmr´α`s
, (7)

is a scaled and shifted sigmoid function [19, 20, 24], with sgmrxs “

r1` expp´xqs
´1 and α`

“ 4 being a common choice in the litera-
ture [19, 20, 24].



The reasoning behind (6) is that, when the error magnitude is
high (such as in the transient phase), Jαk pnq is minimized by mak-
ing ϕkpnq close to one, keeping node k uncensored. A similar line
of thought applies when node k is censored (s̄kpnq“0), thus ensur-
ing that the censoring of node k will end eventually. However, when
node k is not censored (s̄kpnq “1) and the error magnitude is suffi-
ciently small, the cost function of (6) is minimized by making ϕkpnq

close to zero. Hence, the algorithm begins to censor node k [19].
The adaptive censoring mechanism is then obtained by taking

the derivative of Jαk pnq in (6) with respect to αkpnq. Since ejpnq

is not known when node j is censored, we replace ejpnq by its latest
measurement εjpnq, given by εjpnq “ r1 ´ ssjpnqsεjpn ´ 1q `

ssjpnqejpnq. We thus get the following stochastic gradient descent
rule [19]:

αkpn ` 1q“αkpnq`µsϕ
1
kpnq

“
ř

jPNk
cjkε

2
j pnq ´ βsskpnq

‰

, (8)

where µs ą 0 is a step size and

ϕ1
kpnq“

dϕrαkpnqs

dαkpnq
“

sgmrαkpnqst1´sgmrαkpnqsu

sgmrα`s´sgmr´α`s
. (9)

Assuming that the gradient noise can be neglected, it can
be shown that node k will be censored at some point if β ą
ř

jPNk
cjkσ

2
vj [19]. To eliminate the need for a priori knowl-

edge of the noise variance, in [20] the parameter β was replaced by
a local, time-varying parameter

βkpnq “ γpσ2
Nk

pnq “ γ
ř

jPNk
cjkpσ2

vj pnq (10)

for each node k, where γ ą 1 is a parameter that the filter designer
must choose, pσ2

Nk
fi

ř

jPNk
cjkpσ2

vj pnq, and pσ2
vj pnq is an estimate

of σ2
vj . The greater the value of γ, the more nodes are censored.

In this paper, we use the algorithm proposed in [25] to calculate
pσ2
vk pnq at each node k in an online manner, as suggested in [20].

Furthermore, following the same procedure employed in [20], we
also adopt a local and time-varying step size given by

µsk pnq“
1

δ`pσ2
Nk

pnq

$

’

&

’

%

α`

pγ´1qpϕ1
0´ϕ1

α` q

»

—

–

˜

ϕ1
o

ϕ1

α`

1̧
∆n

´1

fi

ffi

fl

,

/

.

/

-

, (11)

where ϕ1
0 and ϕ1

α` denote ϕ1 evaluated at αk “ 0 and αk “ α`,
respectively, and ∆n is the maximum number of iterations between
the beginning of the steady state in terms of the mean-squared error
(MSE) and the beginning of the censorship of the nodes. We remark
that the term between curly braces is a constant. Thus, (11) only
requires one extra multiplication, sum, and division per iteration.

Eqs. (3b), (4), (5), and (8) through (11) are the main equations
of the proposed algorithm, which we name Adaptive Censoring
(AC) RFF-dKNLMS. Finally, it should be remarked that AC-RFF-
dKNLMS requires that each uncensored node k transmits e2kpnq and
pσ2
vk pnq to its neighbors. Nonetheless, these data can be sent bundled

with θkpn ` 1q to keep the number of transmissions unchanged.
Moreover, this slight increase in overhead results negligible com-
paring with the reduction in transmissions caused by the number of
times each node is censored. This fact will become clear in the next
section.

Computational cost. We focus our analysis on the number of
multiplications, since they are typically more demanding than addi-
tions from a computational perspective. The RFF-dKLNMS algo-
rithm requires approximately DpM `3`|Nk|q`1 multiplications

per iteration. In contrast, when node k is censored in the AC-RFF-
dKNLMS algorithm, it only needs to update αkpn`1q in (8) and
ψkpn`1q in (3b) using the estimates of its uncensored neighbors.
Hence, in this situation, it must carry out 2`

ř

jPNk
ssjpnqpD`1q

multiplications. In this case, (10) does not have to be calculated
since sskpnq “ 0. On the other hand, when node k is not cen-
sored, Eqs. (8) through (11) (including the noise power estimation
algorithm of [25]) demand approximately 2|Nk|`11 more multipli-
cations in comparison with the standard RFF-dKLNMS algorithm.
Thus, we can see that the computational cost of AC-RFF-dKNLMS
is slightly higher when the nodes are not censored (e.g., during the
transient phase), but decreases significantly when they are censored
(e.g., in steady state). This situation is summarized in Table 1, where
we assume that ϕ1

kpnq is implemented by a lookup table, and do not
take this operation into account in our analysis.

4. SIMULATION RESULTS

In this section, we compare the performance of our AC-RFF-
dKNLMS algorithm to that of other state-of-the-art solutions con-
sidering two simulation scenarios (Secs. 4.1 and 4.2), and using the
network with V “ 20 nodes depicted in Fig. 1(a). The noise power
σ2
vk is shown in Fig. 1(b) for k “ 1, ¨ ¨ ¨ , V , and the input signal

ukpnq is a white Gaussian noise with zero mean and unit variance.
The results were obtained over an average of 500 realizations.

Besides the proposed AC-RFF-dKNLMS scheme, we also con-
sider in the simulations the RFF-dKNLMS algorithm with two dif-
ferent censoring approaches: (i) the censoring mechanism of [16],
and (ii) a random censoring policy, in which Vs nodes are selected
randomly at each iteration to remain uncensored. To enable the
comparison between AC-RFF-dKNLMS and the censoring strategy
of [16], their parameters γ and τn were selected to obtain roughly
one node uncensored per iteration in steady state in each case.
In the random censoring technique, censored nodes are prevented
from updating their local estimates, in a similar fashion to AC-RFF-
dKNLMS. In addition, and for the sake of comparison, we also show
results obtained with three other approaches: the RFF-dKNLMS al-
gorithm with all nodes uncensored, the RFF-dKNLMS scheme with
a non-cooperative communication policy (i.e., cjk “ 0 if j ‰ k and
cjk “ 1 if j “ k), and the linear dNLMS with all nodes uncensored.
In all cases, we adopt µk “ 1 for every node k and δ “ 10´5.

(a)

1 5 10 15 20

Node k

0.1

0.8

1.6

(b
)
σ

2 v
k

×10−2

Fig. 1: (a) Network topology, with the connections between node #1
and its neighbors highlighted, and (b) σ2

vk used in the experiments.

4.1. Toy Example

Firstly, we consider a toy example in which dkpnq “ wozkpnq `

vkpnq, where wo is a typically unknown system, oftentimes referred
to as the “optimal system” in the adaptive filtering literature [1]. In
our simulations, we randomly generated the D “ 50 coefficients
of wo following a uniform distribution in r´1, 1s. At each iteration,



Table 1: Comparison between RFF-dKNLMS and AC-RFF-dKNLMS: number of multiplications per iteration for each node k.

Algorithm Multiplications (
Â

)
RFF-dKNLMS DpM ` 3 ` |Nk|q ` 1

AC-RFF-dKNLMS sskpnq ˆ rDpM ` 3 ` |Nk|q ` 2|Nk| ` 12s ` r1 ´ sskpnqsr2 `
ř

jPNk
ssjpnqpD ` 1qs

zkpnq is generated using the past M “2 samples of ukpnq and RFFs
drawn from a multivariate Gaussian distribution with σ2

“10´2.
We assume that the RFFs utilized to generate zkpnq are the

same employed by the RFF-dKNLMS algorithm. Although not re-
alistic, this assumption allows us to adopt the network mean-square
deviation (NMSD) as a performance indicator, which is given by
NMSDpnq “ 1

V

řV
k“1 Et∥wo ´ ψkpnq∥2u. Specifically for the

dNLMS algorithm, we adopt M “ D “ 50 to enable the com-
parison between wo and the coefficients of the adaptive filter. In
addition, we set γ “ 10 for our AC-RFF-dKNLMS scheme and, to
preserve its convergence rate, ∆n “ 5000. For the censoring mech-
anism of [16], named COKE by the authors, we adopted τn “ 0.05.

In Fig. 2, we show (a) the NMSD curves, (b) the number of un-
censored nodes, and (c) the number of multiplications per iteration.
We can see that AC-RFF-dKNLMS keeps the nodes uncensored dur-
ing the transient phase [Fig. 2(b)] and thus converges as fast as RFF-
dKNLMS with Vs “ 20 nodes uncensored, which can be considered
as a lower bound regarding the NMSD [Fig. 2(a)]. In contrast, the
RFF-dKNLMS with Vs “ 2 nodes randomly uncensored clearly
presents a slower convergence rate. The algorithm of [16] outper-
forms the random censoring technique while censoring more nodes,
but converges slightly slower than AC-RFF-dKNLMS and the RFF-
dKNLMS algorithm with Vs “ 20 nodes uncensored. In terms of
the computational cost, the AC-RFF-dKNLMS algorithm demands
less multiplications per iteration in steady state than any other solu-
tion. On average, AC-RFF-dKNLMS reduces the burden by roughly
95% in comparison with the RFF-dKNLMS algorithm with Vs “ 20
nodes uncensored and 90% in comparison with the solution of [16]
in steady state. This clearly compensates the slight increment in
computational burden during the transient phase.
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Fig. 2: Simulation results obtained in the toy example scenario.
(a) NMSD curves, (b) number of uncensored nodes, and (c) multi-
plications per iteration.

4.2. Nonlinear Channel Identification

In this subsection, we consider that dkpnq “ ykpnq `0.2y2
kpnq ´

0.1y3
kpnq ` vkpnq, where ykpnq is the output of a linear channel

described by Hpzq “ 0.3482` 0.8704z´1
` 0.3482z´2 with in-

put ukpnq. In this case, we consider M “ 3 and D “ 500 fea-
tures generated with σ2

“ 1. Moreover, we adopt the network MSE

(NMSE) as a performance indicator, which is given by NMSEpnq“
1
V

řV
k“1Ete2kpnqu, and shown in Fig.3(a) for all the algorithms.

We selected γ “ 10 for the AC-RFF-dKNLMS algorithm and set
∆n“104 in order to preserve its convergence rate. For the solution
of [16], we considered τn “ 10´3.

We observe from Fig. 3 that, similarly to what was seen in Fig. 2,
AC-RFF-dKNLMS keeps the nodes uncensored during the transient
phase and thus preserves the convergence rate of RFF-dKNLMS
with Vs “ 20 nodes uncensored. In terms of the computational cost,
the AC-RFF-dKNLMS algorithm carries out less multiplications per
iteration in steady state in comparison with any other solution, ex-
cept for the linear dNLMS algorithm, whose cost was much lower in
this scenario due to the adoption of M “ 3. Once again, we can see
that AC-RFF-dKNLMS outperforms the censoring algorithm of [16]
in terms of the convergence rate and computational cost.
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Fig. 3: Simulation results obtained for nonlinear channel identifi-
cation. (a) NMSE curves, (b) number of uncensored nodes, and (c)
multiplications per iteration. For better visualization, we applied a
moving-average filter with 64 coefficients to the curves.

5. CONCLUSION

In this paper, we extended the censoring mechanism proposed in [19]
and [20] to distributed kernel adaptive filters. The resulting algo-
rithm, named as AC-RFF-dKNLMS, maintains the nodes uncen-
sored when the error is high in magnitude, and censors them oth-
erwise. Since the adaptive censoring mechanism prevents the nodes
from doing most of the calculations that they have to carry out when
they are not censored, the resulting algorithm also reduces the com-
putational cost drastically, which is of essence when dealing with
practical implementations of RFF Kernel algorithms. Simulation re-
sults showed that AC-RFF-dKNLMS can outperform other state-of-
the-art censoring algorithms in the transient phase, while censoring
as many nodes as them in steady state. Furthermore, its compu-
tational complexity was shown to be comparatively much lower in
steady state, which makes it a very attractive solution. For future
work, we intend to test the proposed algorithm in an application us-
ing real-world data, compare it with other censoring techniques ex-
tended to kernel diffusion networks, and obtain theoretical results for
it, such as analytical expressions for the number of nodes censored
per iteration.
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