
UNIVERSIDADE DE SÃO PAULO

ESCOLA POLITÉCNICA

Sobre algoritmos de treinamento de redes
neurais

Relatório Final – Iniciação Cient́ıfica

Bolsa PIBIC-CNPq

Código do Projeto: 2024-3254

Bolsista: Pedro Henrique dos Santos Soares

Orientador: Magno Teófilo Madeira da Silva

Coorientador: Renato Candido

São Paulo

Setembro - 2025



Sumário

Resumo 3

1 Introdução 4

1.1 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Cronograma de Atividades . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Fundamentos Teóricos 5

2.1 O Perceptron de Rosenblatt . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 A rede MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Treinamento da MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Teorema da Aproximação Universal . . . . . . . . . . . . . . . . . . . . . . . 13

3 Rede Kolmogorov–Arnold 13

3.1 Teorema da Representação de Kolmogorov–Arnold . . . . . . . . . . . . . . . 13

3.2 B-splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Construção Intuitiva da KAN . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Propagação e Treinamento da KAN . . . . . . . . . . . . . . . . . . . . . . . 23

3.5 Extração da Expressão Simbólica . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6 Extensão de Nós em Redes KAN . . . . . . . . . . . . . . . . . . . . . . . . 25

3.7 Esparsificação e Poda em Redes KAN . . . . . . . . . . . . . . . . . . . . . . 26

4 Aplicação da KAN em Problemas de Classificação e Regressão 27

4.1 Problema das Meias-Luas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2 Problemas de Regressão . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Problema de Classificação Financeira . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Classificação multi-classe com o MNIST . . . . . . . . . . . . . . . . . . . . 35

5 O algoritmo NoProp 38

5.1 Processo estocástico de difusão / Denoising . . . . . . . . . . . . . . . . . . 39

5.2 Processo reverso de rúıdo / Variacional posterior . . . . . . . . . . . . . . . 39

5.3 Função de perda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4 Treinamento e inferência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 Arquitetura das camadas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Aplicação do NoProp em problemas de classificação 43

6.1 NoProp aplicado ao problema das meias-Luas . . . . . . . . . . . . . . . . . 43

6.2 NoProp aplicado ao Problema de Classificação Financeira . . . . . . . . . . . 45

6.3 NoProp aplicado ao MNIST com Dimensões Reduzidas . . . . . . . . . . . . 48

1



7 Conclusões 49

A Método dos Mı́nimos Quadrados Não Linear 50

Referências 51

Anexo 1 - Artigo aceito no SBrT 2025 53

2



Resumo

Este relatório final tem como propósito apresentar alternativas à Rede Neural Perceptron

Multicamadas, focando principalmente na proposta recente das Redes de Kolmogorov-Arnold

(KANs). Inicialmente, são apresentados os objetivos e o cronograma de atividades. Em

seguida, são abordadas as partes principais que constituem uma Rede Neural Perceptron

Multicamadas, como sua arquitetura, o conceito de função de ativação e os algoritmos utili-

zados para realizar o aprendizado. De maneira semelhante, é discutida a proposta das Redes

de Kolmogorov-Arnold, apresentando suas peculiaridades, objetivos e algumas comparações

com o Perceptron Multicamadas. Após explorar os conceitos introdutórios envolvidos, são

resolvidos alguns problemas t́ıpicos de redes neurais para avaliar como as Redes KANs se

comportam em diferentes cenários.

Cabe observar que boa parte deste relatório foi apresentada anteriormente no Relatório

Parcial. O objetivo dessa repetição é alcançar um documento completo que possa vir a ser

utilizado por futuros pesquisadores do grupo. Nos seis meses finais desse projeto, a KAN foi

aplicada a dados reais (Subseções 4.3 e 4.4). Além disso, o algoritmo NoProp foi estudado,

implementado e testado em problemas de classificação (Seções 5 e 6). Além de submeter um

artigo ao SIICUSP, foi aceito um artigo na categoria de IC para apresentação no Simpósio

Brasileiro de Telecomunicações e Processamento de Sinais (SBrT) a ser realizado de 29 de

setembro a 02 de outubro de 2025 em Natal, RN. Cópia do artigo aceito encontra-se anexada

a este relatório.

3



1 Introdução

Nos últimos anos, a inteligência artificial vem ganhando protagonismo no desenvolvimento

tecnológico, influenciando como hardwares e softwares são projetados atualmente e mudando

radicalmente a interação humano-máquina [2,5,6]. Nessa guinada, o perceptron foi uma das

primeiras propostas para a solução de problemas não lineares a ganhar notoriedade. Nos dias

atuais, a rede perceptron multicamada (Multilayer Perceptron – MLP) [6] é um padrão nos

métodos gerais de aprendizado de máquina. Com o amadurecimento dos modelos de redes

neurais para resolver problemas cada vez mais complexos, percebeu-se que as MLPs, embora

muito competentes, não permitem analisar como o problema é resolvido. Em outras palavras,

os algoritmos conseguem de fato resolver o problema, mas a solução em si é praticamente

uma caixa-preta. Nesse contexto, a proposta das redes de Kolmogorov-Arnold (Kolmogorov-

Arnold Network – KAN) [11] surge como uma tentativa de entender melhor como as redes

neurais conseguem resolver problemas.

1.1 Objetivos

Os objetivos principais estabelecidos neste projeto de pesquisa são:

1. Realizar um estudo sobre algoritmos de treinamento de redes neurais, em especial as

Redes Kolmogorov-Arnold (KAN);

2. Construir modelos com KAN para verificar seu desempenho em problemas de regressão

e classificação binária;

3. Estabelecer comparações entre as redes MLP e as KANs;

4. Verificar alternativas para além de MLP e KAN;

5. Redigir um relatório final que exponha a metodologia, as técnicas estudadas e os resul-

tados das análises comparativas que possa ser útil a futuros pesquisadores do grupo.

1.2 Cronograma de Atividades

Neste projeto de IC, pretende-se seguir as seguintes etapas:

1. Realizar um estudo de redes neurais aplicadas à classificação. Inicialmente, pretende-se

considerar um exemplo simples: o problema das meias-luas. Eventualmente, problemas

mais complexos serão considerados. Neste item, pretende-se estudar as redes e os

ajustes de seus hiperparâmetros;

2. Estudar a KAN proposta em [11];

4



3. Implementar a KAN e a MLP com o backpropagation convencional [6] ou otimizador

Adam [5] e aplicar aos problemas de classificação do Item 1 ou outros mais comple-

xos. A comparação deve levar em conta o desempenho em termos de métricas de

classificação, como acurácia, por exemplo. Deve-se considerar também o custo compu-

tacional das soluções;

4. Buscar outras soluções propostas para melhorar o desempenho do backpropagation;

5. Redigir um relatório final que exponha a metodologia, as técnicas estudadas e os resul-

tados das análises comparativas, que possa ser útil a futuros pesquisadores do grupo.

O cronograma de atividades está mostrado na Tabela 1.

Tabela 1: Cronograma de atividades.

Peŕıodo Atividades

Setembro de 2024 a Dezembro de 2024 Etapa 1

Novembro de 2024 a Fevereiro de 2025 Etapa 2

Março de 2025 a Maio de 2025 Etapa 3

Junho de 2025 a Agosto de 2025 Etapa 4

Agosto de 2025 Etapa 5

2 Fundamentos Teóricos

Esta seção apresenta a construção das redes neurais artificiais, abordando sua evolução desde

os modelos iniciais até os avanços que permitiram seu uso eficiente em aprendizado profundo.

Inicialmente, é introduzido o Perceptron de Rosenblatt, modelo pioneiro que estabeleceu

os fundamentos do aprendizado supervisionado. Em seguida, discute-se a generalização

desse conceito por meio da rede MLP e a necessidade de um algoritmo eficiente para seu

treinamento, levando à introdução da retropropagação. Também é abordado o Teorema da

Aproximação Universal, que formaliza a capacidade das redes neurais de representar funções

arbitrárias. Por fim, é apresentado o otimizador Adam, amplamente utilizado para ajustar

os parâmetros do modelo de forma eficiente.

2.1 O Perceptron de Rosenblatt

O perceptron de Rosenblatt, desenvolvido por Frank Rosenblatt em 1958 [14], é um dos

primeiros modelos de neurônio e representa um marco significativo no desenvolvimento da

inteligência artificial [6]. Este modelo é um algoritmo de aprendizado supervisionado vol-

tado para a classificação binária, inspirado no funcionamento dos neurônios biológicos no

5



processamento de informações. O perceptron é capaz de aprender a classificar entradas em

duas categorias distintas com base em exemplos previamente rotulados, demonstrando uma

capacidade notável de aprendizado e generalização [14].

O perceptron é composto pelos seguintes elementos:

• Um vetor de entrada definido como x = [x1 x2 · · · xn]
T , em que cada componente do

vetor representa uma caracteŕıstica do problema;

• Um viés (bias), denotado por b;

• Um vetor de pesos ω = [ω1 ω2 · · · ωn]
T , que multiplica as respectivas componentes da

entrada;

• Uma função de ativação, que é aplicada à soma ponderada das entradas somada ao

viés.

A função de ativação utilizada no modelo original é a função degrau (u), definida como

u(z) =

1, se z ≥ 0

0, se z < 0.
(1)

A Figura 1 apresenta uma ilustração da estrutura do perceptron de Rosenblatt.

Figura 1: Estrutura do perceptron de Rosenblatt.

A sáıda do perceptron pode ser expressa matematicamente como

y = u(xTω + b). (2)

6



Apesar de sua simplicidade, o perceptron apresenta uma limitação fundamental: ele só

consegue resolver problemas linearmente separáveis, ou seja, aqueles em que os exemplos das

duas classes podem ser separados por uma linha (em duas dimensões), um plano (em três

dimensões) ou um hiperplano em espaços de maior dimensão [6]. Um exemplo clássico de

problema não linearmente separável é o problema da função XOR, que não pode ser resolvido

por um perceptron simples [6]. Essa limitação levou ao desenvolvimento de arquiteturas mais

complexas, como a organização do perceptron em várias camadas, dando origem à rede MLP.

A relevância do perceptron de Rosenblatt está no fato de que ele estabeleceu as bases para

o aprendizado em redes neurais, introduzindo conceitos fundamentais como a atualização de

pesos baseada no erro calculado a partir da comparação da sáıda da rede com um rótulo

ou sinal desejado, um prinćıpio que ainda é utilizado em modelos modernos de aprendizado

profundo [2, 6].

2.2 A rede MLP

A rede MLP organiza os neurônios em múltiplas camadas. As camadas que aparecem entre

a de entrada e a de sáıda são chamadas de camadas ocultas. Isso permite que a rede aprenda

representações internas mais ricas e descubra padrões complexos nos dados [6].

A estrutura de uma MLP, ilustrada na Figura 2, consiste em três partes principais [6]:

• Camada de entrada: recebe os dados iniciais e os repassa para os neurônios da

primeira camada oculta;

• Camadas ocultas: realizam transformações sucessivas nos dados, permitindo que a

rede aprenda relações não triviais;

• Camada de sáıda: gera a resposta final da rede, que pode representar categorias (em

um problema de classificação) ou valores cont́ınuos (em uma tarefa de regressão).

7



Figura 2: Estrutura da MLP.

Matematicamente, uma MLP com L camadas pode ser descrita como uma sequência de

transformações aplicadas sobre a entrada x. Define-se

a(0) = x,

em que a(0) é simplesmente o vetor de entrada, e a sáıda final da rede é dada por

a(L) = y,

em que y = [y1 y2 · · · ym]T representa a predição feita pelo modelo e m é o número de

sáıdas da rede.

Cada camada l contém Nl neurônios e realiza duas operações principais:

1. Transformação linear: os valores da camada anterior a(l−1) são combinados linear-

mente por meio de uma matriz de pesos W(l) e um vetor de viés b(l)

u(l) = W(l)a(l−1) + b(l), (3)

em que

• W(l) ∈ RNl×Nl−1 é amatriz de pesos, cujos elementos w
(l)
ij determinam a conexão

entre o neurônio j da camada l − 1 e o neurônio i da camada l;

• b(l) ∈ RNl é o vetor de vieses;

• u(l) ∈ RNl representa o vetor antes da função não linear.

2. Aplicação da função de ativação: o vetor u(l) passa por uma função g, que introduz

não linearidade ao modelo

a(l) = g(u(l)). (4)

8



Este processo denominado propagação direta é repetido camada após camada até que a

sáıda a(L) seja obtida. A Figura 3 exemplifica como se dão as relações em uma propagação

direta.

Figura 3: Exemplo de propagação direta para uma rede MLP com uma camada de entrada,

uma camada oculta com dois neurônios e uma camada de sáıda com um neurônio.

A função de ativação g tem um papel fundamental no aprendizado do modelo, pois

é responsável por introduzir não linearidade à rede neural [9]. No perceptron original, a

ativação era baseada em uma função degrau, onde um neurônio era ativado apenas se a

soma ponderada das entradas superasse um certo limiar. No entanto, a derivada da função

degrau é igual a zero, exceto na origem, onde não é diferenciável. Para resolver esse problema,

a MLP utiliza outras funções de ativação que são diferenciáveis e com derivada diferente de

zero. As funções de ativação mais utilizadas são:

Sigmoide: g(u) =
1

1 + e−u
,

Tangente Hiperbólica: g(u) = tanh(u) =
1− e−u

1 + e−u
,

ReLU: g(u) = max(0, u).

A Figura 4 apresenta os respectivos gráficos e derivadas dessas funções. A sigmoide e a

tangente hiperbólica são funções suaves e produzem sáıdas dentro de um intervalo limitado,

o que pode ser útil para normalizar os valores ao longo da rede. Já a ReLU (Rectified Linear

Unit) é amplamente utilizada devido à sua simplicidade computacional e à sua capacidade

de manter a ativação de neurônios sem que os valores fiquem restritos a um intervalo fixo.

9



O fato da ReLu não ter derivada em u = 0 não causa problema, bastando considerar o valor

da derivada nesse ponto igual a 0 ou 1 de forma arbitrária.

Figura 4: Gráficos das Principais Funções de Ativação.

A rede MLP é amplamente utilizada em aprendizado de máquina por sua capacidade de

representar relações complexas entre os dados. Sua estrutura permite que seja aplicada a

uma ampla variedade de problemas, desde reconhecimento de padrões até previsão de séries

temporais. Entretanto, sua expressividade teórica depende de resultados fundamentais sobre

redes neurais, que são abordados na próxima seção. Além disso, sua implementação prática

exige um treinamento eficiente, o que será estudado em detalhes ao se discutir o algoritmo

de backpropagation [15].

10



2.3 Treinamento da MLP

O treinamento da MLP consiste no ajuste dos pesos W(l) e dos vieses b(l) de modo que a

rede consiga aprender a tarefa desejada. Esse ajuste é realizado minimizando uma função

de custo por meio do algoritmo de retropropagação (backpropagation) [6, 15].

A função custo, ou função de perda, mede o erro da rede ao comparar suas previsões com

os valores reais esperados [6]. Durante o treinamento, busca-se minimizar essa função para

melhorar o desempenho do modelo. As funções custo mais comuns são:

• Erro Quadrático Médio (MSE - Mean Squared Error), utilizado principalmente

em problemas de regressão, é definido como

J =
1

2K

K∑
i=1

∥y(i) − ŷ(i)∥2. (5)

em que

– K representa o número de amostras do conjunto de treinamento;

– y(i) é o vetor de sáıda esperado para a i-ésima amostra, ou seja, o valor real

(desejado) associado à i-ésima entrada fornecida à rede.

– ŷ(i) é o vetor de sáıda previsto pela rede para a mesma amostra i, ou seja, o valor

retornado pelo modelo após a propagação direta.

Essa função mede a diferença entre as previsões do modelo e os valores reais, pe-

nalizando erros quadráticos. O fator 1
2
é introduzido por conveniência matemática,

facilitando a derivação no cálculo do gradiente.

• Entropia Cruzada, amplamente empregada em problemas de classificação, é definida

como

J = − 1

K

K∑
i=1

c∑
j=1

y
(i)
j log ŷ

(i)
j . (6)

onde:

– c representa o número total de classes posśıveis no problema de classificação;

– y
(i)
j é um valor binário que assume 1 se a i-ésima amostra pertence à classe j e 0

caso contrário (codificação one-hot);

– ŷ
(i)
j é a probabilidade prevista pelo modelo de que a amostra i pertença à classe

j, obtida a partir da camada de sáıda da rede.

Essa função mede a similaridade entre as distribuições de y(i) e ŷ(i), incentivando

o modelo a atribuir probabilidades altas às classes corretas e penalizando previsões

erradas.

11



Para minimizar J , aplica-se o gradiente descendente, um método iterativo que ajusta os

pesos e vieses na direção oposta ao gradiente da função de custo [6]. A atualização ocorre

da seguinte forma

W
(l)
ij ← W

(l)
ij − η

∂J

∂W
(l)
ij

, b
(l)
i ← b

(l)
i − η

∂J

∂b
(l)
i

, (7)

em que η representa a taxa de aprendizado. O cálculo das derivadas é feito usando a regra

da cadeia. Uma vez calculadas as derivadas, ocorre a propagação da camada de sáıda até a

camada de entrada. Mais detalhes sobre o algoritmos podem ser encontrados em [2,6].

No contexto do treinamento de redes neurais, define-se uma época como um ciclo com-

pleto no qual a rede processa todas as amostras do conjunto de dados uma vez. Durante uma

época, cada exemplo do conjunto de treinamento é passado pela rede, os erros são calculados

e os pesos são atualizados. O treinamento geralmente ocorre por múltiplas épocas até que a

função custo seja minimizada ou um critério de parada seja atendido.

O algoritmo de treinamento pode ser descrito da seguinte maneira:

1. Inicializar os pesos W(l) e vieses b(l) com valores aleatórios pequenos.

2. Para cada época:

Para cada amostra do conjunto de dados no modo de treinamento estocástico:

i. Executar a propagação direta para calcular as ativações a(l);

ii. Utilizar a função de custo para medir o erro da rede;

iii. Calcular os gradientes ∂J
∂W(l) e ∂J

∂b(l) ;

iv. Atualizar os pesos e vieses usando a Equação (7).

O algoritmo de retropropagação tem a tendência de ficar parado em mı́nimos locais, o que

dificultou o uso de redes profundas com muitas camadas ocultas até a década de 2010. Para

contornar esse problema foram propstas modificações no algoritmo, levando ao otimizador

Adam (Adaptive Moment Estimation) [5, 7].

O otimizador Adam é um dos algoritmos de otimização mais utilizados atualamente

no treinamento de redes MLP. Em vez do gradiente convencional, ele utiliza uma média

dos gradientes passados utilizando uma janela exponencial com fator de esquecimento β1.

Além disso, ele calcula uma média quadrática dos gradientes passados, utilizando outra

janela exponencial com fator de esquecimento β2. Essa média quadrática é utilizada para

normalizar o gradiente médio. Dessa forma, o Adam ajusta automaticamente a taxa de

aprendizado para cada parâmetro individualmente, permitindo atualizações mais eficientes

e estáveis em redes neurais profundas [5, 7].

12



2.4 Teorema da Aproximação Universal

O Teorema da Aproximação Universal estabelece que uma rede neural com uma única ca-

mada oculta e um número suficiente de neurônios pode aproximar qualquer função cont́ınua

definida em um conjunto compacto.

Formalmente, temos [4, 6]:

Seja φ(·) uma função cont́ınua, não constante, limitada e monotônica crescente. Denotamos

por IN0 o hipercubo unitário [0,1]N0 de dimensão N0, e por C(IN0) o espaço das funções

cont́ınuas sobre esse domı́nio. Então, para qualquer f ∈ C(IN0) e ε > 0, existe um inteiro

N1 e coeficientes reais αi, bi e wij, com i = 1, . . . , N1 e j = 1, . . . , N0, tais que a função

F (x1, . . . , xN0) =

N1∑
i=1

αig

(
N0∑
j=1

wijxj + bi

)
satisfaz a desigualdade

sup
x∈IN0

|F (x)− f(x)| < ε.

Isso significa que redes neurais com uma única camada oculta são aproximadores univer-

sais, podendo representar qualquer função cont́ınua sobre um domı́nio compacto. No entanto,

o teorema não especifica o número mı́nimo de neurônios necessário para uma aproximação

eficiente, nem como determinar os pesos e bias ótimos. Na prática, redes mais profundas

costumam ser preferidas, pois podem alcançar a mesma precisão com menos parâmetros e

maior eficiência computacional.

3 Rede Kolmogorov–Arnold

Nesta seção, é apresentada a Kolmogorov–Arnold Network (KAN), uma abordagem base-

ada no teorema de Kolmogorov–Arnold, que garante a possibilidade de representar qualquer

função cont́ınua como uma composição de funções univariadas. Inicialmente, são expostos

o teorema fundamental e sua relevância para a modelagem de funções, seguidos de uma

introdução ao conceito de B-splines, que desempenham um papel essencial na construção

da KAN ao permitir aproximações suaves e flex́ıveis de funções. Em seguida, é desenvol-

vida uma construção intuitiva da KAN, explicando sua estrutura e funcionamento de forma

acesśıvel, com destaque para as diferenças em relação às redes neurais tradicionais. Por fim,

é apresentada a formalização matemática da KAN, com a definição das expressões anaĺıticas

envolvidas.

3.1 Teorema da Representação de Kolmogorov–Arnold

O Teorema da Representação de Kolmogorov–Arnold, estabelecido por Andrey Kolmogorov

e posteriormente refinado por Vladimir Arnold, afirma que qualquer função multivariada

13



cont́ınua pode ser expressa como uma composição finita de funções cont́ınuas de uma única

variável e a operação de adição [8, 11].

Em termos formais, se f : [0,1]n → R é uma função cont́ınua definida em um hiperpa-

ralelogramo [0,1]n, então existe um conjunto de funções cont́ınuas univariadas {ϕq,p} e {Φq}
tais que f pode ser representada como [8, 11]

f(x1, x2, . . . , xn) =
2n∑
q=0

Φq

(
n∑

p=1

ϕq,p(xp)

)
. (8)

Esse resultado é notável porque demonstra que qualquer função multivariada pode ser

reduzida a combinações de funções de uma única variável, o que tem implicações profundas

em diversas áreas, destacando-se o aprendizado de máquina. Uma motivação central para

o teorema é a redução da complexidade no cálculo de funções multivariadas. Em muitas

aplicações, trabalhar diretamente com f(x1, x2, . . . , xn) pode ser computacionalmente cus-

toso, enquanto sua representação em termos de funções de variável única permite que se

usem algoritmos mais eficientes.

Para ilustrar as vantagens dessa representação, consideremos a seguinte função multivari-

ada f(x1, x2) = 2x1x2. Sem a representação de Kolmogorov–Arnold, seria necessário calcular

explicitamente a interação entre x1 e x2. No entanto, aplicando a decomposição do teorema,

podemos reescrevê-la como

f(x1, x2) = 2x1x2 = (x1 + x2)
2 − x2

1 − x2
2

= Φ0(ϕ0,1(x1) + ϕ0,2(x2)) + Φ1(ϕ1,1(x1)) + Φ2(ϕ2,2(x2)), (9)

em que definimos

ϕ0,1(x) = x, ϕ0,2(x) = x, ϕ1,1(x) = x,

ϕ1,2(x) = 0, ϕ2,1(x) = 0, ϕ2,2(x) = x,

Φ0(x) = x2, Φ1(x) = −x2, Φ2(x) = −x2.

Essa representação mostra que a interação entre as variáveis x1 e x2 foi convertida em

uma soma seguida de uma transformação univariada. A Figura 5 ilustra um diagrama de

blocos levando-se em conta a representação de (9). É posśıvel observar a capacidade dessa

representação já que ela permite estabelecer uma estrutura simples de unidades funcionais.

Essa caracteŕıstica tem um ótimo potencial para o uso em redes neurais [11].

14



Figura 5: Ilustração esquemática de uma função f(x1,x2) = 2x1x2 representada pelo teorema

de Kolmogorov–Arnold.

No entanto, embora o teorema garanta que existam funções univariadas que permitem

a representação, ele não dá ind́ıcios de como obtê-las e também não fornece o número de

funções necessárias. Além disso, mesmo que tais funções existam, não há garantia nenhuma

de que elas tenham uma expressão anaĺıtica. Portanto, sua viabilidade em aplicações depende

de métodos adicionais para contornar essas limitações [11].

3.2 B-splines

B-splines são funções de base polinomiais definidas em intervalos espećıficos, denominados

intervalos de nó e são usadas para formar curvas cont́ınuas de maneira suave. Elas são

constrúıdas a partir de polinômios de baixo grau e, por meio de combinações lineares, podem

representar curvas complexas [16].

15



Uma curva B-splines de grau k é gerada pela combinação linear das funções de base Bi,k,

ou seja,

C(x) =
n∑

i=0

ci ·Bi,k(x), (10)

em que ci são coeficientes constantes, também chamados pontos de controle. As funções de

base Bi,k(x) são definidas com a fórmula de Cox-deBoor, dada por [11,16]

Bi,k(x) =
x− ti

ti+k − ti
·Bi,k−1(x) +

ti+k+1 − x

ti+k+1 − ti+1

·Bi+1,k−1(x), (11)

em que ti é o i-ésimo nó (knot).

Devido ao caráter recursivo da Equação (11) em que a função base Bi,k(x) de grau k

utiliza a função base Bi,k−1(x) de grau k − 1, é necessário definir a função base de grau 0,

ou seja,

Bi,0 =

1, se ti ≤ x ≤ ti+1

0, caso contrário.
(12)

Para fins de ilustração, considere a função f(x) = sin(x) no intervalo [0, 2π]. Ela pode ser

representada por uma curva B-spline com grau k = 3 e 5 nós. A representação do domı́nio

[0, 2π] pode ser feita definindo os nós como pontos uniformemente espaçados nesse intervalo.

Uma vez que os nós são selecionados, as funções base são então definidas por (11). Nesse

exemplo, as funções resultantes são apresentadas na Figura 6. Para simplificar a notação,

como k está definido, utiliza-se Bi para se referir à função base Bi,k. É importante destacar

que a forma das curvas independe do intervalo escolhido, isto é, para um grau k = 3,

quaisquer cinco pontos uniformemente espaçados, tomados como nós, resultarão em funções

com estas mesmas geometrias.

16



Figura 6: Funções Base de B-spline.

17



Uma vez determinadas as funções base, deve-se encontrar os coeficientes para que a

B-spline aproxime a função desejada conforme a Equação (10), ou seja,

c0 ·B0(x) + c1 ·B1(x) + c2 ·B2(x) + c3 ·B3(x) + c4 ·B4(x) ≈ sin(x). (13)

Utilizando o método dos mı́nimos quadrados, chega-se aos coeficientes

c0 = 0, c1 = 1,778, c2 = 0, c3 = −1,778 e c4 = 0.

Na Figura 7, são mostradas as curvas das funções base e da aproximação (13). Na Figura 8

é mostrada a curva aproximada pela B-spline e a curva da função original. Verifica-se que

a aproximação da B-spline coincide com os valores da função sin(x) nos nós e aproxima os

valores do sin(x) em outros pontos do intervalo.

Figura 7: Resultado da Combinação Linear das Funções Base de Spline.

18



Figura 8: Comparação entre a Curva B-Spline resultante e a senoide original.

Essa capacidade de aproximação por meio de uma combinação linear de funções base

univariadas torna as funções B-spline excelentes candidatas no Teorema da Representação

de Kolmogorov–Arnold para aproximar funções.

3.3 Construção Intuitiva da KAN

A KAN foi proposta como uma alternativa ao perceptron multicamada, utilizando como

inspiração o teorema da Representação de Kolmogorov–Arnold em vez do teorema da apro-

ximação universal [11].

Para entender a KAN, imagine que a função f(x1, x2) possa ser decomposta pelo Teorema

da Representação de Kolmogorov–Arnold em funções univariadas da seguinte forma

f(x1, x2) = Φ0(ϕ0,1(x1) + ϕ0,2(x2)). (14)

Repare que o teorema não fornece ferramentas para encontrar as funções Φ0, ϕ0,1 e ϕ0,2, sendo

então o objetivo da KAN descobrir como determiná-las.

A Figura 9 ilustra a representação gráfica de um modelo de KAN para a Equação (14).

A soma de sinais é definida como neurônio e as funções Φ0, ϕ0,1 e ϕ0,2 são todas designadas

como funções de ativação.

19



Figura 9: Representação de uma KAN.

Para lidar com o problema da representação das funções, a KAN propõe que cada função

de ativação seja aproximada por um B-spline. Portanto, cada função de ativação vai ser

representada por um conjunto de coeficientes. É importante garantir que as funções base

sejam iguais para todas as funções de ativação. Para isso, é então necessário definir o número

de nós e o grau das funções base como hiperparâmetros [11]. Para exemplificar, a Figura 10

ilustra como cada função é composta pela combinação linear das funções base fixas.

20



Figura 10: Estrutura das Funções de Ativação.

A utilização de B-splines para aproximar funções de ativação transforma o problema em

uma questão de determinação dos coeficientes que compõem a combinação linear das funções

base. Para estimar esses coeficientes, empregam-se algoritmos de treinamento similares aos

utilizados em redes MLP.

Seguindo o mesmo racioćınio apresentado até aqui e ampliando a abordagem com algumas

generalizações, é posśıvel obter expressões mais complexas que representam redes profundas,

conforme exemplificado na Figura 11.

21



Figura 11: Exemplo de Rede KAN profunda.

A KAN se assemelha à MLP, pois ambas possuem uma estrutura de camadas densamente

conectadas, onde todos os neurônios de uma camada estão ligados aos neurônios das camadas

subsequentes. A principal diferença está na forma como a ativação de cada neurônio é

calculada: na MLP, a entrada é ponderada por pesos ajustáveis e a sáıda passa por uma

função de ativação fixa, enquanto na KAN, cada componente da entrada é processado por

uma função de ativação ajustável baseada em B-splines, e a sáıda é obtida por uma soma

simples dessas transformações, conforme ilustrado na Figura 12.

22



Figura 12: Comparação entre as ativações de uma MLP e de uma KAN.

3.4 Propagação e Treinamento da KAN

O processo de treinamento da Kolmogorov-Arnold Network (KAN) baseia-se na propagação

direta da entrada até a sáıda e na retropropagação do erro para ajuste dos parâmetros. Os

procedimentos são equivalentes aos vistos para uma MLP tradicional, mas adaptado para

fazer o ajuste dos coeficientes de B-spline.

A propagação direta na KAN ocorre conforme os seguintes passos:

1. A rede recebe como entrada um vetor x = [x1 x2 . . . xn]
T ;

2. Antes de calcular as ativações da camada seguinte, os domı́nios das B-splines associadas

às funções de ativação devem ser ajustados. Isso é feito modificando o primeiro ou o

último nó da B-spline, caso a entrada esteja fora do intervalo original, garantindo que

a forma da curva seja preservada;

3. As ativações dos neurônios das camadas ocultas e da camada de sáıda são computadas

por

xℓ+1,j =

nℓ∑
i=1

ϕℓ,i,j(xℓ,i), (15)

em que xℓ+1,j representa a ativação do j-ésimo neurônio da camada ℓ+1, xℓ,i é a sáıda

do i-ésimo neurônio da camada ℓ, e ϕℓ,i,j é a função de ativação conectando o neurônio

i da camada ℓ ao neurônio j da camada ℓ + 1. Para a camada de entrada, temos que

x0,i = xi;

23



4. As funções de ativação da KAN são compostas por uma combinação linear entre a

função b(x) e uma B-spline, ou seja,

ϕℓ,i,j(x) = ωℓ,i,j ·
[
b(x) + splineℓ,i,j(x)

]
, (16)

em que usualmente b(x) é a função SiLU (sigmoid linear unit) definida como

b(x) =
x

1 + e−x
, (17)

e splineℓ,i,j(x) é uma B-spline de ordem k = 3. É importante notar que para k = 1,

as funções base da B-spline são compostas por segmentos de retas, o que resulta em

pontos não diferenciáveis. Portanto, para utilizar o algoritmo de backpropagation é

necessário que k > 1.

Embora, na construção teórica da KAN, as funções de ativação sejam representadas

exclusivamente por B-splines, na implementação prática, há termos adicionais, como evi-

denciado em (16). Essa modificação se faz necessária pois, na prática, o treinamento é mais

eficiente quando os coeficientes das B-splines são inicializados segundo uma distribuição de

média nula. No entanto, essa escolha de inicialização faz com que, nas primeiras iterações

do algoritmo de treinamento, as B-splines resultem em valores nulos independentemente da

entrada.

Para mitigar esse efeito e garantir que as ativações não sejam completamente nulas no

ińıcio do treinamento, adicionam-se termos auxiliares, como o peso ω e a função b(x), per-

mitindo uma evolução mais estável do aprendizado.

O treinamento da KAN envolve a minimização de uma função de custo J utilizando o

algoritmo de retropropagação do erro. O procedimento segue os seguintes passos:

1. Para cada amostra do conjunto de treinamento, a sáıda é calculada por meio da pro-

pagação direta;

2. O erro é calculado na camada de sáıda e propagado para as camadas anteriores por

meio do cálculo dos gradientes;

3. Os pesos e coeficientes das B-splines são atualizados utilizando o gradiente descendente,

ou seja,

ωℓ,i,j ← ωℓ,i,j − η · ∂J

∂ωℓ,i,j

, (18)

c
(k)
ℓ,i,j ← c

(k)
ℓ,i,j − η · ∂J

∂c
(k)
ℓ,i,j

, (19)

em que c
(k)
ℓ,i,j representa o k-ésimo coeficiente da B-spline associado a ϕℓ,i,j. O fator η

é a taxa de aprendizado do otimizador.

24



O processo de treinamento iterativo permite ajustar os parâmetros da rede para mini-

mizar a função de custo, garantindo que a KAN aprenda a mapear corretamente os padrões

dos dados de treinamento.

3.5 Extração da Expressão Simbólica

Após o treinamento da KAN, com as funções de ativação ajustadas para resolver o problema

desejado, torna-se relevante extrair uma expressão simbólica que represente adequadamente

a função aprendida. Para isso, pode-se empregar o método dos mı́nimos quadrados não

linear, apresentado no Apêndice A. Assim, as funções de ativação podem ser descritas por

meio de funções do tipo

ϕℓ,i,j(x) ≈ gℓ,i,j(x) = a+ b · f(c · x+ d), (20)

em que a, b, c e d são parâmetros a serem ajustados pelo método dos mı́nimos quadrados

e f é uma função conhecida, como seno (sin), cosseno (cos), tangente hiperbólica (tanh),

logaritmo (log), polinômios, entre outras. Na KAN, pode-se tanto definir à priori a função

f quanto utilizar diferentes funções e selecioná-la baseado em uma função custo.

Por fim, a sáıda da rede é expressa em termos da composição das funções g, permitindo

a tradução da solução encontrada pela KAN em uma expressão simbólica interpretável.

3.6 Extensão de Nós em Redes KAN

Uma das principais vantagens das redes KAN é a possibilidade de ajustar a resolução das

funções de ativação. Como essas funções são modeladas por splines, é posśıvel torná-las mais

precisas aumentando o número de nós utilizados. Esse processo é chamado de extensão de

nós.

Em termos simples, a ideia é começar com poucas subdivisões nos domı́nios das funções

— ou seja, com um número pequeno de nós — e, conforme o treinamento avança, adicionar

mais nós para capturar melhor os detalhes da função que está sendo aprendida. A cada

extensão, a spline se torna mais flex́ıvel, permitindo que a rede represente funções mais

complexas com maior fidelidade.

A principal vantagem dessa abordagem é que não é necessário reiniciar o treinamento

com uma rede maior. Em vez disso, utiliza-se o que já foi aprendido com poucos nós e

expande-se a capacidade expressiva das funções de ativação. Os novos coeficientes da spline

refinada podem ser inicializados para se aproximarem da função anterior, normalmente por

meio de um ajuste de mı́nimos quadrados.

Esse processo pode ser repetido ao longo do treinamento, permitindo que a rede evolua

gradualmente de uma forma simples e eficiente para uma representação mais precisa. Dessa

forma, a extensão de nós oferece um caminho prático para melhorar a acurácia da rede sem

comprometer sua estabilidade ou interpretabilidade.

25



3.7 Esparsificação e Poda em Redes KAN

Para tornar as redes KAN mais interpretáveis e eficientes, são introduzidas técnicas de

simplificação baseadas em esparsificação e poda. Diferente das MLPs, que calculam uma

combinação linear, somam um bias e utilizam uma função de ativação em cada neurônio,

as KANs substituem esse cálculo por funções de ativação univariadas parametrizadas por

splines. Isso exige uma adaptação das técnicas tradicionais de regularização.

A esparsificação visa induzir esparsidade nas conexões da rede, favorecendo representações

mais simples. Define-se a norma ℓ1 de uma função de ativação ϕℓ,i,j como a média da mag-

nitude das ativações sobre um conjunto de entrada x1, x2, · · · , xNp , ou seja

|ϕℓ,i,j|1 ≡
1

Np

Np∑
s=1

|ϕℓ,i,j(xs)|. (21)

Para uma camada ℓ, representada como Φℓ, com nin entradas e nout sáıdas, a norma ℓ1
total é dada pela soma das normas das funções de ativação dessa camada, ou seja

|Φℓ|1 ≡
nin∑
i=1

nout∑
j=1

|ϕℓ,i,j|1. (22)

Além disso, introduz-se uma regularização por entropia que penaliza distribuições unifor-

mes entre as ativações, incentivando que apenas algumas conexões sejam relevantes, definida

como

S(Φℓ) ≡ −
nin∑
i=1

nout∑
j=1

|ϕℓ,i,j|1
|Φℓ|1

log

(
|ϕℓ,i,j|1
|Φℓ|1

)
. (23)

A função de custo total utilizada no treinamento da rede é composta pela soma do custo

preditivo com os termos de regularização por esparsidade e entropia

Jtotal = Jpred + λ

(
µ1

L−1∑
ℓ=0

|Φℓ|1 + µ2

L−1∑
ℓ=0

S(Φℓ)

)
, (24)

em que Jpred representa o custo preditivo (por exemplo, calculado com o MSE ou entropia

cruzada), λ controla a intensidade da regularização, e os pesos µ1 e µ2 ajustam a importância

relativa dos termos de esparsificação e entropia, respectivamente. Em [11], considerou-se

µ1 = µ2 = 1, já que esses pesos parecem não influenciar no desempenho. No entanto, o

valor do parâmetro λ é essencial para controlar o efeito da regularização. Se λ for escolhido

com um valor muito pequeno, a regularização não tem efeito. Se for escolhido com um valor

muito grande, a sáıda da rede não converge adequadamente. Em geral, considera-se λ no

intervalo [0,1, 0,9].

Após o treinamento com esparsificação, é posśıvel realizar a poda de neurônios considera-

dos irrelevantes. Para isso, definem-se pontuações de entrada e de sáıda para cada neurônio

26



i na camada ℓ, respectivamente, como

Iℓ,i = max
k
|ϕℓ−1,k,i|1 e Oℓ,i = max

k
|ϕℓ+1,i,k|1. (25)

Um neurônio é mantido na rede somente se ambas as pontuações superarem um limiar θ,

geralmente definido como 10−2. Caso contrário, o neurônio é removido, resultando em uma

arquitetura mais compacta e com uma interpretabilidade mais simples.

Essas técnicas permitem a descoberta automática de arquiteturas KAN otimizadas para o

problema em questão, oferecendo maior clareza e controle sobre o comportamento do modelo.

4 Aplicação da KAN em Problemas de Classificação e

Regressão

Nesta seção, a KAN é avaliada em diferentes contextos, sendo seu desempenho comparado

ao de uma MLP. Inicialmente, considera-se o problema clássico de classificação binária das

meias-luas [6], a fim de verificar se a rede é capaz não apenas de classificar corretamente os

dados, mas também de deduzir uma expressão anaĺıtica equivalente à sua estrutura interna.

Em seguida, são conduzidos experimentos em problemas de regressão simples, com o

objetivo de analisar a relação entre as expressões resultantes da KAN e as funções reais que

elas procuram aproximar, investigando potenciais vantagens quanto à interpretabilidade e à

fidelidade da representação.

Por fim, são explorados dois problemas de aplicação prática: um de classificação binária

no setor financeiro e outro de classificação multiclasse, utilizando a base de dados MNIST.

4.1 Problema das Meias-Luas

Um problema clássico abordado em aprendizado de máquina é o problema de classificação

das meias-luas [6]. Esse problema consiste em um conjunto de dados, gerados a partir da

seleção de alguns parâmetros geométricos que definem a forma das meias-luas, como ilustrado

na Figura 13. O objetivo é gerar uma curva de separação no plano xy, de modo que cada

metade da lua seja definida como pertencente a uma determinada região.

27



Figura 13: Apresentação do problema das meias-luas.

No problema, são definidos três parâmetros: r1, r2 e r3. A partir deles, consideram-

se duas variáveis aleatórias: θ, distribúıda no intervalo [0, π], e ρ, distribúıda no intervalo

[r1− r3/2, r1+ r3/2]. Essas variáveis determinam a distribuição dos pontos gerados no plano

xy. Os pontos da Região A possuem sinal desejado d = 1, enquanto os pontos da Região B

possuem sinal desejado d = −1.
Para verificar a acurácia da KAN no problema das meias-luas com os parâmetros r1 =

2, r2 = −0.8 e r3 = 3, considerou-se uma rede na configuração [2, 1, 1], isto é, 2 entradas, 1

neurônio na camada oculta e 1 sáıda, com B-splines de ordem k = 3 e 6 pontos de nó. Foram

usados 1000 pontos no treinamento e 100 no teste. Além disso, considerou-se o otimizador

Adam com parâmetros β1 = 0,9 e β2 = 0,99 [5].

A Figura 14 ilustra como a KAN foi capaz de delimitar bem uma fronteira de decisão

que permite obter uma acurácia de 100% para o problema proposto. A KAN resultante do

treinamento para essa fronteira de decisão é apresentada na Figura 15, a partir da qual foi

posśıvel extrair a seguinte expressão simbólica equivalente para o problema:

f(x,y) = 1,01 tanh
(
0,7207 sin(0,9983x+ 4,954)

+ 0,7207 sin(0,5226y − 0,2717) + 1,646
)

+ 0,000263. (26)

28



Figura 14: Fronteira definida pela rede proposta.

Figura 15: KAN treinada para o problema das meia-luas.

Para comparar a rede MLP e a KAN, procuramos as mais simples configurações de rede

de modo que resolvessem o problema das meias-luas com 100% de acurácia média em uma

sequência de 100 testes.

29



As redes selecionadas e treinadas para o comparativo foram: uma MLP com configuração

[5, 1] e uma KAN com configuração [2, 1, 1] com B-splines de ordem k = 3 e 6 pontos de

nó. Para ambas as redes, o otimizador Adam foi utilizado. A Tabela 2 apresenta o tempo

levado para o treinamento e a quantidade de parâmetros treinados.

KAN MLP

Tempo (s) 506,6 280,7

Parâmetros treinados 21 21

Tabela 2: Tabela comparativa entre MLP e KAN.

É importante notar que, embora a KAN tenha utilizado o mesmo número de parâmetros

durante o treinamento, a sua expressão extráıda precisa de menos parâmetros para ser re-

presentada, como visto em (26).

4.2 Problemas de Regressão

Para avaliar a interpretabilidade da rede, foi selecionada e treinada uma KAN com confi-

guração [2, 1, 1], utilizando B-splines de ordem k = 3 com 7 pontos de nó. Uma MLP

com quatro neurônios na camada única e uma sáıda foi treinada também para fazer uma

comparação de desempenho. O treinamento foi realizado com o otimizador Adam em ambas,

configurado com β1 = 0.9 e β2 = 0.99. Em seguida, foram selecionadas três funções de duas

variáveis cuja representação de Kolmogorov-Arnold pode ser expressa na forma

f(x,y) = Φ0(ϕ0,1(x) + ϕ0,2(y)).

A primeira função analisada é

f1(x, y) = x+ y, (x,y) ∈ [0,1]× [0,1].

Essa função pode ser representada na forma proposta com

Φ0(x) = x, ϕ0,1(x) = x, ϕ0,2(x) = x.

A Figura 16 ilustra a comparação entre a representação exata de Kolmogorov-Arnold e a

KAN treinada, na qual é posśıvel constatar que os gráficos das funções de ativação ajustadas

são muito próximas às da expressão exata. O modelo resultante, ajustado pelo método dos

mı́nimos quadrados, é expresso como

g1(x,y) = 0.998x+ 0.998y + 0.002.

A aproximação obtida pela rede é bastante precisa, apresentando coeficientes muito próximos

dos valores esperados. O erro é pequeno, indicando que a KAN conseguiu capturar correta-

mente a estrutura linear da função proposta.

Os valores de desempenho obtidos foram:

30



• KAN: RMSE = 0.012, R2 = 0.985

• MLP (4 neurônios): RMSE = 0.005, R2 = 0.996

Figura 16: Comparação entre a representação exata da função f1 e a rede treinada.

A segunda função considerada é

f2(x,y) = xy, (x,y) ∈ (0,1]× (0,1].

Essa função admite diversas representações na forma proposta. Uma posśıvel escolha é dada

por

Φ0(x) = exp(x), ϕ0,1(x) = ln(x), ϕ0,2(x) = ln(x).

A Figura 17 ilustra a comparação entre uma posśıvel representação de Kolmogorov-Arnold e

a KAN treinada. O modelo ajustado via mı́nimos quadrados não linear resultou na seguinte

expressão

g2(x,y) = exp(0.765 ln(0.638x+ 0.007) + 0.765 ln(0.902y + 0.011) + 3.501).

A aproximação para essa função é razoavelmente boa, mas apresenta um leve desvio nos

coeficientes multiplicativos e aditivos. No entanto, dentro do intervalo considerado, a di-

ferença é pequena o suficiente para que a função da rede ainda capture adequadamente o

comportamento do produto entre as variáveis.

31



Os valores de desempenho foram:

• KAN: RMSE = 0.018, R2 = 0.972

• MLP: RMSE = 0.009, R2 = 0.989

Figura 17: Comparação entre uma representação da função f2 e a rede treinada.

A terceira função analisada é

f3(x,y) = sin(x) + cos(2y), (x,y) ∈ [−π,π]× [−π,π].

A representação de Kolmogorov-Arnold para essa função pode ser descrita como

Φ0(x) = x, ϕ0,1(x) = sin(x), ϕ0,2(x) = cos(2x).

A Figura 18 ilustra as funções de ativação da KAN treinada para essa função. Utilizando

mı́nimos quadrados não linear, obteve-se a seguinte expressão aproximada:

g3(x,y) = 1.01 sin(1.000x− 0.004) + 1.00 sin(2.001y + 1.571) + 2.000.

A aproximação é muito boa, pois os coeficientes estão extremamente próximos dos valores

exatos esperados. Há apenas desvios mı́nimos nos coeficientes e deslocamentos, e o compor-

tamento oscilatório caracteŕıstico da função original foi capturado de forma bastante precisa.

Os resultados obtidos para essa função indicam a superioridade da KAN:

32



• KAN: RMSE = 0.024, R2 = 0.918

• MLP: RMSE = 0.062, R2 = 0.895

Figura 18: Comparação entre a representação da função f3 e a rede treinada.

De modo geral, a rede treinada conseguiu capturar bem as três funções, com pequenas

distorções nos coeficientes que podem ser explicadas pela aproximação numérica e pela es-

trutura da KAN. Essas diferenças são pequenas o suficiente para garantir que, nos intervalos

analisados, a rede tenha aprendido as estruturas fundamentais das funções originais. Além

disso, observou-se que, embora a MLP tenha apresentado desempenho superior nas funções

mais simples, a KAN demonstrou vantagem ao lidar com estruturas mais complexas e não

lineares, evidenciando seu potencial interpretativo.

4.3 Problema de Classificação Financeira

O Statlog (German Credit Data) é uma base da dados que contém registros de 1000

clientes de uma instituição bancária alemã, descritos por 20 atributos de natureza categórica

e numérica, que abrangem desde informações pessoais até histórico de crédito e detalhes de

operações financeiras. O conjunto de dados faz a distinção de clientes entre bons (d = 1) e

maus pagadores (d = −1).

33



Para garantir equivalência no custo computacional, a KAN e a MLP foram configuradas

com arquiteturas distintas, porém comparáveis. A KAN foi estruturada com duas camadas

contendo 2 e 1 neurônios, enquanto a MLP utilizou três camadas compostas por 20, 13 e 1

neurônio, respectivamente. Na KAN, adotaram-se os parâmetros k = 3 e grid = 5. Já na

MLP, empregou-se a função de ativação ReLU nas camadas ocultas e a tangente hiperbólica

na camada de sáıda. Ambas as redes foram treinadas com o otimizador Adam (β1 = 0,9 e

β2 = 0,999) ao longo de 1000 épocas.

A KAN atingiu uma acurácia de 68%, enquanto a MLP alcançou 77%. A MLP convergiu

mais rapidamente que a KAN, como pode ser observado na Figura 19. Em termos de custo

computacional, a MLP treinou 707 parâmetros por 17,3 s, ao passo que a KAN treinou 714

parâmetros por 33,2 s. Apesar do desempenho inferior ao da MLP, simplificando a KAN

com a técnica de poda (θ = 0,1) e utilizando o método dos mı́nimos quadrados não linear,

foi posśıvel extrair uma expressão de sáıda da KAN.

Figura 19: Evolução do custo durante o treinamento dos modelos KAN e MLP.

As funções de ativação treinadas da KAN foram ajustadas considerando três candidatos:

afim, cosseno e tangente hiperbólica. Para selecionar o melhor ajuste de cada função de

ativação, adotou-se o maior valor do coeficiente de determinação. Ao final do processo, a

composição das funções resultou em:

d̂ = − 0,025 cos(−0,032x2 + 1,842 · 10−4x5 + 6,374)

+ 0,210 tanh(2,151x3 + 1,235x2 + 2,198x4)

− 0,009x5 + 45,244− 0,116.

A expressão obtida apresenta forma relativamente compacta e atinge a mesma acurácia

da KAN nos dados de teste. Além disso, ela permite avaliar a relevância de cada componente

da entrada (xk, k = 1, . . . , 20) no processo de decisão de crédito, caracteŕıstica que não é

facilmente alcançada com a MLP. Dessa forma, a KAN mostra-se novamente ser um modelo

promissor em cenários nos quais a interpretabilidade das decisões é um requisito desejável.

34



4.4 Classificação multi-classe com o MNIST

A base de dados MNIST (Modified National Institute of Standards and Technology) é com-

posta por 70.000 imagens em tons de cinza de d́ıgitos manuscritos entre 0 e 9, cada uma com

resolução de 28× 28 pixels. O conjunto está dividido em 60.000 amostras para treinamento

e 10.000 para teste.

Devido à natureza da arquitetura KAN, o treinamento sobre imagens de alta dimensão é

bastante custoso em termos computacionais. Assim, as imagens foram reduzidas para 7× 7

pixels com aplicação de anti-aliasing, o que tornou as simulações viáveis.

Para resolver o problema com a KAN, foi empregado um modelo de rede com duas

camadas ocultas de 5 neurônios cada e uma camada de sáıda com 10 neurônios. Esse modelo

foi treinado em três cenários distintos, cada um por 250 épocas:

• Treinamento com grid = 10 fixo durante todas as épocas;

• Treinamento com grid = 5 na primeira metade e refinamento para grid = 10 na

segunda metade;

• Treinamento com grid = 3 no primeiro terço, refinamento para grid = 5 no segundo

terço e, por fim, refinamento para grid = 10 no último terço.

Os modelos de MLP propostos para comparação foram:

• Modelo 1: duas camadas ocultas com 5 neurônios cada e camada de sáıda com 10

neurônios;

• Modelo 2: duas camadas ocultas com 63 e 41 neurônios, respectivamente, e camada

de sáıda com 10 neurônios;

• Modelo 3: três camadas ocultas com 60, 34 e 25 neurônios, respectivamente, e camada

de sáıda com 10 neurônios;

• Modelo 4: quatro camadas ocultas com 64, 64, 32 e 16 neurônios, respectivamente, e

camada de sáıda com 10 neurônios;

• Modelo 5: cinco camadas ocultas com 128, 64, 32, 16 e 4 neurônios, respectivamente,

e camada de sáıda com 10 neurônios.

O primeiro modelo de MLP foi definido para equiparar o número de neurônios do modelo

KAN. Os modelos 2 e 3 foram projetados para equiparar aproximadamente o número de

parâmetros treináveis da KAN. Já os modelos 4 e 5 buscavam avaliar o comportamento de

MLPs mais profundas com o MNIST reduzido.

Para todos os modelos de MLP, utilizou-se a função de ativação ReLU nas camadas

ocultas e Softmax na sáıda. Também foi aplicada regularização por Dropout com taxa de

35



30% entre as camadas ocultas. Tanto o modelo KAN quanto as MLPs foram treinados com

taxa de aprendizado η = 0.001 e o otimizador Adam, configurado com β1 = 0.9 e β2 = 0.999.

A Figura 20 apresenta a evolução do custo nos diferentes treinamentos do modelo KAN.

Nota-se que as perturbações introduzidas pelo refinamento de grid são viśıveis ao longo

do treinamento, mas o desempenho final é semelhante nos três cenários, sugerindo que o

refinamento não impactou de forma relevante o resultado.

Figura 20: Evolução do custo durante o treinamento com o modelo KAN. (a) Grid=10 fixo.

(b) Grid=5 na primeira metade e refinamento para grid=10 na segunda metade. (c) Grid=3

no primeiro terço, refinamento para grid=5 no segundo terço e refinamento para grid=10

no último terço.

A Figura 21 mostra a evolução do custo dos três primeiros modelos de MLP. O Modelo 1

(Fig. 21a) converge para uma perda maior que as dos Modelos 2 e 3 (Figs. 21b e 21c),

o que indica baixa capacidade de representação, possivelmente pelo número reduzido de

parâmetros treináveis. Embora não haja diferença marcante entre os Modelos 2 e 3, a

acurácia final do Modelo 3 é superior, sugerindo que a adição de mais uma camada oculta

favoreceu o treinamento, mesmo com número de parâmetros similar ao do Modelo 2.

36



Figura 21: Evolução do custo durante o treinamento com as MLPs iniciais. (a) Modelo com

número de neurônios equivalente à KAN. (b) Modelo com número de parâmetros equivalente.

(c) Modelo com número de parâmetros equivalente, mas mais camadas ocultas.

Os resultados dos Modelos 4 e 5 estão ilustrados na Figura 22. O Modelo 4 (Fig. 22a)

apresenta desempenho estável, enquanto o Modelo 5 (Fig. 22b) obteve resultados significa-

tivamente piores, sugerindo necessidade de ajustes adicionais, maior número de épocas ou

até mesmo mais dados para convergir adequadamente.

Figura 22: Evolução do custo durante o treinamento das MLPs mais profundas. (a) Modelo

4. (b) Modelo 5.

A Tabela 3 contém a acurácia e o número de parâmetros treináveis de todos os modelos

treinados.

37



Tabela 3: Comparação entre modelos KAN e MLP.

Modelo/Treinamento Nº Parâmetros Acc (%)

KAN 1 6080 89,3

KAN 2 6080 88,94

KAN 3 6080 87,53

MLP 1 340 46,5

MLP 2 6194 73,12

MLP 3 6209 81,01

MLP 4 10138 82,6

MLP 5 17382 55,11

De forma geral, os experimentos indicam que a KAN apresentou desempenho superior

aos modelos MLP equivalentes. Esse resultado sugere que, mesmo em cenários em que a

interpretabilidade não seja o principal objetivo, a KAN pode oferecer ganhos relevantes de

desempenho.

5 O algoritmo NoProp

Como uma alternativa ao algoritmo da retropropagação (backpropagation), foi proposto re-

centemente em [10] o algoritmo NoProp. Esse algoritmo não requer os cálculos progressivos e

regressivos do backpropagation e funciona com base nos prinćıpios seguidos pelos modelos de

difusão para treinar cada camada de uma rede neural de forma independente, sem propagar

gradientes. Segundo [10], as principais vantagens desse algoritmo são:

1. Eficiência Computacional – A retropropagação exige armazenamento e cálculo ex-

tensivo de gradientes. O NoProp remove grande parte dessa sobrecarga.

2. Escalabilidade – Como não há propagação reversa, o treinamento em redes muito

profundas torna-se mais estável.

3. Robustez – Gradientes desaparecendo ou explodindo deixam de ser um problema

central, pois não há retropropagação direta.

4. Novas Perspectivas Biológicas – O cérebro humano provavelmente não usa retro-

propagação. Métodos como o NoProp podem estar mais alinhados com a cognição

biológica.

Durante o treinamento, cada camada da rede neural recebe um rótulo ruidoso e a entrada

da rede, e prevê o rótulo alvo com base neles. Cada camada é treinada independentemente

38



das outras, utilizando uma perda de denoising. Isso elimina a necessidade da propagação

durante o treinamento. No entanto, todas as camadas trabalham juntas durante a inferência.

Partindo de rúıdo Gaussiano, cada camada recebe um rótulo ruidoso produzido pela

camada anterior e o refina (denoising). Esse processo é feito camada a camada até que,

na última camada, a rede produza a classe correta. O objetivo é, dado um par (x,y) do

conjunto de dados, construir um modelo capaz de prever o rótulo y a partir da entrada x.

Em vez de simplesmente encontrar uma função f(x) = y, deseja-se treinar a rede neural para

modelar um processo estocástico que transforma rúıdo aleatório em uma forma que permita

estimar y.

5.1 Processo estocástico de difusão / Denoising

Esse processo é representado por p. A partir do rúıdo, ele é refinado em vários passos

até chegar à representação final z(T ), usada para prever y. Matematicamente, trata-se da

probabilidade conjunta de todas as representações ruidosas intermediárias z(0), . . . , z(T ) do

rótulo y dado x, ou seja,

p(z(t)Tt=0|x) = p(z(0)) ·
T∏
t=1

p(z(t)|z(t− 1), x) · p(y|z(T ))

em que p(z(0)) descreve o rúıdo gaussiano padrão inicial, p(z(t)|z(t − 1), x) descreve como

cada camada remove o rúıdo de sua entrada e p(y|z(T )) descreve como y é classificado com

base na representação final z(T ). Esse termo, por sua vez, é parametrizado por uma rede

neural ûθt , ponderada por escalares a(t), b(t), c(t), levando a

z(t) = a(t) ûθt(z(t− 1),x) + b(t) · z(t− 1) +
√
c(t) ϵ(t)

com ϵ(t) sendo rúıdo gaussiano.

5.2 Processo reverso de rúıdo / Variacional posterior

Representado por q, a partir do rótulo y (na forma u(y)), esse processo modela como adicionar

rúıdo passo a passo até obter z(0), ou seja,

q(z(t)Tt=0|y,x) = q(z(t)|y) ·
T∏
t=1

q(z(t− 1)|z(t)).

Cabe observar que q(z(t−1)|z(t)) descreve o processo de difusão reversa que recupera repre-

sentações ruidosas anteriores pela adição incremental de rúıdo. A distribuição condicional

q(z(T )|y) é dada por

q(z(T )|y) = N (z(T )|
√
ᾱ(T )u(y), 1− ᾱ(T )),

39



que representa uma distribuição gaussiana sobre a variável latente z(T ) commédia
√

ᾱ(T )u(y)

e variância 1 − ᾱ(T ). u(y) representa o rótulo “transformado” (embedding) e ᾱ(T ) diz o

quanto de u(y) permanece depois da adição de rúıdo. Além disso, a distribuição gaussiana

sobre a variável latente z(t − 1) com média
√
α(t− 1)z(t) e variância 1 − α(t − 1) é dada

por

q(z(t− 1)|z(t)) = N (z(t− 1)|
√
α(t− 1) z(t), 1− α(t− 1)),

em que α(t−1) é um parâmetro de rúıdo que controla o quanto do sinal original é preservado

no passo t− 1.

5.3 Função de perda

No treinamento, o algoritmo NoProp tem por objetivo maximizar log p(y|x). Como isso é

inviável computacionalmente, otimiza-se um limite inferior variacional (evidence lower bound

– ELBO), ou seja,

log p(y|x) ≥ ELBO

ou ainda

log p(y|x) ≥ Eq(z(t)Tt=0|y,x)
[
log p(z(t)Tt=0|y,x))− log q(z(t)Tt=0|y,x)

]
.

A perda do algoritmo NoProp é derivada dessa expressão e pode ser escrita como a soma

de três termos:

LNoProp =Ez(T )∼q [− log p̂θ(y|z(T ))]
+DKL(q(z(0)|y)||p(z(0)))

+
T

2
ηEt∼U(1,T )

[
(SNR(t)− SNR(t− 1))∥ûθt(z(t− 1),x)− u(y)∥2

]
. (27)

A derivação dessa expressão pode ser encontrada em [10]. O primeiro termo do lado direito

representa a entropia cruzada, que mede quão precisa é a representação z(T ) para predizer

corretamente y; o segundo termo é a divergência de Kullback–Leibler entre a distribuição

de z(0) e o rúıdo Gaussiano padrão, o que força que essas distribuições sejam similares para

que o processo de difusão funcione corretamente; e o terceiro termo mede quão bem cada

camada remove o rúıdo, comparando quão próximo sua sáıda está do rótulo transformado

u(y). Além disso, η é um hiperparâmetro e a razão sinal rúıdo é definida como

SNR(t) =
ᾱ(t)

1− ᾱ(t)
.

A SNR(t) aumenta a medida que o algoritmo se move para camadas posteriores (aumento

de t), o que faz com que a perda aumente. Em outras palavras, o modelo penaliza mais os

erros das camadas posteriores do que das camadas iniciais da rede.

40



5.4 Treinamento e inferência

Durante o treinamento, cada camada aprende a remover rúıdo de u(y) sem necessidade de

uma propagação direta (forward) ou reversa (backward) pela rede inteira. Para um par (x,y),

obtém-se u(y) a partir de uma matriz Wembed. Adiciona-se rúıdo em u(y) para obter z(t), e

cada camada ûθ(z(t− 1), x) é treinada independentemente para prever u(y) a partir de x e

z(t− 1). A perda é calculada e os parâmetros da rede são atualizados para maximizar essa

perda, usando um otimizador.

Na inferência, a rede com T camadas recebe inicialmente o rúıdo z(0). Cada camada

utiliza sequencialmente a sáıda z(t − 1) da camada anterior, que junto com a entrada x

da rede produz a representação ruidosa seguinte z(t). Isso resulta em uma sequência de

representações dada por z(0), z(1), · · · z(T − 1), z(T ). No passo final t = T , z(T ) é passada

por um decisor para gerar a predição ŷ, como esquematizado na Figura 23.

Figura 23: Esquema do algoritmo NoProp. z(0) = z0 é um rúıdo gaussiano, que é trans-

formado sucessivamente até obter z(T ) = zT . Cada camada, representada por u(t) = ut,

recebe a entrada x da rede. A camada final consegue obter a predição ŷ do rótulo y a partir

de z(T ). Fonte: [10].

5.5 Arquitetura das camadas

Cada camada ûθ(z(t − 1),x) consiste em um caminho convolucional para processar x; um

caminho totalmente conectado para processar z(t − 1) com conexões residuais; e camadas

adicionais totalmente conectadas para gerar logits. Os logits passam por uma função softmax,

produzindo uma distribuição sobre as classes. A sáıda final é obtida calculando-se uma soma

ponderada dos embeddings de classe, como esquematizado na Figura 24.

41



Figura 24: Arquitetura de cada camada Fonte: [10].

42



A seguir, o NoProp é testado em problemas de classificação.

6 Aplicação do NoProp em problemas de classificação

Nesta seção, avalia-se o desempenho do NoProp em três problemas de classificação distintos:

o problema das meias-luas, o Statlog (German Credit Data) e, por fim, o MNIST com di-

mensões reduzidas. Em todos os casos, a abordagem considerada foi o algoritmo NoProp em

tempo discreto. Cabe observar que o impacto de diferentes hiperparâmetros no treinamento

da rede para cada problema proposto também foi analisado.

6.1 NoProp aplicado ao problema das meias-Luas

Para este problema, foram definidas duas configurações distintas para os blocos de denoi-

sing. A primeira consiste em um modelo com apenas uma camada densa, contendo dois

neurônios de sáıda. A segunda configuração é composta por duas camadas densas ocultas,

com 64 e 32 neurônios, respectivamente, além de uma camada de sáıda com dois neurônios.

Em ambas as configurações, foram realizados testes com diferentes números de blocos de

denoising, considerando T = 5 e T = 10, e o treinamento individual de cada bloco foi com

o Backpropagation utilizando a taxa de aprendizado η = 0.001 e Adam com β1 = 0.9 e

β2 = 0.999.

Na primeira configuração, foram testados dois cenários:

1. No primeiro, a dimensão do vetor de latência (embedding dim) foi igualada à dimensão

da entrada, possibilitando a comparação entre as operações de soma e concatenação

dos vetores de rúıdo à entrada. A evolução da acurácia durante o treinamento nesses

casos está ilustrada na Figura 25 (a) e (b).

2. No segundo cenário, utilizou-se um vetor de latência de dimensão 16 concatenado à

entrada. A Figura 26 apresenta os resultados obtidos nesse caso.

43



Figura 25: Evolução da acurácia durante o treinamento com a primeira configuração. (a)

Cenário com soma dos rúıdos à entrada. (b) Cenário com concatenação dos rúıdos à entrada.

(c) Cenário com vetor de latência de dimensão 16.

Figura 26: Evolução da acurácia durante o treinamento com a segunda configuração.

A Tabela 4 resume as configurações avaliadas e os resultados finais obtidos.

44



Tabela 4: Resultados dos modelos com diferentes configurações no problema das meias-luas.

Configuração T Operação na Entrada Acc (%) Parâmetros

1 5 Soma 14,15 40

1 10 Soma 88,55 70

1 5 Concatenação 94,45 60

1 10 Concatenação 92,60 110

1 5 Concatenação 94,30 256

1 10 Concatenação 94,55 446

2 5 Concatenação 100,0 12.316

2 10 Concatenação 100,0 24.566

Os resultados indicam que o NoProp não apresenta bom desempenho quando os vetores

de rúıdo são somados diretamente à entrada, ainda que essa operação pudesse reduzir o

número de parâmetros treináveis. Por outro lado, a concatenação mostrou-se mais eficaz,

alcançando acurácias elevadas apesar do número maior de parâmetros treináveis.

Além disso, verificou-se que o número de blocos de denoising (T ) influencia apenas mar-

ginalmente a velocidade de convergência, podendo trazer ganhos mais expressivos apenas em

arquiteturas mais simples. No entanto, no geral, esse hiperparâmetro não altera substanci-

almente a acurácia final.

Por fim, observou-se que, embora seja posśıvel atingir acurácia de 100% com a con-

figuração mais complexa, o custo em termos de parâmetros treináveis é significativamente

maior que as outras propostas já verificadas. Essa caracteŕıstica pode se tornar um obstáculo

em cenários com recursos computacionais limitados, nos quais a paralelização do treinamento

não seja viável.

6.2 NoProp aplicado ao Problema de Classificação Financeira

Utilizou-se novamente a base de dados Statlog (German Credit Data) para o problema de

classificação no contexto financeiro. Nesta etapa, os dados foram previamente transformados

para o formato one-hot encoding, a fim de facilitar o treinamento dos modelos.

Foram avaliadas três configurações distintas para os blocos de denoising :

1. A primeira consiste em um modelo simples, com apenas uma camada de dois neurônios

de sáıda;

2. A segunda inclui uma camada oculta com 16 neurônios e uma camada de sáıda com

dois neurônios;

3. A terceira apresenta duas camadas ocultas, com 64 e 32 neurônios, respectivamente,

além da camada de sáıda.

45



Em todas as configurações foram realizados experimentos com T = 5 e T = 20 combinado

com embedding dim = 61 e embedding dim = 128. Apenas operação de concatenação entre

entrada e rúıdo foi utilizada. Para os modelos com camadas ocultas, aplicou-se Dropout de

20% como forma de regularização. O treinamento individual de cada bloco foi conduzido

com Backpropagation, utilizando taxa de aprendizado η = 0.001 e o otimizador Adam com

β1 = 0.9 e β2 = 0.999.

A Figura 27 mostra os resultados obtidos para a primeira configuração. Observa-se que a

variação de hiperparâmetros em (b) e (c) não produziu diferenças significativas em relação a

(a), tanto na evolução do treinamento quanto na acurácia final, que se manteve praticamente

inalterada.

Figura 27: Evolução da acurácia durante o treinamento com a primeira configuração pro-

posta para a classificação financeira. (a) T = 5, embedding dim = 61. (b) T = 5,

embedding dim = 128. (c) T = 20, embedding dim = 61.

No treinamento da segunda configuração, apresentado na Figura 28, nota-se uma pequena

diferença em (b) e uma melhora marginal em (c) em comparação com (a). Entretanto,

no geral, os resultados de validação são ligeiramente inferiores aos obtidos pela primeira

configuração.

46



Figura 28: Evolução da acurácia durante o treinamento com a segunda configuração pro-

posta. (a) T = 5, embedding dim = 61. (b) T = 5, embedding dim = 128. (c) T = 20,

embedding dim = 61.

A Figura 29 apresenta os resultados da terceira configuração. Nesse caso, os modelos

sofrem de overfitting. A inclusão de mais blocos de (a) para (b) reduziu a velocidade de

convergência, mas não houve diferença percept́ıvel entre (a) e (c). A acurácia nos dados de

validação foi pior em comparação às demais configurações, justamente em razão do overfit-

ting.

Figura 29: Evolução da acurácia durante o treinamento com a terceira configuração pro-

posta. (a) T = 5, embedding dim = 61. (b) T = 5, embedding dim = 128. (c) T = 20,

embedding dim = 61.

A Tabela 5 resume os resultados obtidos em todas as configurações avaliadas.

47



Tabela 5: Resumo dos resultados para as diferentes configurações avaliadas.

Configuração embedding dim T Acc (%) Parâmetros

1 61 5 77 1476

1 128 5 78 2414

1 61 20 76 5166

2 61 5 74 10416

2 128 5 76 16044

2 61 20 75 40926

3 61 5 75 45776

3 128 5 74 67484

3 61 20 72 182366

De forma geral, os resultados são consistentes com os obtidos em outras redes analisadas.

Destaca-se que os modelos com blocos de camada única apresentaram o melhor desempe-

nho, o que é promissor, pois sugere a possibilidade de treinar blocos individualmente sem a

necessidade do backpropagation para esse problema em espećıfico.

6.3 NoProp aplicado ao MNIST com Dimensões Reduzidas

O NoProp foi inicialmente avaliada no problema de classificação de imagens do MNIST,

demonstrando a viabilidade de realizar tarefas desse tipo com uma arquitetura altamente

paralelizável e sem a necessidade de propagação global do erro. Entretanto, no artigo original,

os blocos de denoising são compostos por redes convolucionais relativamente complexas, cujo

treinamento não é trivial.

Com o intuito de verificar se é posśıvel resolver o problema do MNIST utilizando blocos

mais simples, foram definidas três configurações compostas apenas por camadas densas:

1. Primeiro, uma configuração simples, com apenas uma camada de sáıda contendo dez

neurônios;

2. Segundo, uma configuração com duas camadas ocultas com 64 e 16 neurônios, respec-

tivamente, seguidas de uma camada de sáıda com dez neurônios. Entre as camadas

ocultas, aplicaram-se normalização Batch e regularização Dropout com taxa de 20%;

3. Terceiro, uma configuração com quatro camadas ocultas com 256, 128, 64 e 16 neurônios,

respectivamente, seguidas de uma camada de sáıda com dez neurônios. Entre as ca-

madas ocultas, também foram aplicados Batch Normalization e Dropout com taxa de

20%.

Todos os modelos foram treinados com T = 10 blocos de denoising e dimensão de embed-

ding embedding dim = 128, mantidos fixos. Apenas operação de concatenação entre entrada

48



e rúıdo foi utilizada. O treinamento individual de cada bloco foi realizado com Backpropa-

gation, utilizando taxa de aprendizado η = 0.001 e o otimizador Adam, com parâmetros

β1 = 0.9 e β2 = 0.999. Para viabilizar a comparação com outras arquiteturas avaliadas

e reduzir o custo computacional, a base de dados foi pré-processada, redimensionando as

imagens para 7× 7 com anti-aliasing.

A Figura 30 apresenta a evolução da acurácia durante o treinamento para as três confi-

gurações propostas. Observa-se que os modelos testados não foram capazes de alcançar bons

resultados no MNIST reduzido. Além disso, o aumento da profundidade das redes internas

dos blocos de denoising levou, paradoxalmente, a um desempenho ainda pior.

Figura 30: Evolução da acurácia durante o treinamento no MNIST reduzido. (a) Primeira

configuração. (b) Segunda configuração. (c) Terceira configuração.

Esses resultados sugerem que o NoProp, quando aplicado a blocos exclusivamente den-

sos, não é capaz de resolver adequadamente o problema de classificação no MNIST com

dimensões reduzidas. Além disso, tal limitação é particularmente desinteressante, uma vez

que ainda não existem métodos consistentes para treinar blocos individuais sem o uso de

backpropagation. Em comparação com as outras redes analisadas, o NoProp apresentou os

piores resultados.

7 Conclusões

A aplicação da KAN em diferentes cenários de classificação e regressão demonstrou resultados

bastante expressivos, destacando-se principalmente pela capacidade de extrair representações

simbólicas compactas e interpretáveis. Nos problemas de regressão, a rede mostrou-se ca-

paz de aproximar funções lineares e não lineares com boa precisão, fornecendo expressões

49



anaĺıticas muito próximas das formas originais, o que a diferencia de arquiteturas tradicio-

nais como as MLPs. Já nos problemas de classificação, como o das meias-luas e o MNIST

reduzido, a KAN apresentou desempenho superior ou, no mı́nimo, competitivo em relação

às MLPs equivalentes, evidenciando seu potencial tanto em termos de acurácia quanto de

interpretabilidade. Em aplicações práticas, como o caso do Statlog (German Credit Data),

embora a acurácia obtida tenha sido inferior à da MLP, a KAN mostrou-se promissora

por possibilitar a extração de expressões simbólicas que permitem avaliar a relevância de

variáveis de entrada, algo de grande valor em contextos onde a transparência do modelo é

fundamental.

No caso do NoProp, os resultados obtidos confirmam que a arquitetura é conceitualmente

interessante, pois abre caminho para o treinamento altamente paralelizável de redes sem a

necessidade de propagação global do erro. Entretanto, os experimentos mostraram que,

quando os blocos de denoising são compostos apenas por camadas densas, o desempenho

ainda é limitado, especialmente em tarefas mais complexas como o MNIST. Observou-se que,

em problemas mais simples, como o das meias-luas ou a classificação financeira, o NoProp

pode atingir bons resultados com arquiteturas relativamente pequenas. No entanto, o fato

de que cada bloco ainda precisa ser treinado com backpropagation limita o alcance prático

da abordagem. Seria mais promissor se os blocos de denoising pudessem ser simplificados

de tal forma que métodos alternativos de treinamento pudessem ser aplicados em ńıvel local,

eliminando completamente a dependência do backpropagation em todos os ńıveis e reforçando

o caráter altamente paralelizável do método.

De forma geral, os objetivos propostos neste trabalho foram alcançados, uma vez que

tanto a KAN quanto o NoProp foram avaliados em diferentes contextos e comparados a

MLPs, revelando suas principais vantagens e limitações. Ainda assim, abrem-se caminhos

interessantes para trabalhos futuros: no caso do NoProp, investigar estratégias alternativas

de treinamento dos blocos de denoising ; no caso da KAN, explorar novas aplicações, como a

solução de equações diferenciais ordinárias (EDOs), nas quais sua capacidade interpretativa

poderia se mostrar ainda mais relevante. Essas extensões poderiam não apenas reforçar os

resultados obtidos, mas também expandir significativamente o leque de aplicações dessas

arquiteturas.

A Método dos Mı́nimos Quadrados Não Linear

Dado um conjunto de dados {(xi, yi)}ni=1, deseja-se encontrar os parâmetros θ que minimizam

a soma dos quadrados dos reśıduos, expressa de forma matricial como

S(θ) = ∥y − f(X,θ)∥2. (28)

A minimização de S(θ) normalmente requer métodos iterativos, pois não há solução fechada

para problemas não lineares [13]. Um dos métodos mais utilizados é o método de Gauss-

50



Newton, que aproxima a função por uma expansão de Taylor de primeira ordem e resolve

um sistema linear iterativamente [3].

Para Exemplificar, considere um modelo genérico da forma

g(x) = a+ bf(cx+ d), (29)

em que θ = [a b c d] representa os parâmetros a serem ajustados e f é uma função não linear

qualquer [1].

Dado um conjunto de observações {(xi, yi)}, define-se o vetor de reśıduos como

r(θ) = y − g(x,θ). (30)

A matriz Jacobiana J(θ), contendo as derivadas parciais dos reśıduos em relação aos parâmetros,

é definida como

Jij =
∂ri
∂θj

. (31)

Para este modelo, os elementos da matriz Jacobiana são dados por:

J =


−1 −f ′(cx1 + d) −bf ′(cx1 + d)x1 −bf ′(cx1 + d)

−1 −f ′(cx2 + d) −bf ′(cx2 + d)x2 −bf ′(cx2 + d)
...

...
...

...

−1 −f ′(cxn + d) −bf ′(cxn + d)xn −bf ′(cxn + d)

 . (32)

A atualização iterativa dos parâmetros ocorre resolvendo o sistema

(JTJ)∆θ = JT r, (33)

em que ∆θ representa a correção nos parâmetros e r é o vetor de reśıduos [12].

Os parâmetros são então atualizados como

θ ← θ +∆θ. (34)

Para iniciar o processo iterativo, é necessário fornecer um chute inicial θ(0). A escolha

de um bom valor inicial pode impactar significativamente a convergência do método. Em

geral, aproximações baseadas em conhecimento prévio do problema podem ser utilizadas

para definir esse valor [1]. Esse processo é repetido até que a variação nos parâmetros seja

suficientemente pequena ou um critério de parada seja atingido.

O método de Gauss-Newton se mostra eficiente quando os reśıduos são aproximadamente

lineares em relação aos parâmetros, garantindo uma boa convergência na maioria dos casos

práticos [3].

51



Referências

[1] D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and Its Applications. John

Wiley & Sons, 1988.

[2] C. M. Bishop. Deep Learning: Foundations and Concepts. Springer, 2024.

[3] Å. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[4] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2(4):303–314, 1989.

[5] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press.

[6] S. Haykin. Neural networks and learning machines. Prentice Hall, Upper Saddle River,

3 edition, 2009.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv, https:

//arxiv.org/abs/1412.6980, 2014.

[8] A. N. Kolmogorov. On the representation of continuous functions of several variables

as superpositions of continuous functions of a smaller number of variables. Dokl. Akad.

Nauk, 1956.

[9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[10] Q. Li, Y. W. Teh and R. Pascanu. NoProp: Training Neural Networks without Back-

propagation or Forward-propagation. arXiv, https://arxiv.org/abs/2503.24322,

2025.

[11] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljacic, T. Y. Hou, and

M. Tegmark. KAN: Kolmogorov-Arnold networks. arXiv, https://arxiv.org/abs/

2404.19756, 2024.

[12] J. J. Moré. The levenberg-marquardt algorithm: implementation and theory. Numerical

Analysis, pages 105–116, 1978.

[13] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[14] F. Rosenblatt. The perceptron: A probabilistic model for information storage and

organization in the brain. Psychological Review, 65(6):386–408, 1958.

[15] D. E. Rumelhart, G. E. Hinton, and Ronald J. Williams. Learning representations by

back-propagating errors. Nature, 323(6088):533–536, 1986.

[16] L. Schumaker. Spline Functions: Computational Methods. SIAM, 2015.

52

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.24322
https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756


Anexo 1 - Artigo aceito no SBrT 2025

53



XLIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2025, 29 DE SETEMBRO A 2 DE OUTUBRO–11 DE 2025, NATAL, RN

Comparações entre a rede Kolmogorov-Arnold e a
rede perceptron multicamada

Pedro H. S. Soares, Renato Candido e Magno T. M. Silva

Resumo— Neste trabalho, as clássicas redes perceptron mul-
ticamada (MLP) são comparadas com as recém-propostas redes
Kolmogorov-Arnold (KAN) em um problema de regressão e
outro de classificação binária. A KAN, baseada em splines
ajustáveis, apresenta uma maior interpretabilidade às custas de
uma complexidade computacional elevada e uma convergência
mais lenta.

Palavras-Chave— aprendizado de máquina, redes neurais, te-
orema de Kolmogorov-Arnold, splines, interpretabilidade.

Abstract— In this work, classical multilayer perceptron (MLP)
networks are compared with the newly proposed Kolmogorov-
Arnold networks (KAN) in a regression problem and a binary
classification problem. KAN, based on adjustable splines, offers
greater interpretability at the cost of higher computational
expense and slower convergence.

Keywords— machine learning, neural networks, Kolmogorov-
Arnold theorem, splines, interpretability.

I. INTRODUÇÃO

Nos últimos anos, o aprendizado de máquina vem ganhando
destaque no desenvolvimento tecnológico, influenciando como
hardwares e softwares são projetados e mudando radicalmente
a interação homem-máquina [1]–[3]. Em aprendizado pro-
fundo, a rede perceptron multicamada (multilayer perceptron
– MLP) é protagonista na solução de problemas não lineares,
respaldada pelo teorema da aproximação universal [1]. No en-
tanto, a profundidade dessas redes dificulta o entendimento de
como o problema é resolvido [1]–[3]. Em outras palavras, as
redes MLP conseguem de fato resolver problemas complexos,
mas as soluções em si são uma “caixa-preta”, dificultando ou
mesmo impedindo sua interpretabilidade.

A fim de possibilitar a interpretabilidade dos mode-
los, foi proposta recentemente a rede Kolmogorov-Arnold
(Kolmogorov-Arnold network – KAN), inspirada pelo teo-
rema de representação homônimo [4]. Enquanto as redes
MLP possuem funções de ativação fixas nos neurônios, as
KANs consideram as funções de ativação como parâmetros
ajustáveis. Os pesos são substituídos por funções univariadas
parametrizadas como splines. Essa mudança faz com que as
KANs possam superar as MLPs em termos de precisão e
interpretabilidade em alguns casos [4].

Neste trabalho, a KAN é comparada com a MLP em um
problema de regressão e em outro de classificação binária.
O artigo está organizado da seguinte forma. Na Seção II, a

Pedro H. S. Soares, Renato Candido e Magno T. M. Silva, Depto. de Enge-
nharia de Sistemas Eletrônicos, Escola Politécnica, Universidade de São Paulo,
São Paulo, SP, Brasil, emails: soares.pedro@usp.br; renatocan@lps.usp.br;
magno.silva@usp.br. Este trabalho foi financiado pela CAPES (código
de financiamento 001) e pelo CNPq (122941/2024-1, 303826/2022-3 e
404081/2023-1).

KAN é revisitada. Na Seção III, são mostrados os resultados
da comparação com a MLP e na Seção IV, as conclusões.

II. REVISITANDO A KAN

O teorema de representação de Kolmogorov-Arnold estabe-
lece que dada uma função contínua multivariada f : [0,1]n →
R, então existe um conjunto de funções contínuas univariadas
{ϕq,p} e {Φq} tais que f pode ser representada como [4], [5]

f(x1, x2, . . . , xn) =
∑2n

q=0 Φq

(∑n
p=1 ϕq,p(xp)

)
. (1)

A motivação desse teorema é utilizar funções univariadas para
reduzir a complexidade no cálculo de funções multivariadas.

A KAN se baseia nesse teorema, considerando funções
B-splines. Essas funções, definidas em intervalos específicos
denominados intervalos de nó, são construídas a partir da
combinação linear de polinômios de grau baixo e utilizadas
para aproximar curvas contínuas de maneira suave [6]. Assim,
a combinação linear com coeficientes ci das funções de base
Bi,k levam à B-spline de grau k, ou seja,

ϕq,p(xp) ≈
∑m

i=0 ciBi,k(xp), (2)

em que as funções de base

Bi,k(xp)=
xp−ti
ti+k−ti

Bi,k−1(xp)+
ti+k+1−xp

ti+k+1−ti+1
Bi+1,k−1(xp),

são definidas com a fórmula de Cox-deBoor, ti é o i-ésimo
nó e Bℓ,0 = 1 para tℓ ≤ x ≤ tℓ+1 e Bℓ,0 = 0, caso contrário,
ℓ = 0, · · · ,m. Para ℓ > m, assume-se Bℓ,k(xp) = 0 [4], [6].

Na KAN, cada função de ativação ϕq,p(xp) é aproximada
por uma B-spline como em (2) e portanto, representada por
um conjunto de m + 1 coeficientes ci. No ajuste desses
coeficientes, empregam-se algoritmos de treinamento similares
aos da MLP, como o algoritmo backpropagation [1]. É im-
portante garantir que as funções base sejam iguais para todas
funções de ativação. Para isso, é necessário definir o número de
intervalos de nós, denominado grid, e o grau das funções base
como hiperparâmetros. Também é necessário verificar durante
o treinamento o domínio das B-splines e atualizar os limites
dos nós para que comporte os dados de treinamento [4].

A KAN se assemelha à MLP, pois ambas possuem uma
estrutura de camadas conectadas, em que todos os neurônios
de uma camada estão ligados aos neurônios das camadas
subsequentes. A principal diferença está na forma como a
ativação de cada neurônio é calculada: na MLP, a entrada
é ponderada por pesos ajustáveis e a saída passa por uma
função de ativação fixa, enquanto na KAN, cada componente
da entrada é processado por uma função de ativação ajustável
baseada em B-splines, e a saída é obtida por uma soma simples
dessas transformações, conforme ilustrado na Figura 1.



XLIII SIMPÓSIO BRASILEIRO DE TELECOMUNICAÇÕES E PROCESSAMENTO DE SINAIS - SBrT 2025, 29 DE SETEMBRO A 2 DE OUTUBRO–11 DE 2025, NATAL, RN

Fig. 1. Comparação entre as ativações de uma MLP e de uma KAN.

III. RESULTADOS

Considerou-se inicialmente um problema de regressão com
o objetivo de aproximar a função f(x, y) = sin2(x + y),
utilizando 4000 pontos (x, y), gerados aleatoriamente no do-
mínio [−π, π]× [−π, π]. A KAN e a MLP foram configuradas
com três camadas, contendo 3, 2, 1 e 24, 25, 1 neurônios,
respectivamente. Ambas foram treinadas por 3000 épocas com
o otimizador Adam (β1 = 0.9 e β2 = 0.999) [7]. Na KAN,
consideraram-se ainda k = 3 e o valor do grid iniciando com
3 e dobrando a cada 1000 épocas. Esse aumento, conhecido
como extensão de grid [4], resultou no aumento do número
de parâmetros treináveis a cada 1000 épocas. Na MLP, foram
usadas ReLU nos neurônios das camadas ocultas e tangente
hiperbólica para o neurônio de saída. Essas configurações
permitem que o números de parâmetros treináveis de am-
bas as redes estejam próximos. Para comparação, também
considerou-se um modelo da KAN com grid fixo igual a 12.

Em termos de custo computacional, na KAN com grid
variável foram utilizados 462 parâmetros ao final de 130 s
de treinamento, enquanto na MLP, foram treinados 463 parâ-
metros em 134 s. Apesar do mesmo custo neste caso, a raiz
do erro quadrático médio (root mean-square error – RMSE)
atingida pela KAN é de 0,0529 e o coeficiente de determinação
(R2) é de 0,9776, enquanto para a MLP essas métricas foram
de 0,0228 e 0,9958, respectivamente. Na Figura 2-(a), é
possível observar que a KAN apresentou uma convergência
mais lenta que a MLP. Apesar do número de parâmetros finais
da KAN com grid variável ser o mesmo da KAN com grid
fixo, a extensão de grid ao longo do treinamento é essencial
para se obter um melhor desempenho. No entanto, isso causa
um aumento da função custo (pico da curva verde em torno
da época 2000), mas que logo volta ao patamar de antes
da alteração do grid. Esses resultados sugerem que a KAN
apresenta resultados promissores em termos de desempenho
para um custo computacional semelhante ao da MLP, embora
a MLP ainda consiga um desempenho um pouco superior.

No problema de classificação binária, considerou-se o Ger-
man Credit Dataset [8], que contém 1000 instâncias compostas
por 20 variáveis. A variável-alvo assume valor d = 1 para
clientes confiáveis e d = −1 para aqueles considerados de
risco. Para se obter o mesmo custo computacional, a KAN
e a MLP foram configuradas com 2 e 3 camadas, contendo
2, 1 e 20, 13, 1 neurônios, respectivamente. Consideraram-se
para a KAN k = 3 e grid = 5, enquanto para a MLP, ReLU
nos neurônios das camadas ocultas e tangente hiperbólica para
o de saída. Ambas foram treinadas com otimizador Adam
(β1 = 0.9 e β2 = 0.999) ao longo de 1000 épocas.

A KAN atingiu uma acurácia de 68% e a MLP de 77%.
Novamente, a MLP convergiu mais rápido que a KAN, como
pode ser observado na Figura 2-(b). Em termos de custo
computacional, a MLP treinou 707 parâmetros por 17,3 s,
enquanto a KAN treinou 714 parâmetros por 33,2 s. Apesar do
desempenho inferior que o da MLP, simplificando a KAN com
a técnica de poda (θ = 0,1) como em [4] e utilizando o método
dos mínimos quadrados não linear [9], foi possível extrair uma
expressão de saída da KAN. As funções de ativação treinadas
foram ajustadas considerando três funções candidatas: afim,
cosseno e tangente hiperbólica. Para selecionar o melhor
ajuste de cada função de ativação, foi utilizado o maior
valor de coeficiente de determinação. Ao final do processo,
a composição das funções resultou em

d̂ = − 0,025 cos
(
−0,032x2 + 1,842 · 10−4x5 + 6,374

)
+ 0,210 tanh(2,151x13 + 1,235x2 + 2,198x4

− 0,009x5 + 45,244)− 0,116.

Essa expressão é relativamente compacta e leva à mesma
acurácia da KAN com os dados de teste. Ela possibilita
verificar a relevância de cada componente da entrada (xk,
k = 1, · · · , 20) na decisão de crédito, algo que não se
consegue facilmente com a MLP. Isso faz da KAN um modelo
promissor quando se deseja buscar interpretabilidade.

Fig. 2. Evolução do custo durante o treinamento para os problemas de (a)
regressão e (b) classificação binária.

IV. CONCLUSÕES
Quando se busca interpretabilidade, a KAN é uma boa

alternativa à rede MLP, apesar da convergência mais lenta no
treinamento e do desempenho inferior em alguns casos.

REFERÊNCIAS
[1] S. Haykin, Neural networks and learning machines, Prentice Hall, 2009.
[2] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
[3] C. M. Bishop, Deep Learning, Springer, 2024.
[4] Z. Liu et al., “KAN: Kolmogorov-Arnold networks,” arXiv,

https://arxiv.org/abs/2404.19756, 2024.
[5] A. N. Kolmogorov, “On the representation of continuous functions of

several variables as superpositions of continuous functions of a smaller
number of variables,” Dokl. Akad. Nauk, 1956.

[6] L. Schumaker, Spline Functions: Computational Methods, SIAM, 2015.
[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

arXiv, https://arxiv.org/abs/1412.6980, 2014.
[8] H. Hofmann, “Statlog (German Credit Data),” UCI Machine Learning

Repository, 1994, DOI: https://doi.org/10.24432/C5NC77.
[9] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its

Applications, John Wiley & Sons, 1988.


	Resumo
	Introdução
	Objetivos
	Cronograma de Atividades

	Fundamentos Teóricos
	O Perceptron de Rosenblatt
	A rede MLP
	Treinamento da MLP
	Teorema da Aproximação Universal

	Rede Kolmogorov–Arnold
	Teorema da Representação de Kolmogorov–Arnold
	B-splines
	Construção Intuitiva da KAN
	Propagação e Treinamento da KAN
	Extração da Expressão Simbólica
	Extensão de Nós em Redes KAN
	Esparsificação e Poda em Redes KAN

	Aplicação da KAN em Problemas de Classificação e Regressão
	Problema das Meias-Luas
	Problemas de Regressão
	Problema de Classificação Financeira
	Classificação multi-classe com o MNIST

	O algoritmo NoProp
	Processo estocástico de difusão / Denoising
	Processo reverso de ruído / Variacional posterior 
	Função de perda
	Treinamento e inferência
	Arquitetura das camadas

	Aplicação do NoProp em problemas de classificação
	NoProp aplicado ao problema das meias-Luas
	NoProp aplicado ao Problema de Classificação Financeira
	NoProp aplicado ao MNIST com Dimensões Reduzidas

	Conclusões
	Método dos Mínimos Quadrados Não Linear
	Referências
	Anexo 1 - Artigo aceito no SBrT 2025

