
IMPROVING MULTIKERNEL ADAPTIVE FILTERING WITH SELECTIVE BIAS

Magno T. M. Silva, Renato Candido∗

Universidade de São Paulo
{magno, renatocan}@lps.usp.br

Jerónimo Arenas-Garcı́a, Luis A. Azpicueta-Ruiz†

Univ. Carlos III de Madrid, Spain
{jarenas, azpicueta}@tsc.uc3m.es

ABSTRACT

In this paper, we propose a scheme to simplify the selection of kernel
adaptive filters in a multikernel structure. By multiplying the out-
put of each kernel filter by an adaptive biasing factor between zero
and one, the degrading effects of poorly adjusted kernel filters can
be minimized, increasing the robustness of the multikernel scheme.
This approach is able to deal with the lack of the necessary statistical
information for an optimal adjustment of the filter and its structure.
The advantages of the proposed scheme with respect to other multi-
kernel solutions are checked by means of numerical examples in the
context of signal prediction and system identification.

Index Terms— Nonlinear adaptive signal processing, kernel
adaptive filtering, cooperative architectures

1. INTRODUCTION
Kernel adaptive filters (KAFs) are able to solve nonlinear problems
by implicitly projecting the input vector to a high dimensional space,
where a standard linear adaptive filter is employed (see, e.g., [1–3]).
They have been mainly applied in system identification [4], echo
cancellation [5], time series prediction [1, 6–8], and channel equal-
ization [1, 9].

The kernel version of the least-mean-squares (LMS) algorithm,
denoted as KLMS [9], is the most popular among the different KAFs.
KLMS maps the input column-vector x(n) ∈ RN into a high di-
mensional feature space F as ϕ(x(n)), using a Mercer’s kernel,
which is a continuous, symmetric, and positive-definite function κ :
RN × RN → R, such that κ(x,x′) = ϕ(x)Tϕ(x′), where the
superscript T denotes transposition. The Gaussian kernel is one
of the most used kernel functions in the literature. It is defined as
κ(x,x′) = exp

(
−‖x− x′‖2/(2σ2)

)
, where ‖ · ‖ denotes the Eu-

clidean norm and σ > 0 the kernel width [1].
In the space F, the LMS algorithm is used to update the filter

weight column-vector Ω(n− 1) in order to estimate the desired sig-
nal d(n). The Representer’s Theorem states that Ω(n − 1) can be
expressed as a linear combination of past input samples, so that the
filter output can be obtained as

y(n) = ϕ(x(n))TΩ(n− 1) = µ

n−1∑
i=1

e(i)κ(x(n),x(i)), (1)

where e(i) = d(i)− y(i) and µ is a step size.
KAFs offer a powerful alternative to nonlinear filters, such as

Volterra and functional link adaptive filters [10, 11]. However, their
main drawbacks are the selection of an appropriate kernel and the

∗The work of Silva has been partly supported by FAPESP under Grant
2017/20378-9 and CNPq under Grant 304715/2017-4.
†The work of Arenas-Garcı́a has been partly supported by

MINECO Projects TEC2014-52289-R, TEC2016-81900-REDT, and
TEC2017-83838-R, and by Comunidad de Madrid Project PRICAM
S2013/ICE-2933. The work of Azpicueta-Ruiz has been partly supported by
MINECO Projects TEC2014-52289-R and TEC2017-83838-R.

high computational burden and memory, since the dictionary size
(expansion in (1)) grows linearly with the incoming samples.

To avoid this linear growth, different sparsification techniques
have been proposed to include in the dictionary only informative data
(see, e.g., [12–16]). In this context, an alternative to these techniques
is the quantized KLMS (QKLMS) algorithm [3]. If the minimum
distance between the input vector x(n) and all the vectors contained
in the dictionary is smaller than a threshold, the dictionary is kept
unchanged and the coefficient of the closest vector is updated. Oth-
erwise, the input vector is included in the dictionary and its coef-
ficient must also be added in the memory. The use of “redundant”
data to locally update the coefficient of the closest vector leads to an
algorithm with better accuracy and a more compact dictionary [3].

To select an appropriate kernel, many adaptive multiple kernel
approaches have been proposed in the literature. For instance, the
single-input multikernel LMS (SI-KLMS) scheme [17], where the
kernel function is a convex combination of kernels, i.e., κ(x,x′) =∑L
`=1 β`κ`(x,x

′), where β`, ` = 1, · · · , L are coefficients fixed
beforehand with β` > 0 and

∑L
`=1 β` = 1. The component ker-

nels κ`(·, ·) can simply be usual kernels with different parameter
settings. Since the sum of Mercer’s kernels

∑L
`=1 β`κ`(·, ·) is also a

valid Mercer’s kernel, this approach is equivalent to the monokernel
KLMS but considers a different feature space.

A convex combination of two KLMS filters was also proposed
to select a proper kernel function [2, 6]. These works recur to the
standard combination of two filters [18,19], where the global output
is computed as y(n) = η(n)y1(n) + [1− η(n)]y2(n) being yi(n),
i = 1, 2 the outputs of the KLMS filters and η(n) a mixing param-
eter. Depending on the value of η(n), the combination may show
a preference for one of the kernels. If the mixing parameter takes
an intermediate value, both filters are used simultaneously, and the
combination may perform better than each individual filter.

Finally, the multiple-input multikernel LMS (MI-KLMS) scheme
[7, 8] augments the dimensionality of the feature space by mapping
input samples to multiple feature elements, which in turn are linearly
combined to yield the output estimate. This has been proven advan-
tageous in some scenarios when compared with the standard kernel
regression paradigm, allowing the learning of multiple nonlinear
features presented in the data [8]. Considering the multidimen-
sional mapping of x(n) to a feature space M, given by Φ(x(n)) =
[ϕ1(x(n)) · · ·ϕL(x(n))]T , with ϕ` ∈ F` for ` = 1, · · · , L, and the
inner product in M defined as 〈Φ,Φ′〉M =

∑L
`=1〈ϕ`, ϕ

′
`〉, it is pos-

sible to show that M is a Hilbert space and presents the reproducing
properties [8]. Therefore, there is a kernel K associated with the
inner product in M, K(x,x′) = 〈Φ(x),Φ(x′)〉M. Thus, the filter
output can be calculated by generalizing (1) to the new kernel,

y(n) =

n−1∑
i=1

µe(i)

L∑
`=1

κ`(x(i),x(n)). (2)

This approach is equivalent to considering L KLMS filters in paral-
lel and adapting them using a single error signal given by e(n) =
d(n) − y(n) [8]. In terms of performance, simulation results show
that MI-KLMS generally tends to present a lower mean-square er-
ror (MSE) in comparison with SI-KLMS as a trade-off to its higher
computational cost. In some applications, MI-KLMS may present
lower MSE in comparison to the convex combination of two KLMS
filters [2, 7]. However, in certain situations, if the parameters of one
kernel component are poorly adjusted, then the convex combination
is able to select the best component filter (making η(n) ≈ 0 or
η(n) ≈ 1) and may outperform SI-KLMS and MI-KLMS, which
have their output degraded by the poorly adjusted kernel. We notice
that all theseL-kernel approaches present similar computational cost
considering the same sparsification techniques for the dictionaries.

In this paper, we propose a scheme to improve the selection of
kernel filters in the MI-KLMS scheme. By multiplying the output of
each kernel filter by an adaptive biasing factor between 0 and 1 [20],
we can minimize the degrading effects of poorly adjusted kernel fil-
ters in the MI-KLMS scheme. Thus, our approach gets advantages
of MI-KLMS and of the convex combination of KLMS filters. The
paper is organized as follows. The proposed scheme is shown in
Section 2, followed by some simulation results and conclusions, in
Sections 3 and 4, respectively.

2. SELECTING KERNEL FILTERS IN MI-KLMS SCHEME
Fig. 1 depicts a block diagram of the proposed scheme, which is
named as robust MI-KLMS (R-MI-KLMS) from now on. Our pro-
posal is based on the inclusion of an upper layer on the MI-KLMS
filter composed of different biasing factors with values between 0
and 1. At each branch, the factor λ`(n), ` = 1, 2, . . . , L multiplies
the output of the `th filter that composes MI-KLMS. In this way, the
output of the proposed R-MI-KLMS can be calculated as

yb(n) =

L∑
`=1

λ`(n)y`(n), (3)

where y`(n) is the output of each individual adaptive kernel. This
permits to weight the output of each kernel activating or deactivating
the output of unnecessary kernels in the global filter output.

PSfrag replacements

Nonlinear System

x(n)
RN→F1

RN→F2

U → FL

Ω1(n−1)

Ω2(n−1)

ΩL(n−1)

e(n)

yb(n)

y1(n)

y2(n)

yL(n)

eλ1(n)
eλ2(n)

e1(n)=d(n)−[y1(n)+λ2(n)y2(n)]

e2(n)=d(n)−[y2(n)+λ1(n)y1(n)]

d(n)

v(n)

φ(x(n))
...

ϕ1(x(n))

ϕ2(x(n))

ψL(x(n))

λ1(n)

λ2(n)

Fig. 1. R-MI-KLMS with L = 2 KAFs applied to nonlinear system
identification, where v(n) is a measurement noise.

All the biasing parameters are adapted to minimize the MSE of
the global output, i.e., E{e2(n)}, where E{·} stands for expectation
and e(n) = d(n)− yb(n), as can be seen in Fig. 1 for L = 2 KAFs.
Adapting these biasing factors will result in λ`(n) → 1 when the
modeling capability of the kernel contributes to a reduction of the
MSE, whereas λ`(n)→ 0 otherwise. In the latter case, not only the
output of the corresponding kernel will be suppressed, but also the
gradient noise incurred by its adaptation, which is specially impor-
tant in scenarios where the signal-to-noise ratio (SNR) is low [20].

An important difference between the MI-KLMS scheme and our
proposal is related with the error employed to adapt each kernel. The
update of all kernel filters in the MI-KLMS scheme use the same
error d(n)−

∑L
`=1 y`(n), whereas the `th kernel of the R-MI-KLMS

scheme updates its coefficients with [21]

e`(n) = d(n)−

y`(n) + L∑
l=1,l 6=`

λl(n)yl(n)

 (4)

in order to keep the best properties of each possible biased kernel of
other branches. Thus, if λl(n) ≈ 0 with l 6= `, Eq. (4) avoids incor-
porating in the update of the `th kernel information from kernels that
are not useful or that incorporate a large amount of gradient noise.

Different strategies can be followed to adapt the biasing param-
eters of the R-MI-KLMS scheme. In our proposal, and following
a similar strategy to that of [20], we reinterpret the output of each
branch of R-MI-KLMS as a convex combination with a virtual ker-
nel whose output is always zero. Making that, we get

yb(n) =

L∑
`=1

λ`(n)y`(n) =

L∑
`=1

λ`(n)y`(n)+ [1−λ`(n)] ·0. (5)

In this way, we can adapt the value of λ`(n) with ` = 1, . . . , L
employing well-known adaptive rules [19].

However, instead of adapting directly each biasing factor λ`(n),
we adapt an auxiliary biasing parameter α`(n) univocally related
with λ`(n) by means of the sigmoidal function [19], i.e., λ`(n) =

sgm[α`(n− 1)] = [1 + e−α(n−1)]−1. For this, we follow a pop-
ular scheme using a power-normalized stochastic gradient descent
method to minimize e2(n), i.e.,

α`(n) = α`(n− 1) +
µα`
p`(n)

e(n)y`(n)λ`(n)[1− λ`(n)], (6)

where µα` is a step size and p`(n) = βp`(n − 1) + (1 − β)y2` (n)
represents a low-pass filtered version of y2` (n), with 0 << β < 1
being a smoothing factor. This scheme to adapt the biasing factors
has two advantages:

• the use of the sigmoidal activation function is an easy way to
keep λ`(n) ∈ [0, 1]; and

• the factor λ`(n)[1− λ`(n)] in (6) reduces the gradient noise
introduced in the adaptation of α`(n) when the biasing factor
is close to the limiting values 0 or 1, since the effective step
size in (6) is reduced. It should be noted that λ`(n) = 1 and
λ`(n) = 0 represent two important situations where a kernel
is completely considered or discarded for the global output.

From a practical point of view, the adaptation of the biasing pa-
rameters has to be slightly modified [19]. To avoid the paralysis
of the adaptation in (6), α`(n) has to be restricted to a range of
[−α+, α+] (being α+ = 4 a common value used [18, 19]). As a
consequence, to guarantee that λ`(n) ∈ [0, 1] under this restriction,
the relation between λ`(n) and α`(n) is given as [20]

λ`(n) = ψ[α(n− 1)] ,
sgm[α`(n− 1)]− sgm[−α+]

sgm[α+]− sgm[−α+]
. (7)

The definition of λ`(n) in (7) gives rise to a slight modification of
Eq. (6), as can be seen in Table 1, which shows the pseudocode
of the proposed R-MI-KLMS scheme considering L QKLMS fil-
ters. In this table, the dictionary for the `th KAF at time instant
n is denoted as C`(n) = {x(cj,`)}

Nc,`(n)

j=1 , where x(cj,`) is the
j th element and Nc,`(n) is its cardinality, which can vary from a
time instant to another. The index cj,` ∈ {1, 2, · · · , n − 1} is used
to distinguish the dictionary elements x(c1,`), · · · ,x(cNc(n),`)
from the input vector x(n). Analogously, the vector a`(n) =
[ac1,`(n) · · · acNc(n),`

(n)]T contains the coefficients of the `th KAF.

Table 1. Summary of the R-MI-KLMS algorithm.
Input: {x(n) ∈ RN , d(n)}, n = 1, 2, · · ·
Initialization: Choose step sizes µ` > 0 and µα` , ` = 1 · · · , L,
kernel widths σ` > 0, thresholds ε` ≥ 0, ` = 1, · · · , L,
forgetting factor β and initialize the dictionaries C`(1) = {x(1)},
the parameters α`(1) = α+, p`(1) = 1,
and coefficient vectors a`(1) = [µd(1)], ` = 1, · · · , L.
For n = 2, 3, · · · , do:

For ` = 1, · · · , L, do:

λ`(n) = ψ[α`(n− 1)] =
sgm[α`(n− 1)]− sgm[−α+]

sgm[α+]− sgm[−α+]

y`(n) =

Nc,`(n)∑
j=1

aj,`(n− 1)κ`(x(n),x(cj,`))

ψ′[α`(n− 1)] =
sgm[α`(n− 1)]{1− sgm[α`(n− 1)]}

sgm[α+]− sgm[−α+]
p`(n) = β p`(n− 1) + (1− β) y2` (n)

end
yb(n) =

∑L
`=1 λ`(n)y`(n)

e(n) = d(n)− yb(n)
For ` = 1, · · · , L, do:
e`(n) = d(n)−

[
y`(n) +

∑L
`′=1, `′ 6=` λ`′(n)y`′(n)

]
α`(n) = α`(n− 1) +

µα`
p`(n)

e(n)y`(n)ψ
′[α`(n− 1)]

if |α`(n)| > α+

α`(n)← sign[α`(n)]α
+

end
dis(x(n), C`(n)) = min

1≤j≤Nc,`(n)
‖x(n)− x(cj,`)‖

If dis(x(n), C`(n)) ≤ ε`, keep the dictionary unchanged:
C`(n+ 1) = C`(n), and quantize x(n) to the closest
vector by updating the coefficient of that vector, i.e.,
aj∗,`(n) = aj∗,`(n− 1) + µe`(n),

where
j∗ = arg min

1≤j≤Nc,`(n)
‖x(n)− x(cj,`)‖

Otherwise, assign a new center and corresponding
new coefficient:
C`(n+ 1) = {C`(n),x(n)},
a`(n) = [a`(n− 1), µe`(n)].

end
end

3. SIMULATION RESULTS
In this section, we compare the performance of our proposal, with
that of three multikernel solutions: MI-KLMS [7,8], SI-KLMS [17],
and with the adaptive convex combination of two KLMS, denoted
here as CC-KLMS [2,6]. Due to the inherent advantages of QKLMS,
we consider this algorithm in the pseudocode of Table 1 as well as
in all simulations of this section. Therefore, the letter “Q” appears in
the acronyms of all schemes. We consider only the Gaussian kernel
function and L = 2 filters for all schemes.

In the first set of simulations, we consider the problem of non-
linear prediction, where the desired sequence is computed as [7]

d(n) =
[
0.8− 0.5 exp(−d2(n−1))

]
d(n−1)

−
[
0.3+0.9 exp(−d2(n−1))

]
d(n−2)+0.1 sin(d(n−1)π),

for 0 ≤ n < Nit/2, and

d(n) =
[
0.2− 0.7 exp(−d2(n−1))

]
d(n−1)

−
[
0.8+0.8 exp(−d2(n−1))

]
d(n−2)+0.2 sin(d(n−1)π),

forNit/2 ≤ n < Nit beingNit the number of iterations and d(n) =
0.1 for n < 0.

ConsideringN = 2,Nit = 104, and adjusting the parameters as
in Table 2, we obtain the results shown in Figs. 2 and 3. Fig. 2 shows
the learning curves, evolution of the mixing parameter η(n) for CC-
QKLMS, and evolution of the biasing parameters λ1(n) and λ2(n)
for the R-MI-KLMS scheme, considering kernel widths as σ1 = 0.1
and σ2 = 1. We can observe that the CC-QKLMS scheme performs
as its best component filter, which is confirmed by the mixing pa-
rameter evolution. SI-QKLMS1 outperforms SI-QKLMS2, which
shows the importance of choosing adequately the step size and the
dictionary threshold for this scheme. Finally, MI-QKLMS and its
robust version present the same performance, since both component
filters are considered to compute the overall output of R-MI-KLMS,
which can be confirmed by the evolution of the biasing parameters.
These schemes outperform all multiple kernel solutions considered
in the simulation in terms of convergence rate and steady-state error.

Table 2. Parameters used in the simulations.
Algorithm Parameters
QKLMS1 µ1=0.05, σ1, ε1=0.05
QKLMS2 µ2=0.5, σ2, ε2=0.5

CC-QKLMS α+=4, β=0.9, µα
SI-QKLMS1 µ=0.05, β1=β2=0.5, σ1, σ2, ε=0.05
SI-QKLMS2 µ=0.5, β1=β2=0.5, σ1, σ2, ε=0.5
MI-QKLMS µ1=0.05, µ2=0.5, σ1, σ2, ε1=0.05, ε2=0.5
R-MI-QKLMS µ1=0.05, µ2=0.5, σ1, σ2, ε1=0.05, ε2=0.5,

α+=4, β=0.9, µα1
, µα2

−60

−40

−20

0

(a
)

M
S

E
(d

B
)

QKLMS1

QKLMS2

CC-QKLMS −60

−40

−20

0

(b
)

M
S

E
(d

B
)

SI-QKLMS1

SI-QKLMS2

0.0 2.5 5.0 7.5 10.0

iterations (×103)

−60

−40

−20

0

(c
)

M
S

E
(d

B
)

MI-QKLMS

R-MI-QKLMS

0

1

(d
)
η
(n

)

0.0 2.5 5.0 7.5 10.0

iterations (×103)

0

1

(e
)
λ
i(
n

)

λ1(n)

λ2(n)

Fig. 2. MSE considering signal prediction performed with CC-QKMLS (a),
with the mixing parameter (d); SI-QKLMS (b); MI-MQKLMS and R-
MIQKLMS (c), with biasing parameters (e). Settings σ1 = 0.1, σ2 = 1,
µα=µα1 =µα2 =1.5 and other parameters as in Table 2. To facilitate the
visualization, the MSE curves are smoothed using a moving average filter
with 64 taps.

Changing the kernel widths to σ1 = 0.2 and σ2 = 100 and
maintaining the other parameters as in Table 2, we obtain the re-
sults of Fig. 3. In this case, the kernel width σ2 = 100 does not
lead to good results for a monokernel filter as we can observe in the
learning curve of the QKLMS2 filter. Therefore, CC-QKLMS fol-
lows QKLMS1 since its mixing parameter converges to one. The
SI-QKLMS1 scheme presents a lower convergence rate than that of
the monokernel QKLMS1. Finally, the kernel width σ2 = 100 de-
grades the performance of MI-QKLMS for 1200 < n < 5000,
which is avoided by the proposed R-MI-QKLMS, since the biasing
factor λ2(n) ≈ 0 until iteration n = 6000. After that, the kernel
width σ2 = 100 is considered in the overall output, since it does not
degrade the performance of MI-QKLMS anymore.

−60

−40

−20

0

(a
)

M
S

E
(d

B
)

QKLMS1

QKLMS2

CC-QKLMS −60

−40

−20

0

(b
)

M
S

E
(d

B
)

SI-QKLMS1

SI-QKLMS2

0.0 2.5 5.0 7.5 10.0

iterations (×103)

−60

−40

−20

0

(c
)

M
S

E
(d

B
)

MI-QKLMS

R-MI-QKLMS

0

1

(d
)
η
(n

)

0.0 2.5 5.0 7.5 10.0

iterations (×103)

0

1

(e
)
λ
i(
n

)

λ1(n)

λ2(n)

Fig. 3. Same as Fig. 2 but considering σ1 = 0.2, σ2 = 100, µα = µα1 =
µα2 =0.3 and other parameters as in Table 2.

In the second set of simulations, we consider a nonlinear system
identification application with two different systems modified from
[4]. For the first half of the experiment, we consider the first system,
where the desired signal is d1(n) = s1(n) + z1(n), with

s1(n) =
s1(n− 1)

1 + s21(n− 1)
+ x3(n− 1),

where x(n) is the input signal and z1(n) is a zero-mean Gaussian
noise with variance σ2

z1 = 10−4. At n = 5 × 104, we consider an
abrupt change that leads to a second nonlinear system, which gener-
ates a desired sequence computed as d2(n) = ψ(s2(n)) + z2(n),
with z2(n) a zero mean Gaussian noise with variance σ2

z2 = 10−6,
s2(n) = x(n)+0.5x(n−1)−0.2s2(n−1)+0.35s2(n−2), and

ψ(s) =


s

3
√
0.1 + 0.9s2

for s ≥ 0

−s2[1− exp(0.7s)]
3

for s < 0
.

Fig. 4 shows the learning curves in terms of excess MSE
(EMSE), evolution of the mixing parameter η(n) for CC-QKLMS,
and evolution of the biasing parameters for R-MI-QKLMS. The
input signal x(n) was i.i.d. randomly generated from a zero-mean
Gaussian distribution with standard deviation σx = 0.15. We can
observe that CC-QKLMS performs as the best component filter. The
performance of SI-QKLMS2 is better than that of SI-QKLMS1 in
the identification of the first system but for the second system, SI-
QKLMS1 outperforms SI-QKLMS2, emphasizing the importance
of adjusting the step size and dictionary threshold adequately for
this scheme. This result also shows that, even considering a smaller
number of elements in the dictionary (by using a lower value for
the dictionary threshold), it is possible to obtain an improved per-
formance, depending on the other parameters. In this scenario,
MI-QKLMS presents a poor performance and it is possible to ob-
serve the importance of using the improved version R-MI-QKLMS.
This robust version is able to minimize the degrading effects of
unnecessary kernels, achieving a learning curve with a convergence
rate slightly higher than that of CC-QKLMS.

Table 3 shows the gain of R-MI-QKLMS in relation to other
multikernel schemes in terms of steady-state EMSE in the identi-
fication of the second system for different values of SNR. We can
observe that R-MI-QKLMS outperforms other multikernel schemes

for the considered range of SNR. The advantage of R-MI-QKLMS is
especially remarkable for low SNRs, which is useful in the frequent
situations in which the SNR is unknown or changes over time. This
is an important capability that the CC-QKLMS scheme lacks.

−40

−30

−20

−10

(a
)

E
M

S
E

(d
B

)

QKLMS1

QKLMS2

CC-QKLMS

−40

−30

−20

−10

(b
)

E
M

S
E

(d
B

)

SI-QKLMS1

SI-QKLMS2

0.0 2.5 5.0 7.5 10.0

iterations (×104)

−40

−30

−20

−10

(c
)

E
M

S
E

(d
B

)

MI-QKLMS

R-MI-QKLMS

0

1

(d
)
η
(n

)

0.0 2.5 5.0 7.5 10.0

iterations (×104)

0

1

(e
)
λ
i(
n

)

λ1(n)

λ2(n)

Fig. 4. EMSE considering system identification performed with CC-
QKMLS (a), with the mixing parameter (d); SI-QKLMS (b); MI-MQKLMS
and R-MIQKLMS (c), with biasing parameters (e). SettingsN = 2, σ1 = 1,
σ2 = 0.1, µα = µα1 = µα2 = 1 and other parameters as in Table 2. Av-
erage of 1000 runs. To facilitate the visualization, the EMSE curves are
smoothed using a moving average filter with 64 taps.

Table 3. Gain of R-MI-QKLMS in the identification of the second system
in relation to other schemes in terms of steady-state EMSE (dB), estimated
averaging the last 1000 samples after filters convergence. Settings σ1 = 1,
σ2 = 0.1, µα=µα1 =µα2 =0.1 and other parameters as in Table 2.

SNR CC-QKLMS SI-QKLMS1 SI-QKLMS2 MI-QKLMS
−25 10.5 9.4 23.9 20.7
−20 6.7 6.8 15.3 16.6
−15 3.3 3.2 11.4 13.4
−10 1.4 0.9 8.5 9.9
−5 0.6 0.5 6.3 8.4
0 0.4 0.4 4.5 5.2
5 0.1 0.3 2.2 3.5
10 0.1 0.5 1.6 2.8
15 0 0.2 0.5 1.6

4. CONCLUSION
KAFs are important tools to solve nonlinear problems such as time
series prediction, system identification, among others. Besides the
high computational burden and memory, the selection of an appro-
priate kernel is essential to obtain a good performance in terms of
MSE. To circumvent this problem, multikernel schemes that com-
bine two or more KAFs with different kernel functions have been
proposed in the literature. However, if the parameters of one kernel
component are poorly adjusted, the performance of these schemes
can be degraded. In this paper, we proposed a robust multikernel
scheme that is able to activate or deactivate the output of unnec-
essary kernels in the global filter output. With a slight increase in
the computational cost in comparison with MI-QKLMS, the pro-
posed scheme can outperform other multikernel solutions, in sce-
narios where the settings of one or more kernels are not appropri-
ate, and/or when the SNR is low. In a future work, we intend to
theoretically analyze the proposed scheme and consider it in other
applications.

5. REFERENCES

[1] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filter-
ing: A Comprehensive Introduction, Wiley, 2010.

[2] W. Gao, C. Richard, J. C. M. Bermudez, and J. Huang, “Con-
vex combinations of kernel adaptive filters,” in Proc. of IEEE
International Workshop on Machine Learning for Signal Pro-
cessing (MLSP), Sep. 2014, pp. 1–5.

[3] B. Chen, S. Zhao, P. Zhu, and J. C. Principe, “Quantized kernel
least mean square algorithm,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 23, no. 1, pp. 22–32, Jan
2012.

[4] W. D. Parreira, J. C. M. Bermudez, C. Richard, and J. Y.
Tourneret, “Stochastic behavior analysis of the gaussian kernel
least-mean-square algorithm,” IEEE Transactions on Signal
Processing, vol. 60, no. 5, pp. 2208–2222, May 2012.

[5] S. Van Vaerenbergh, L. A. Azpicueta-Ruiz, and D. Com-
miniello, “A split kernel adaptive filtering architecture for non-
linear acoustic echo cancellation,” in Proc. of the European
Signal Processing Conference (EUSIPCO), Budapest, Hun-
gary, 2016, pp. 1768–1772.

[6] M. Scarpiniti, D. Comminiello, R. Parisi, and A. Uncini, “A
collaborative approach to time-series prediction,” in Neural
Nets WIRN11, B. Apolloni, S. Bassis, A. Esposito, and F. C.
Morabito, Eds., pp. 178–185. IOS Press, 2011.

[7] M. Yukawa, “Multikernel adaptive filtering,” IEEE Transac-
tions on Signal Processing, vol. 60, no. 9, pp. 4672–4682, Sep.
2012.

[8] F. A. Tobar, S. Y. Kung, and D. P. Mandic, “Multikernel least
mean square algorithm,” IEEE Transactions on Neural Net-
works and Learning Systems, vol. 25, no. 2, pp. 265–277, Feb.
2014.

[9] W. Liu, P. P. Pokharel, and J. C. Principe, “The kernel least-
mean-square algorithm,” IEEE Transactions on Signal Pro-
cessing, vol. 56, no. 2, pp. 543–554, Feb 2008.

[10] V. J. Mathews, “Adaptive polynomial filters,” IEEE Signal
Processing Magazine, vol. 8, pp. 10–26, July 1991.

[11] G. L. Sicuranza and A. Carini, “A generalized FLANN fil-
ter for nonlinear active noise control,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 8, pp.
2412–2417, Nov 2011.

[12] J. Platt, “A resource-allocating network for function interpola-
tion,” Neural Computation, vol. 2, pp. 213–225, 1991.

[13] Y. Engel, S. Mannor, and R. Meir, “The kernel recursive least-
squares algorithm,” IEEE Transactions on Signal Processing,
vol. 52, no. 8, pp. 2275–2285, Aug. 2004.

[14] W. Liu, I. Park, and J. C. Principe, “An information theoretic
approach of designing sparse kernel adaptive filters,” IEEE
Transactions on Neural Networks, vol. 20, no. 12, pp. 1950–
1961, Dec. 2009.

[15] C. Richard, J. C. M. Bermudez, and P. Honeine, “Online pre-
diction of time series data with kernels,” IEEE Transactions on
Signal Processing, vol. 57, no. 3, pp. 1058–1067, Mar. 2009.

[16] K. Slavakis, P. Bouboulis, and S. Theodoridis, “Online learn-
ing in reproducing kernel hilbert spaces,” in Academic Press
Library in Signal Processing: Signal Processing Theory and
Machine Learning, R. Chellapa and S. Theodoridis, Eds.,
vol. 1, chapter 17, pp. 883–987. Academic Press, Chennai,
2014.

[17] G. R. G Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui, and
M. I. Jordan, “Learning the kernel matrix with semidefinite
programming,” Journal of Machine Learning Research, vol. 5,
no. Jan, pp. 27–72, 2004.

[18] J. Arenas-Garcı́a, A. R. Figueiras-Vidal, and A. H. Sayed,
“Mean-square performance of a convex combination of two
adaptive filters,” IEEE Transactions on Signal Processing, vol.
54, pp. 1078–1090, Mar. 2006.

[19] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H.
Nascimento, and A. H. Sayed, “Combinations of adaptive fil-
ters: Performance and convergence properties,” IEEE Signal
Processing Magazine, vol. 33, no. 1, pp. 120–140, Jan 2016.

[20] M. Lázaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-
Vidal, and J. Arenas-Garcia, “Adaptively biasing the weights
of adaptive filters,” IEEE Transactions on Signal Processing,
vol. 58, no. 7, pp. 3890–3895, Jul. 2010.

[21] L. A. Azpicueta-Ruiz, M. Zeller, A. R. Figueiras-Vidal,
J. Arenas-Garcia, and W. Kellermann, “Adaptive combina-
tion of Volterra kernels and its application to nonlinear acoustic
echo cancellation,” IEEE Transactions on Audio, Speech, and
Language Processing, vol. 19, pp. 97–110, Jan. 2011.

