UNIVERSIDADE DE SAO PAULO
ESCOLA POLITECNICA

Sobre algoritmos de treinamento de redes
neurais

Relatorio Final — Iniciacao Cientifica
Bolsa PIBIC-CNPq

Cdédigo do Projeto: 2024-3254

Bolsista: Pedro Henrique dos Santos Soares
Orientador: Magno Teéfilo Madeira da Silva

Coorientador: Renato Candido

Sao Paulo
Setembro - 2025

Sumario

Resumo 3
1 Introducao 4
1.1 Objetivos 4
1.2 Cronograma de Atividades L 4

2 Fundamentos Tedricos

2.1 O Perceptron de Rosenblatt 5
22 Arede MLP 00 7
2.3 Treinamento da MLP 11
2.4 Teorema da Aproximacao Universal, ... 13
3 Rede Kolmogorov—Arnold 13
3.1 Teorema da Representacao de Kolmogorov—Arnold 13
3.2 B-splines e 15
3.3 Construcao Intuitiva da KAN 19
3.4 Propagagao e Treinamento da KAN 23
3.5 Extracao da Expressao Simbdlica oL 25
3.6 Extensao de Nos em Redes KAN 25
3.7 Esparsificagao e Poda em Redes KAN 26
4 Aplicagcao da KAN em Problemas de Classificagao e Regressao 27
4.1 Problema das Meias-Luas 27
4.2 Problemas de Regressao 30
4.3 Problema de Classificacao Financeira 33
4.4 Classificacao multi-classe com o MNIST 35
5 O algoritmo NoProp 38
5.1 Processo estocastico de difusao / Denoising 39
5.2 Processo reverso de ruido / Variacional posterior 39
5.3 Funcaodeperda 40
5.4 Treinamento e inferéncia 41
5.5 Arquitetura das camadaso 41
6 Aplicagcao do NoProp em problemas de classificacao 43
6.1 NoProp aplicado ao problema das meias-Luas 43
6.2 NoProp aplicado ao Problema de Classificacao Financeira 45
6.3 NoProp aplicado ao MNIST com Dimensoes Reduzidas 48

7 Conclusoes
A Método dos Minimos Quadrados Nao Linear
Referéncias

Anexo 1 - Artigo aceito no SBrT 2025

49

50

51

53

Resumo

Este relatério final tem como propdsito apresentar alternativas a Rede Neural Perceptron
Multicamadas, focando principalmente na proposta recente das Redes de Kolmogorov-Arnold
(KANS). Inicialmente, sdo apresentados os objetivos e o cronograma de atividades. Em
seguida, sao abordadas as partes principais que constituem uma Rede Neural Perceptron
Multicamadas, como sua arquitetura, o conceito de fungao de ativacao e os algoritmos utili-
zados para realizar o aprendizado. De maneira semelhante, é discutida a proposta das Redes
de Kolmogorov-Arnold, apresentando suas peculiaridades, objetivos e algumas comparacoes
com o Perceptron Multicamadas. Apds explorar os conceitos introdutérios envolvidos, sao
resolvidos alguns problemas tipicos de redes neurais para avaliar como as Redes KANs se
comportam em diferentes cenarios.

Cabe observar que boa parte deste relatério foi apresentada anteriormente no Relatério
Parcial. O objetivo dessa repeticao é alcancar um documento completo que possa vir a ser
utilizado por futuros pesquisadores do grupo. Nos seis meses finais desse projeto, a KAN foi
aplicada a dados reais (Subsegoes 4.3 e 4.4). Além disso, o algoritmo NoProp foi estudado,
implementado e testado em problemas de classificagao (Segoes 5 e 6). Além de submeter um
artigo ao SIICUSP, foi aceito um artigo na categoria de IC para apresentacao no Simpdsio
Brasileiro de Telecomunicagoes e Processamento de Sinais (SBrT) a ser realizado de 29 de
setembro a 02 de outubro de 2025 em Natal, RN. Copia do artigo aceito encontra-se anexada
a este relatorio.

1 Introducao

Nos ultimos anos, a inteligéncia artificial vem ganhando protagonismo no desenvolvimento
tecnologico, influenciando como hardwares e softwares sao projetados atualmente e mudando
radicalmente a interagdo humano-méquina [2,5,6]. Nessa guinada, o perceptron foi uma das
primeiras propostas para a solucao de problemas nao lineares a ganhar notoriedade. Nos dias
atuais, a rede perceptron multicamada (Multilayer Perceptron — MLP) [6] é um padrao nos
métodos gerais de aprendizado de maquina. Com o amadurecimento dos modelos de redes
neurais para resolver problemas cada vez mais complexos, percebeu-se que as MLPs, embora
muito competentes, nao permitem analisar como o problema é resolvido. Em outras palavras,
os algoritmos conseguem de fato resolver o problema, mas a solugao em si é praticamente
uma caixa-preta. Nesse contexto, a proposta das redes de Kolmogorov-Arnold (Kolmogorov-
Arnold Network — KAN) [11] surge como uma tentativa de entender melhor como as redes

neurais conseguem resolver problemas.

1.1 Objetivos

Os objetivos principais estabelecidos neste projeto de pesquisa sao:

1. Realizar um estudo sobre algoritmos de treinamento de redes neurais, em especial as
Redes Kolmogorov-Arnold (KAN);

2. Construir modelos com KAN para verificar seu desempenho em problemas de regressao

e classificacao binaria;
3. Estabelecer comparacoes entre as redes MLP e as KANs;
4. Verificar alternativas para além de MLP e KAN;

5. Redigir um relatério final que exponha a metodologia, as técnicas estudadas e os resul-
tados das andlises comparativas que possa ser util a futuros pesquisadores do grupo.

1.2 Cronograma de Atividades

Neste projeto de IC, pretende-se seguir as seguintes etapas:

1. Realizar um estudo de redes neurais aplicadas a classificacao. Inicialmente, pretende-se
considerar um exemplo simples: o problema das meias-luas. Eventualmente, problemas
mais complexos serao considerados. Neste item, pretende-se estudar as redes e os

ajustes de seus hiperparametros;

2. Estudar a KAN proposta em [11];

3. Implementar a KAN e a MLP com o backpropagation convencional [6] ou otimizador
Adam [5] e aplicar aos problemas de classificacao do Item 1 ou outros mais comple-
xo0s. A comparacao deve levar em conta o desempenho em termos de métricas de
classificagao, como acuracia, por exemplo. Deve-se considerar também o custo compu-

tacional das solucoes;
4. Buscar outras solucoes propostas para melhorar o desempenho do backpropagation;

5. Redigir um relatério final que exponha a metodologia, as técnicas estudadas e os resul-

tados das analises comparativas, que possa ser util a futuros pesquisadores do grupo.

O cronograma de atividades esta mostrado na Tabela 1.

Tabela 1: Cronograma de atividades.
Periodo Atividades

Setembro de 2024 a Dezembro de 2024 | Etapa 1
Novembro de 2024 a Fevereiro de 2025 | Etapa 2

Marco de 2025 a Maio de 2025 Etapa 3
Junho de 2025 a Agosto de 2025 Etapa 4
Agosto de 2025 Etapa 5

2 Fundamentos Tedricos

Esta secao apresenta a construcao das redes neurais artificiais, abordando sua evolugao desde
os modelos iniciais até os avancos que permitiram seu uso eficiente em aprendizado profundo.
Inicialmente, é introduzido o Perceptron de Rosenblatt, modelo pioneiro que estabeleceu
os fundamentos do aprendizado supervisionado. Em seguida, discute-se a generalizacao
desse conceito por meio da rede MLP e a necessidade de um algoritmo eficiente para seu
treinamento, levando a introducao da retropropagacao. Também ¢é abordado o Teorema da
Aproximacao Universal, que formaliza a capacidade das redes neurais de representar funcoes
arbitrarias. Por fim, é apresentado o otimizador Adam, amplamente utilizado para ajustar

os parametros do modelo de forma eficiente.

2.1 O Perceptron de Rosenblatt

O perceptron de Rosenblatt, desenvolvido por Frank Rosenblatt em 1958 [14], é um dos
primeiros modelos de neuronio e representa um marco significativo no desenvolvimento da
inteligéncia artificial [6]. Este modelo é um algoritmo de aprendizado supervisionado vol-

tado para a classificacao bindria, inspirado no funcionamento dos neuronios bioldgicos no

processamento de informagoes. O perceptron é capaz de aprender a classificar entradas em
duas categorias distintas com base em exemplos previamente rotulados, demonstrando uma
capacidade notéavel de aprendizado e generalizacao [14].

O perceptron é composto pelos seguintes elementos:

e Um vetor de entrada definido como x = [x5 -+ z,|7, em que cada componente do

vetor representa uma caracteristica do problema;
e Um viés (bias), denotado por b;

e Um vetor de pesos w = [w; wy -+ wy]?, que multiplica as respectivas componentes da

entrada;
e Uma funcao de ativacao, que é aplicada a soma ponderada das entradas somada ao
Viés.

A fungao de ativagao utilizada no modelo original é a func¢ao degrau (u), definida como

u(z) = 1, sez>0 (1)

0, sez<0.

A Figura 1 apresenta uma ilustracao da estrutura do perceptron de Rosenblatt.

>y

Figura 1: Estrutura do perceptron de Rosenblatt.
A saida do perceptron pode ser expressa matematicamente como
y = u(x"w+b). (2)

6

Apesar de sua simplicidade, o perceptron apresenta uma limitacao fundamental: ele sé
consegue resolver problemas linearmente separaveis, ou seja, aqueles em que os exemplos das
duas classes podem ser separados por uma linha (em duas dimensdes), um plano (em trés
dimensoes) ou um hiperplano em espagos de maior dimensao [6]. Um exemplo cldssico de
problema nao linearmente separavel é o problema da funcao XOR, que nao pode ser resolvido
por um perceptron simples [6]. Essa limitagao levou ao desenvolvimento de arquiteturas mais
complexas, como a organizacao do perceptron em varias camadas, dando origem a rede MLP.

A relevancia do perceptron de Rosenblatt esta no fato de que ele estabeleceu as bases para
o aprendizado em redes neurais, introduzindo conceitos fundamentais como a atualizagao de
pesos baseada no erro calculado a partir da comparacao da saida da rede com um rétulo
ou sinal desejado, um principio que ainda ¢ utilizado em modelos modernos de aprendizado
profundo [2,6].

2.2 A rede MLP

A rede MLP organiza os neuronios em multiplas camadas. As camadas que aparecem entre
a de entrada e a de saida sao chamadas de camadas ocultas. Isso permite que a rede aprenda
representagoes internas mais ricas e descubra padroes complexos nos dados [6].

A estrutura de uma MLP, ilustrada na Figura 2, consiste em trés partes principais [6]:

e Camada de entrada: recebe os dados iniciais e os repassa para os neuronios da

primeira camada oculta;

e Camadas ocultas: realizam transformacoes sucessivas nos dados, permitindo que a

rede aprenda relacoes nao triviais;

e Camada de saida: gera a resposta final da rede, que pode representar categorias (em

um problema de classificagdo) ou valores continuos (em uma tarefa de regressao).

Entrada Camadas Ocultas Camada de Saida

(01

— Y2

y?l’l

Figura 2: Estrutura da MLP.

Matematicamente, uma MLP com L camadas pode ser descrita como uma sequéncia de
transformacoes aplicadas sobre a entrada x. Define-se

a0 = x,

em que a® é simplesmente o vetor de entrada, e a saida final da rede é dada por

al =y,

em quey = [y; yo -+ Ym|! representa a predigao feita pelo modelo e m é o nimero de
saidas da rede.
Cada camada [contém N; neurdnios e realiza duas operagoes principais:

1. Transformacao linear: os valores da camada anterior al~Y sdo combinados linear-

mente por meio de uma matriz de pesos W® e um vetor de viés b
u? = Whal-1 4 pO (3)
em que

, . . ! . .
o W ¢ RNixNie1 6 3 matriz de pesos, cujos elementos ng) determinam a conexao
entre o neuronio j da camada [— 1 e o neuronio ¢ da camada [;
e b € RM é o vetor de vieses:
e u € RM representa o vetor antes da funcao nao linear.

2. Aplicacao da funcao de ativagao: o vetor u’) passa por uma funcio g, que introduz

nao linearidade ao modelo
al) = g(u). (4)

8

Este processo denominado propagacao direta é repetido camada apds camada até que a
saida all) seja obtida. A Figura 3 exemplifica como se ddo as relacoes em uma propagacao
direta.

Figura 3: Exemplo de propagacao direta para uma rede MLP com uma camada de entrada,
uma camada oculta com dois neuronios e uma camada de saida com um neuronio.

A funcao de ativacdao g tem um papel fundamental no aprendizado do modelo, pois
é responsavel por introduzir nao linearidade & rede neural [9]. No perceptron original, a
ativacao era baseada em uma funcao degrau, onde um neuronio era ativado apenas se a
soma ponderada das entradas superasse um certo limiar. No entanto, a derivada da funcao
degrau é igual a zero, exceto na origem, onde nao é diferenciavel. Para resolver esse problema,
a MLP utiliza outras fungoes de ativacao que sao diferenciaveis e com derivada diferente de

zero. As fungoes de ativagao mais utilizadas sao:

1

Si ide: R
igmoide: g(u) e
1 . —U

Tangente Hiperbdlica: g¢(u) = tanh(u) = H—e_,
6 u

ReLU: g(u) = max(0,u).

A Figura 4 apresenta os respectivos graficos e derivadas dessas fungoes. A sigmoide e a
tangente hiperbdlica sao fungoes suaves e produzem saidas dentro de um intervalo limitado,
o que pode ser 1til para normalizar os valores ao longo da rede. Ja a ReLU (Rectified Linear
Unit) é amplamente utilizada devido a sua simplicidade computacional e & sua capacidade
de manter a ativagao de neuronios sem que os valores fiquem restritos a um intervalo fixo.

O fato da ReLu nao ter derivada em u = 0 nao causa problema, bastando considerar o valor
da derivada nesse ponto igual a 0 ou 1 de forma arbitraria.

Fungéo Sigmoid Derivada da Funcao Sigmoid
1.0f 0.25}
0.8t 0.20
0.61 0.15}
0.4r 0.10}
0.2r 0.05}
0.0p , . ‘ . . 0.00L ‘ . . . ‘
—4 -2 0 2 4 —4 -2 0 2 4
Fungao Tangente Hiperbdlica Derivada da Funcao Tangente Hiperbdlica
1.00f 1.0f
0.75}
0.8}
0.50
0.25} 0.6t
0.00}
—0.25} 041
-0.50}
0.2}
-0.75}
-1.00} , . ‘ . . 0.0f : . . , -
-4 -2 0 2 4 -4 -2 0 2 4
Funcéo RelLU Derivada da Funcao RelLU
5 1.0
4 0.8
3 0.6
2 0.4
1 0.2
0 0.0 :
-4 -2 0 2 4 -4 -2 0 2 4

Figura 4: Gréficos das Principais Fungoes de Ativagao.

A rede MLP é amplamente utilizada em aprendizado de méquina por sua capacidade de
representar relagoes complexas entre os dados. Sua estrutura permite que seja aplicada a
uma ampla variedade de problemas, desde reconhecimento de padroes até previsao de séries
temporais. Entretanto, sua expressividade tedrica depende de resultados fundamentais sobre
redes neurais, que sao abordados na préxima secao. Além disso, sua implementacao pratica
exige um treinamento eficiente, o que serd estudado em detalhes ao se discutir o algoritmo

de backpropagation [15].

10

2.3 Treinamento da MLP

O treinamento da MLP consiste no ajuste dos pesos W e dos vieses b) de modo que a
rede consiga aprender a tarefa desejada. Esse ajuste é realizado minimizando uma funcao
de custo por meio do algoritmo de retropropagacao (backpropagation) [6,15].

A funcao custo, ou funcao de perda, mede o erro da rede ao comparar suas previsoes com
os valores reais esperados [6]. Durante o treinamento, busca-se minimizar essa fungao para

melhorar o desempenho do modelo. As fungoes custo mais comuns sao:

e Erro Quadratico Médio (MSE - Mean Squared Error), utilizado principalmente

em problemas de regressao, é definido como

K
1 . .
J— (i) _)2 5
5K ;1 Iy =y (5)
em que

— K representa o nimero de amostras do conjunto de treinamento;

— y@ & o vetor de saida esperado para a i-ésima amostra, ou seja, o valor real

(desejado) associado a i-ésima entrada fornecida a rede.

— v é o vetor de saida previsto pela rede para a mesma amostra i, ou seja, o valor

retornado pelo modelo apds a propagacao direta.

Essa funcao mede a diferenca entre as previsoes do modelo e os valores reais, pe-

nalizando erros quadraticos. O fator % ¢ introduzido por conveniéncia matematica,

facilitando a derivacao no calculo do gradiente.

e Entropia Cruzada, amplamente empregada em problemas de classificacao, é definida

K c
1 @) 10 ()
J = % E E y; logy; . (6)

i=1 j=1

CcOo1mo

onde:

— ¢ representa o nimero total de classes possiveis no problema de classificacao;

— j@ ¢ um valor binario que assume 1 se a i-ésima amostra pertence a classe j e 0
caso contrério (codificacao one-hot);
— g)]@ é a probabilidade prevista pelo modelo de que a amostra i pertenca a classe

7, obtida a partir da camada de saida da rede.

Essa funcdo mede a similaridade entre as distribuicoes de y® e y@ incentivando
o modelo a atribuir probabilidades altas as classes corretas e penalizando previsoes
erradas.

11

Para minimizar J, aplica-se o gradiente descendente, um método iterativo que ajusta os
pesos e vieses na dire¢ao oposta ao gradiente da funcao de custo [6]. A atualiza¢do ocorre
da seguinte forma

01 oo 9T 7
Towdr T T g
i %

em que 7 representa a taxa de aprendizado. O calculo das derivadas é feito usando a regra

0 0
W'« Wi —

da cadeia. Uma vez calculadas as derivadas, ocorre a propagacao da camada de saida até a
camada de entrada. Mais detalhes sobre o algoritmos podem ser encontrados em [2, 6].

No contexto do treinamento de redes neurais, define-se uma época como um ciclo com-
pleto no qual a rede processa todas as amostras do conjunto de dados uma vez. Durante uma
época, cada exemplo do conjunto de treinamento é passado pela rede, os erros sao calculados
e os pesos sao atualizados. O treinamento geralmente ocorre por multiplas épocas até que a
funcao custo seja minimizada ou um critério de parada seja atendido.

O algoritmo de treinamento pode ser descrito da seguinte maneira:

1. Inicializar os pesos W e vieses b¥) com valores aleatérios pequenos.
2. Para cada época:

Para cada amostra do conjunto de dados no modo de treinamento estocastico:

i. Executar a propagacio direta para calcular as ativacoes a);

ii. Utilizar a funcao de custo para medir o erro da rede;

. 0. aJ .
iii. Calcular os gradientes - € 0753

iv. Atualizar os pesos e vieses usando a Equacao (7).

O algoritmo de retropropagacao tem a tendéncia de ficar parado em minimos locais, o que
dificultou o uso de redes profundas com muitas camadas ocultas até a década de 2010. Para
contornar esse problema foram propstas modificagoes no algoritmo, levando ao otimizador
Adam (Adaptive Moment Estimation) [5,7].

O otimizador Adam é um dos algoritmos de otimizacao mais utilizados atualamente
no treinamento de redes MLP. Em vez do gradiente convencional, ele utiliza uma média
dos gradientes passados utilizando uma janela exponencial com fator de esquecimento [;.
Além disso, ele calcula uma média quadratica dos gradientes passados, utilizando outra
janela exponencial com fator de esquecimento 5. Essa média quadratica é utilizada para
normalizar o gradiente médio. Dessa forma, o Adam ajusta automaticamente a taxa de
aprendizado para cada parametro individualmente, permitindo atualizagoes mais eficientes
e estaveis em redes neurais profundas [5, 7].

12

2.4 Teorema da Aproximacao Universal

O Teorema da Aproximacao Universal estabelece que uma rede neural com uma tunica ca-
mada oculta e um nimero suficiente de neuronios pode aproximar qualquer fun¢ao continua
definida em um conjunto compacto.

Formalmente, temos [4,6]:
Seja () uma fungdo continua, ndo constante, limitada e monotonica crescente. Denotamos
por Iy, o hipercubo unitdrio [0,1]N° de dimensdo Ny, e por C(In,) o espaco das funcoes
continuas sobre esse dominio. Entdo, para qualquer f € C(Iy,) e € > 0, existe um inteiro

Ny e coeficientes reais o, b; e wij, comi=1,..., Ny ej=1,..., Ny, tais que a funcdao

N1 No
F(Zlfl,...,iL'NO): E (6774 E wz-jxj+bi
=1 7j=1

satisfaz a desigualdade
sup |F(z) — f(z)| <e.

zel No
Isso significa que redes neurais com uma tnica camada oculta sao aproximadores univer-
sais, podendo representar qualquer funcao continua sobre um dominio compacto. No entanto,
o teorema nao especifica 0 nimero minimo de neuronios necessario para uma aproximacao
eficiente, nem como determinar os pesos e bias 6timos. Na pratica, redes mais profundas
costumam ser preferidas, pois podem alcancar a mesma precisao com menos parametros e

maior eficiéncia computacional.

3 Rede Kolmogorov—Arnold

Nesta secao, é apresentada a Kolmogorov-Arnold Network (KAN), uma abordagem base-
ada no teorema de Kolmogorov—Arnold, que garante a possibilidade de representar qualquer
funcao continua como uma composicao de funcoes univariadas. Inicialmente, sao expostos
o teorema fundamental e sua relevancia para a modelagem de fungoes, seguidos de uma
introducao ao conceito de B-splines, que desempenham um papel essencial na construcao
da KAN ao permitir aproximacoes suaves e flexiveis de fungoes. Em seguida, é desenvol-
vida uma construcao intuitiva da KAN, explicando sua estrutura e funcionamento de forma
acessivel, com destaque para as diferencas em relagao as redes neurais tradicionais. Por fim,
é apresentada a formalizagao matematica da KAN, com a definicao das expressoes analiticas

envolvidas.

3.1 Teorema da Representacao de Kolmogorov—Arnold

O Teorema da Representacao de Kolmogorov—Arnold, estabelecido por Andrey Kolmogorov
e posteriormente refinado por Vladimir Arnold, afirma que qualquer fungao multivariada

13

continua pode ser expressa como uma composicao finita de fungoes continuas de uma tnica
varidvel e a operacao de adicao [8,11].

Em termos formais, se f : [0,1]" — R é uma fungao continua definida em um hiperpa-
ralelogramo [0,1]", entao existe um conjunto de funcées continuas univariadas {¢,,} e {®,}

tais que f pode ser representada como [8,11]

flen,m, . w,) =) @, (Z ¢q,p<xp)) . (8)

Esse resultado é notavel porque demonstra que qualquer funcao multivariada pode ser
reduzida a combinagoes de func¢oes de uma tnica variavel, o que tem implicacoes profundas
em diversas areas, destacando-se o aprendizado de maquina. Uma motivacao central para
o teorema ¢é a reducao da complexidade no calculo de fungoes multivariadas. Em muitas
aplicagoes, trabalhar diretamente com f(xq,xs,...,z,) pode ser computacionalmente cus-
toso, enquanto sua representacao em termos de fungoes de varidvel Unica permite que se
usem algoritmos mais eficientes.

Para ilustrar as vantagens dessa representacao, consideremos a seguinte funcao multivari-
ada f(x1,22) = 2x129. Sem a representagao de Kolmogorov—Arnold, seria necessario calcular
explicitamente a interacao entre x; e 5. No entanto, aplicando a decomposicao do teorema,

podemos reescreveé-la como

f(‘rth) — 21’1%2 = (xl + l’2>2 _ l’% i x;

= Oo(¢o,1(71) + do2(w2)) + P1(P11(21)) + Po(P22(22)), 9)
em que definimos
¢0,1(5€) =, ¢0,2(5U) =, <Z51,1(l‘) =7,
¢172(ZE) = 07 ¢2,1(x) = 07 ¢2,2(‘T) =7,
y(z) = 22, ®y(z) = —2?, ®y(z) = —2°.

Essa representacao mostra que a interagao entre as variaveis x; e xy foi convertida em
uma soma seguida de uma transformacao univariada. A Figura 5 ilustra um diagrama de
blocos levando-se em conta a representacao de (9). E possivel observar a capacidade dessa
representacao ja que ela permite estabelecer uma estrutura simples de unidades funcionais.

Essa caracteristica tem um 6timo potencial para o uso em redes neurais [11].

14

Figura 5: Ilustracao esquematica de uma funcao f(x1,r2) = 2x1xs representada pelo teorema
de Kolmogorov—Arnold.

No entanto, embora o teorema garanta que existam func¢oes univariadas que permitem
a representacao, ele nao da indicios de como obteé-las e também nao fornece o nimero de
fungoes necesséarias. Além disso, mesmo que tais fung¢oes existam, nao ha garantia nenhuma
de que elas tenham uma expressao analitica. Portanto, sua viabilidade em aplicagoes depende

de métodos adicionais para contornar essas limitagoes [11].

3.2 B-splines

B-splines sao funcoes de base polinomiais definidas em intervalos especificos, denominados
intervalos de né e sao usadas para formar curvas continuas de maneira suave. Elas sao
construidas a partir de polinomios de baixo grau e, por meio de combinacoes lineares, podem

representar curvas complexas [16].

15

Uma curva B-splines de grau k é gerada pela combinacao linear das fungoes de base B; i,

ou seja,
n

C(z) = ZCz‘ - Bi (), (10)

i=0
em que ¢; sao coeficientes constantes, também chamados pontos de controle. As funcoes de
base B; ;(x) sao definidas com a férmula de Cox-deBoor, dada por [11,16]

T —1; livk+1 — @

Bz’k(l’) = Bi,k_l(x) +

P Fover — - Bip1p-1(2), (11)
em que t; é o i-ésimo né6 (knot).

Devido ao carater recursivo da Equacdo (11) em que a funcdo base B;x(z) de grau k
utiliza a fungao base B, ;_1(x) de grau k — 1, é necessério definir a funcao base de grau 0,
ou seja,

By — I, set; <x <t (12)
0, caso contrario.

Para fins de ilustragao, considere a fungao f(z) = sin(x) no intervalo [0, 27]. Ela pode ser
representada por uma curva B-spline com grau k = 3 e 5 nds. A representacao do dominio
[0, 27] pode ser feita definindo os nés como pontos uniformemente espacados nesse intervalo.

Uma vez que os nos sao selecionados, as fungoes base sao entao definidas por (11). Nesse
exemplo, as fungoes resultantes sao apresentadas na Figura 6. Para simplificar a notacao,
como k estd definido, utiliza-se B; para se referir a funcao base B, j. B importante destacar
que a forma das curvas independe do intervalo escolhido, isto é, para um grau k = 3,
quaisquer cinco pontos uniformemente espagados, tomados como nés, resultarao em fungoes

com estas mesmas geometrias.

16

Funcdes Base de B-spline

1.0
0.5
= 001
s3]
_0‘5 -
_10 -
0 1 2 3 4
0.6
0.5
0.4
= 031
m
0.2
0.1
0.0
0 1 2 3 4
0.5
0.4
031
=
o
0.2
0.1
0.0
0 1 2 3 4
0.6
0.5
0.4
= 0.3
m
0.2 1
0.1
0.0
0 1 2 3 4
1.0 1
0.5 1 %
E 0.0
[sa]
_0‘5 -
_1.0 -

o
[
8]
w
EY

Figura 6: Fungoes Base de B-spline.
17

Uma vez determinadas as funcoes base, deve-se encontrar os coeficientes para que a
B-spline aproxime a fungao desejada conforme a Equacao (10), ou seja,

co- Bo(x) +c1- Bi(x) + co- Bo(x) + ¢35 - Bs(x) + ¢4 - By(z) =~ sin(x). (13)
Utilizando o método dos minimos quadrados, chega-se aos coeficientes
Co = O, 1 = 1,778, Co = 0, C3 = —1,778 e c4=0.

Na Figura 7, sao mostradas as curvas das fungdes base e da aproximacao (13). Na Figura 8
é mostrada a curva aproximada pela B-spline e a curva da funcgao original. Verifica-se que
a aproximagao da B-spline coincide com os valores da funcao sin(z) nos nds e aproxima os
valores do sin(z) em outros pontos do intervalo.

=== Combinacao Linear

1.0_ ,’--H"\
rd "\‘ — cpBalx)
'
\\ c1B811(x)
/ 5
“ — aBalx)
0.5 \
f \ — 3B3lx)
‘ ‘\ — cgBalX)
\
\
1 \
= 0.0 1 ¥

_{}5 .

_l.D -

Figura 7: Resultado da Combinacao Linear das Funcgoes Base de Spline.

18

B-Spline clbico para sin(x)

1.0 1 — sin(x)
——- B-spline
@ Nos
0.5 1
= 0.0 1
_05 -
_J_D -

Figura 8: Comparacao entre a Curva B-Spline resultante e a senoide original.

Essa capacidade de aproximacao por meio de uma combinacao linear de fungoes base
univariadas torna as funcoes B-spline excelentes candidatas no Teorema da Representacao

de Kolmogorov—Arnold para aproximar funcoes.

3.3 Construcao Intuitiva da KAN

A KAN foi proposta como uma alternativa ao perceptron multicamada, utilizando como
inspiragao o teorema da Representacao de Kolmogorov—Arnold em vez do teorema da apro-
ximagao universal [11].

Para entender a KAN, imagine que a funcao f(x1,x2) possa ser decomposta pelo Teorema

da Representagao de Kolmogorov—Arnold em fungoes univariadas da seguinte forma

f(z1,22) = Po(Po,1(71) + Po2(22)). (14)

Repare que o teorema nao fornece ferramentas para encontrar as funcoes ®g, ¢o.1 € ¢ 2, sendo
entao o objetivo da KAN descobrir como determina-las.

A Figura 9 ilustra a representacao grafica de um modelo de KAN para a Equagao (14).
A soma de sinais é definida como neuronio e as fungoes ®g, ¢o1 € ¢o2 sao todas designadas

como funcgoes de ativacao.

19

flay, @) Tl x2)

Dy(-) / Fungao de Ativagio

Neuronio

bo.1(+) dp,2(+) / / Funcao de Ativacao
J

1)

Figura 9: Representacao de uma KAN.

Para lidar com o problema da representacao das funcgoes, a KAN propoe que cada funcao
de ativacao seja aproximada por um B-spline. Portanto, cada funcao de ativacao vai ser
representada por um conjunto de coeficientes. E importante garantir que as fungoes base
sejam iguais para todas as fungoes de ativagao. Para isso, é entao necessario definir o niimero
de nds e o grau das fungoes base como hiperparametros [11]. Para exemplificar, a Figura 10

ilustra como cada funcao é composta pela combinacao linear das fungoes base fixas.

20

flzy,29)

@)
{:.]/I:Jk\(_.z
‘j ’_ m Fungbps base de B-spline

g
i
;
s
/

X _jt apssete | [N]]

\-_-‘ | | FungBes base de B-spiine

T L9

Figura 10: Estrutura das Funcoes de Ativacao.

A utilizacao de B-splines para aproximar funcgoes de ativacao transforma o problema em
uma questao de determinacao dos coeficientes que compoem a combinagao linear das funcoes
base. Para estimar esses coeficientes, empregam-se algoritmos de treinamento similares aos
utilizados em redes MLP.

Seguindo o mesmo raciocinio apresentado até aqui e ampliando a abordagem com algumas
generalizacgoes, é possivel obter expressoes mais complexas que representam redes profundas,
conforme exemplificado na Figura 11.

21

Figura 11: Exemplo de Rede KAN profunda.

A KAN se assemelha a MLP, pois ambas possuem uma estrutura de camadas densamente
conectadas, onde todos os neurénios de uma camada estao ligados aos neuronios das camadas
subsequentes. A principal diferenca estd na forma como a ativacao de cada neurénio é
calculada: na MLP, a entrada é ponderada por pesos ajustaveis e a saida passa por uma
funcao de ativacao fixa, enquanto na KAN, cada componente da entrada é processado por
uma funcgao de ativagao ajustavel baseada em B-splines, e a saida é obtida por uma soma

simples dessas transformacoes, conforme ilustrado na Figura 12.

22

/’ Fung3o de
_ ativacio fixa
(+) +

Pesos FungBes de
0 @? @ ajustéveis / / ativacdo ajustivels
1 I o

MLP

Figura 12: Comparagao entre as ativagoes de uma MLP e de uma KAN.

3.4 Propagacao e Treinamento da KAN

O processo de treinamento da Kolmogorov-Arnold Network (KAN) baseia-se na propagagao
direta da entrada até a saida e na retropropagacao do erro para ajuste dos parametros. Os
procedimentos sao equivalentes aos vistos para uma MLP tradicional, mas adaptado para
fazer o ajuste dos coeficientes de B-spline.

A propagacao direta na KAN ocorre conforme os seguintes passos:

I

1. A rede recebe como entrada um vetor © = [z1 22 ... ,] ;

2. Antes de calcular as ativagoes da camada seguinte, os dominios das B-splines associadas
as fungoes de ativagao devem ser ajustados. Isso é feito modificando o primeiro ou o
ultimo no6 da B-spline, caso a entrada esteja fora do intervalo original, garantindo que
a forma da curva seja preservada;

3. As ativagoes dos neurénios das camadas ocultas e da camada de saida sdo computadas

por
ng

Teerg = Geai(Tes), (15)
=1

em que Zy1,; representa a ativacao do j-ésimo neuronio da camada £+ 1, x; ¢ a saida
do i-ésimo neuronio da camada ¢, e ¢y, ; ¢ a fungao de ativagao conectando o neurdnio
1 da camada ¢ ao neuronio j da camada ¢ 4+ 1. Para a camada de entrada, temos que

Zo,; = Ty,

23

4. As funcoes de ativacao da KAN sao compostas por uma combinacao linear entre a
fungao b(z) e uma B-spline, ou seja,

Geij(x) = weij - [b(x) + spliney ;(z)] (16)

em que usualmente b(x) é a funcao SiLU (sigmoid linear unit) definida como

X

"=

(17)
e spline,; ;(x) é uma B-spline de ordem k = 3. E importante notar que para k = 1,
as funcgoes base da B-spline sao compostas por segmentos de retas, o que resulta em
pontos nao diferencidveis. Portanto, para utilizar o algoritmo de backpropagation é
necessario que k > 1.

Embora, na construcao tedrica da KAN, as funcgoes de ativacao sejam representadas
exclusivamente por B-splines, na implementacao pratica, hé termos adicionais, como evi-
denciado em (16). Essa modificagao se faz necessaria pois, na pratica, o treinamento é mais
eficiente quando os coeficientes das B-splines sao inicializados segundo uma distribuicao de
média nula. No entanto, essa escolha de inicializacao faz com que, nas primeiras iteracoes
do algoritmo de treinamento, as B-splines resultem em valores nulos independentemente da
entrada.

Para mitigar esse efeito e garantir que as ativacoes nao sejam completamente nulas no
inicio do treinamento, adicionam-se termos auxiliares, como o peso w e a funcao b(z), per-
mitindo uma evolucao mais estavel do aprendizado.

O treinamento da KAN envolve a minimizacao de uma funcao de custo J utilizando o
algoritmo de retropropagacao do erro. O procedimento segue os seguintes passos:

1. Para cada amostra do conjunto de treinamento, a saida é calculada por meio da pro-
pagacao direta;

2. O erro ¢ calculado na camada de saida e propagado para as camadas anteriores por
meio do calculo dos gradientes;

3. Os pesos e coeficientes das B-splines sao atualizados utilizando o gradiente descendente,

ou seja,
oJ
Weij ¢ Weij — 1 Dovps (18)
2y
5) 9.
Crij 05 T 9 (k) ° (19)
Crij
em que cy? ; representa o k-ésimo coeficiente da B-spline associado a ¢y, ;. O fator n

¢ a taxa de aprendizado do otimizador.

24

O processo de treinamento iterativo permite ajustar os parametros da rede para mini-
mizar a fungao de custo, garantindo que a KAN aprenda a mapear corretamente os padroes
dos dados de treinamento.

3.5 Extracao da Expressao Simbdlica

Apo6s o treinamento da KAN, com as funcgoes de ativacao ajustadas para resolver o problema
desejado, torna-se relevante extrair uma expressao simbodlica que represente adequadamente
a funcao aprendida. Para isso, pode-se empregar o método dos minimos quadrados nao
linear, apresentado no Apéndice A. Assim, as fungoes de ativagdo podem ser descritas por

meio de fungoes do tipo
Geij(1) = geij(x) = a+b- flc-x+d), (20)

em que a, b, ¢ e d sao parametros a serem ajustados pelo método dos minimos quadrados
e f é uma fungao conhecida, como seno (sin), cosseno (cos), tangente hiperbdlica (tanh),
logaritmo (log), polindmios, entre outras. Na KAN, pode-se tanto definir a priori a fungao
f quanto utilizar diferentes fungoes e selecionéd-la baseado em uma funcao custo.

Por fim, a saida da rede é expressa em termos da composicao das fungoes g, permitindo
a traducao da solucao encontrada pela KAN em uma expressao simbolica interpretavel.

3.6 Extensao de No6s em Redes KAN

Uma das principais vantagens das redes KAN é a possibilidade de ajustar a resolugao das
funcoes de ativagao. Como essas fungoes sao modeladas por splines, é possivel torna-las mais
precisas aumentando o nimero de nés utilizados. Esse processo é chamado de extensao de
nos.

Em termos simples, a ideia é comegar com poucas subdivisoes nos dominios das fungoes
— ou seja, com um numero pequeno de nés — e, conforme o treinamento avanca, adicionar
mais nés para capturar melhor os detalhes da funcdao que estd sendo aprendida. A cada
extensao, a spline se torna mais flexivel, permitindo que a rede represente fungoes mais
complexas com maior fidelidade.

A principal vantagem dessa abordagem é que nao é necessério reiniciar o treinamento
com uma rede maior. Em vez disso, utiliza-se o que ja foi aprendido com poucos néds e
expande-se a capacidade expressiva das funcoes de ativagao. Os novos coeficientes da spline
refinada podem ser inicializados para se aproximarem da func¢ao anterior, normalmente por
meio de um ajuste de minimos quadrados.

Esse processo pode ser repetido ao longo do treinamento, permitindo que a rede evolua
gradualmente de uma forma simples e eficiente para uma representacao mais precisa. Dessa
forma, a extensao de nds oferece um caminho pratico para melhorar a acuracia da rede sem

comprometer sua estabilidade ou interpretabilidade.

25

3.7 Esparsificacao e Poda em Redes KAN

Para tornar as redes KAN mais interpretdaveis e eficientes, sao introduzidas técnicas de
simplificacao baseadas em esparsificacao e poda. Diferente das MLPs, que calculam uma
combinacao linear, somam um bias e utilizam uma funcao de ativagao em cada neuronio,
as KANs substituem esse calculo por fungoes de ativacao univariadas parametrizadas por
splines. Isso exige uma adaptacao das técnicas tradicionais de regularizacgao.

A esparsificacao visa induzir esparsidade nas conexdes da rede, favorecendo representacoes

mais simples. Define-se a norma ¢; de uma fungao de ativagao ¢,;; como a média da mag-

nitude das ativagoes sobre um conjunto de entrada xy,xs, -+ ,Tn,, Ou seja
L
|Gl = N, 2 |G, (s)]. (21)

Para uma camada ¢, representada como ®,, com n;, entradas e nq, saidas, a norma /£y

total é dada pela soma das normas das funcoes de ativacao dessa camada, ou seja

Min Nout

Dy EZZ\@,ML (22)

i=1 j=1

Além disso, introduz-se uma regularizacao por entropia que penaliza distribui¢ées unifor-

mes entre as ativacoes, incentivando que apenas algumas conexoes sejam relevantes, definida

SRS |¢€zj|l ‘¢Zl]‘1
@ e 29 29, . 2
0= 2 Tl -

=1 j5=1

CcOo1mo

A funcao de custo total utilizada no treinamento da rede é composta pela soma do custo

preditivo com os termos de regularizacao por esparsidade e entropia

L—1 L—1
Jtotal = Jpred + A M1 Z ‘(I)Eyl + W2 Z S((D€>) (24>
=0 £=0

em que Jpeq representa o custo preditivo (por exemplo, calculado com o MSE ou entropia
cruzada), A controla a intensidade da regularizagao, e os pesos ji; e po ajustam a importancia
relativa dos termos de esparsificacdo e entropia, respectivamente. Em [11], considerou-se
1 = po = 1, ja& que esses pesos parecem nao influenciar no desempenho. No entanto, o
valor do parametro \ é essencial para controlar o efeito da regularizacao. Se A for escolhido
com um valor muito pequeno, a regularizacao nao tem efeito. Se for escolhido com um valor
muito grande, a saida da rede nao converge adequadamente. Em geral, considera-se A no
intervalo [0,1,0,9].

Apés o treinamento com esparsificacao, é possivel realizar a poda de neuronios considera-
dos irrelevantes. Para isso, definem-se pontuacoes de entrada e de saida para cada neuronio

26

7 na camada {, respectivamente, como
Iy; = m}?X ‘¢£fl,k,i’1 e Oy = mkaX ‘¢€+1,i,k‘1- (25)

Um neuronio é mantido na rede somente se ambas as pontuagoes superarem um limiar 6,
geralmente definido como 1072. Caso contrério, o neurdnio é removido, resultando em uma
arquitetura mais compacta e com uma interpretabilidade mais simples.

Essas técnicas permitem a descoberta automatica de arquiteturas KAN otimizadas para o

problema em questao, oferecendo maior clareza e controle sobre o comportamento do modelo.

4 Aplicacao da KAN em Problemas de Classificacao e

Regressao

Nesta secao, a KAN é avaliada em diferentes contextos, sendo seu desempenho comparado
ao de uma MLP. Inicialmente, considera-se o problema cldssico de classificacao binaria das
meias-luas [6], a fim de verificar se a rede é capaz nao apenas de classificar corretamente os
dados, mas também de deduzir uma expressao analitica equivalente a sua estrutura interna.

Em seguida, sao conduzidos experimentos em problemas de regressao simples, com o
objetivo de analisar a relacao entre as expressoes resultantes da KAN e as funcoes reais que
elas procuram aproximar, investigando potenciais vantagens quanto a interpretabilidade e a
fidelidade da representacao.

Por fim, sao explorados dois problemas de aplicacao pratica: um de classificacao binaria
no setor financeiro e outro de classificacao multiclasse, utilizando a base de dados MNIST.

4.1 Problema das Meias-Luas

Um problema classico abordado em aprendizado de maquina é o problema de classifica¢ao
das meias-luas [6]. Esse problema consiste em um conjunto de dados, gerados a partir da
selecao de alguns parametros geométricos que definem a forma das meias-luas, como ilustrado
na Figura 13. O objetivo é gerar uma curva de separacao no plano zy, de modo que cada
metade da lua seja definida como pertencente a uma determinada regiao.

27

Regiao A

g

Regiao B

--__._:
s

Figura 13: Apresentagao do problema das meias-luas.

No problema, sao definidos trés parametros: ry, ro e r3. A partir deles, consideram-
se duas varidveis aleatérias: 6, distribuida no intervalo [0, 7], e p, distribuida no intervalo
[r1 —73/2,m1 +713/2]. Essas varidveis determinam a distribui¢ao dos pontos gerados no plano
xy. Os pontos da Regiao A possuem sinal desejado d = 1, enquanto os pontos da Regiao B
possuem sinal desejado d = —1.

Para verificar a acuracia da KAN no problema das meias-luas com os parametros r; =
2, ro = —0.8 e r3 = 3, considerou-se uma rede na configuracao [2, 1, 1], isto é, 2 entradas, 1
neuronio na camada oculta e 1 saida, com B-splines de ordem k£ = 3 e 6 pontos de n6. Foram
usados 1000 pontos no treinamento e 100 no teste. Além disso, considerou-se o otimizador
Adam com parametros 3; = 0,9 e 55 = 0,99 [5].

A Figura 14 ilustra como a KAN foi capaz de delimitar bem uma fronteira de decisao
que permite obter uma acuracia de 100% para o problema proposto. A KAN resultante do
treinamento para essa fronteira de decisao é apresentada na Figura 15, a partir da qual foi

possivel extrair a seguinte expressao simbdlica equivalente para o problema:

f(ay) = 1,01 tanh (0,7207 sin(0,9983z + 4,954)
40,7207 sin(0,5226y — 0,2717) + 1,646)
+0,000263. (26)

28

Figura 14: Fronteira definida pela rede proposta.

|

J

WL/

| |
X Yy

Figura 15: KAN treinada para o problema das meia-luas.

Para comparar a rede MLP e a KAN, procuramos as mais simples configuragoes de rede
de modo que resolvessem o problema das meias-luas com 100% de acuracia média em uma
sequéncia de 100 testes.

29

As redes selecionadas e treinadas para o comparativo foram: uma MLP com configuragao
[5, 1] e uma KAN com configuragao (2, 1, 1] com B-splines de ordem k = 3 e 6 pontos de
no. Para ambas as redes, o otimizador Adam foi utilizado. A Tabela 2 apresenta o tempo

levado para o treinamento e a quantidade de parametros treinados.

KAN | MLP
Tempo (s) 506,6 | 280,7
Parametros treinados 21 21

Tabela 2: Tabela comparativa entre MLP e KAN.

E importante notar que, embora a KAN tenha utilizado o mesmo niimero de parametros
durante o treinamento, a sua expressao extraida precisa de menos parametros para ser re-

presentada, como visto em (26).

4.2 Problemas de Regressao

Para avaliar a interpretabilidade da rede, foi selecionada e treinada uma KAN com confi-
guracao [2, 1, 1], utilizando B-splines de ordem k = 3 com 7 pontos de né. Uma MLP
com quatro neurdnios na camada tUnica e uma saida foi treinada também para fazer uma
comparagao de desempenho. O treinamento foi realizado com o otimizador Adam em ambas,
configurado com 1 = 0.9 e By = 0.99. Em seguida, foram selecionadas trés fungoes de duas
variaveis cuja representagao de Kolmogorov-Arnold pode ser expressa na forma

f(@y) = oo, (x) + Po2(y))-

A primeira fungao analisada é

filz,y)=x+y, (xy) €][0,1] x[0,1].

Essa funcao pode ser representada na forma proposta com

Oy(z) = x, ¢o1(x) =z, Go2(x) = x.

A Figura 16 ilustra a comparacao entre a representacao exata de Kolmogorov-Arnold e a
KAN treinada, na qual é possivel constatar que os graficos das funcoes de ativacao ajustadas
sao muito proximas as da expressao exata. O modelo resultante, ajustado pelo método dos

minimos quadrados, é expresso como
g1(z,y) = 0.998x + 0.998y + 0.002.

A aproximacao obtida pela rede é bastante precisa, apresentando coeficientes muito proximos
dos valores esperados. O erro é pequeno, indicando que a KAN conseguiu capturar correta-
mente a estrutura linear da funcao proposta.

Os valores de desempenho obtidos foram:

30

e KAN: RMSE = 0.012, R? = 0.985

e MLP (4 neurdnios): RMSE = 0.005, R? = 0.996

f{ff-'|~. y) flx,y)
|

/ e

A s
4
/ // /
rd e

€Zr Yy X Y
Eixpressao Exata KAN Treinada

Figura 16: Comparagao entre a representagao exata da funcao f; e a rede treinada.

A segunda funcao considerada é

folzy) = xy, (z,y) € (0,1] x (0,1].

Essa funcao admite diversas representacoes na forma proposta. Uma possivel escolha é dada
por

Oy(x) = exp(z), ¢o1(x) = In(x), $o2(x) = In(x).

A Figura 17 ilustra a comparacao entre uma possivel representacao de Kolmogorov-Arnold e
a KAN treinada. O modelo ajustado via minimos quadrados nao linear resultou na seguinte

expressao
g2(x,y) = exp(0.765In(0.638x + 0.007) + 0.7651n(0.902y + 0.011) + 3.501).

A aproximacao para essa funcao é razoavelmente boa, mas apresenta um leve desvio nos
coeficientes multiplicativos e aditivos. No entanto, dentro do intervalo considerado, a di-
ferenca é pequena o suficiente para que a funcao da rede ainda capture adequadamente o
comportamento do produto entre as variaveis.

31

Os valores de desempenho foram:

e KAN: RMSE = 0.018, R? = 0.972
e MLP: RMSE = 0.009, R? = 0.989

f(z.y) f(z,y)
| |

xT Yy Xz Y
Expressao [xata KAN Treinada

Figura 17: Comparacao entre uma representacao da funcao f, e a rede treinada.

A terceira funcao analisada é
f3(x,y) = sin(x) + cos(2y), (xy) € [-7,7] X [—m,7].
A representacao de Kolmogorov-Arnold para essa funcao pode ser descrita como
Oy(x) =z, ¢o.1(x) = sin(z), ¢o.2(x) = cos(2x).

A Figura 18 ilustra as funcoes de ativacao da KAN treinada para essa funcao. Utilizando

minimos quadrados nao linear, obteve-se a seguinte expressao aproximada:
g3(x,y) = 1.01sin(1.000x — 0.004) 4+ 1.00sin(2.001y + 1.571) + 2.000.

A aproximacao é muito boa, pois os coeficientes estao extremamente proximos dos valores

exatos esperados. Ha apenas desvios minimos nos coeficientes e deslocamentos, e o compor-

tamento oscilatoério caracteristico da fungao original foi capturado de forma bastante precisa.
Os resultados obtidos para essa funcao indicam a superioridade da KAN:

32

e KAN: RMSE = 0.024, R? = 0.918

e MLP: RMSE = 0.062, R* = 0.895

fla,y) X
| |

/ /

._x""'\.\
'\\-"_-' N W

X Y X Yy
Expressao bxata KAN Treinada

Figura 18: Comparacao entre a representacao da funcao f3 e a rede treinada.

De modo geral, a rede treinada conseguiu capturar bem as trés funcoes, com pequenas
distorcoes nos coeficientes que podem ser explicadas pela aproximacao numeérica e pela es-
trutura da KAN. Essas diferencas sao pequenas o suficiente para garantir que, nos intervalos
analisados, a rede tenha aprendido as estruturas fundamentais das fungoes originais. Além
disso, observou-se que, embora a MLP tenha apresentado desempenho superior nas funcoes
mais simples, a KAN demonstrou vantagem ao lidar com estruturas mais complexas e nao

lineares, evidenciando seu potencial interpretativo.

4.3 Problema de Classificacao Financeira

O Statlog (German Credit Data) é uma base da dados que contém registros de 1000
clientes de uma instituicao bancaria alema, descritos por 20 atributos de natureza categorica
e numérica, que abrangem desde informacgoes pessoais até histérico de crédito e detalhes de
operagoes financeiras. O conjunto de dados faz a distingao de clientes entre bons (d = 1) e
maus pagadores (d = —1).

33

Para garantir equivaléncia no custo computacional, a KAN e a MLP foram configuradas
com arquiteturas distintas, porém comparaveis. A KAN foi estruturada com duas camadas
contendo 2 e 1 neuronios, enquanto a MLP utilizou trés camadas compostas por 20, 13 e 1
neuronio, respectivamente. Na KAN, adotaram-se os parametros k = 3 e grid = 5. Ja na
MLP, empregou-se a funcao de ativacao ReLU nas camadas ocultas e a tangente hiperbdlica
na camada de saida. Ambas as redes foram treinadas com o otimizador Adam (5 = 0,9 e
Ps = 0,999) ao longo de 1000 épocas.

A KAN atingiu uma acurdcia de 68%, enquanto a MLP alcancou 77%. A MLP convergiu
mais rapidamente que a KAN, como pode ser observado na Figura 19. Em termos de custo
computacional, a MLP treinou 707 parametros por 17,3 s, ao passo que a KAN treinou 714
parametros por 33,2 s. Apesar do desempenho inferior ao da MLP, simplificando a KAN
com a técnica de poda (6 = 0,1) e utilizando o método dos minimos quadrados nao linear,
foi possivel extrair uma expressao de saida da KAN.

== MLP - Treinamento
=== MLP - Validagao

KAN - Validacao

tidnccl

0 200 400 600 800 1000

Epocas

B g
== KAN - Treinamento
s 0.55 5
o]
= e
n 9p]
= =
O @)

Figura 19: Evolugao do custo durante o treinamento dos modelos KAN e MLP.

As funcgoes de ativacao treinadas da KAN foram ajustadas considerando trés candidatos:
afim, cosseno e tangente hiperbdlica. Para selecionar o melhor ajuste de cada funcao de
ativacao, adotou-se o maior valor do coeficiente de determinacao. Ao final do processo, a
composicao das fungoes resultou em:

d= —0,025 cos(—0,032z5 + 1,842 - 10~ %25 + 6,374)
+ 0,210 tanh(2,151x3 + 1,235x9 + 2,198x4)
— 0,009z5 + 45,244 — 0,116.
A expressao obtida apresenta forma relativamente compacta e atinge a mesma acuracia
da KAN nos dados de teste. Além disso, ela permite avaliar a relevancia de cada componente
da entrada (xp, & = 1,...,20) no processo de decisao de crédito, caracteristica que nao é

facilmente alcancada com a MLP. Dessa forma, a KAN mostra-se novamente ser um modelo
promissor em cendrios nos quais a interpretabilidade das decisoes ¢ um requisito desejavel.

34

4.4 Classificagao multi-classe com o MNIST
A base de dados MNIST (Modified National Institute of Standards and Technology) é com-

posta por 70.000 imagens em tons de cinza de digitos manuscritos entre 0 e 9, cada uma com
resolucao de 28 x 28 pixels. O conjunto esta dividido em 60.000 amostras para treinamento
e 10.000 para teste.

Devido a natureza da arquitetura KAN, o treinamento sobre imagens de alta dimensao é
bastante custoso em termos computacionais. Assim, as imagens foram reduzidas para 7 x 7
pixels com aplicacao de anti-aliasing, o que tornou as simulagoes viaveis.

Para resolver o problema com a KAN, foi empregado um modelo de rede com duas
camadas ocultas de 5 neurdnios cada e uma camada de saida com 10 neuronios. Esse modelo
foi treinado em trés cenarios distintos, cada um por 250 épocas:

e Treinamento com grid = 10 fixo durante todas as épocas;

e Treinamento com ¢grid = 5 na primeira metade e refinamento para grid = 10 na
segunda metade;

e Treinamento com grid = 3 no primeiro terco, refinamento para grid = 5 no segundo
terco e, por fim, refinamento para grid = 10 no ultimo terco.

Os modelos de MLP propostos para comparacao foram:

e Modelo 1: duas camadas ocultas com 5 neurdnios cada e camada de saida com 10

neuronios;

e Modelo 2: duas camadas ocultas com 63 e 41 neuronios, respectivamente, e camada

de saida com 10 neurodnios;

e Modelo 3: trés camadas ocultas com 60, 34 e 25 neuronios, respectivamente, e camada

de saida com 10 neurotnios;

e Modelo 4: quatro camadas ocultas com 64, 64, 32 e 16 neuronios, respectivamente, e

camada de saida com 10 neuronios;

e Modelo 5: cinco camadas ocultas com 128, 64, 32, 16 e 4 neurdnios, respectivamente,

e camada de saida com 10 neuronios.

O primeiro modelo de MLP foi definido para equiparar o nimero de neuronios do modelo
KAN. Os modelos 2 e 3 foram projetados para equiparar aproximadamente o nimero de
parametros treinaveis da KAN. J& os modelos 4 e 5 buscavam avaliar o comportamento de
MLPs mais profundas com o MNIST reduzido.

Para todos os modelos de MLP, utilizou-se a funcao de ativacao ReLU nas camadas
ocultas e Softmax na saida. Também foi aplicada regularizacao por Dropout com taxa de

35

30% entre as camadas ocultas. Tanto o modelo KAN quanto as MLPs foram treinados com
taxa de aprendizado 7 = 0.001 e o otimizador Adam, configurado com #; = 0.9 e 5 = 0.999.

A Figura 20 apresenta a evolugao do custo nos diferentes treinamentos do modelo KAN.
Nota-se que as perturbagoes introduzidas pelo refinamento de grid sao visiveis ao longo
do treinamento, mas o desempenho final é semelhante nos trés cenarios, sugerindo que o

refinamento nao impactou de forma relevante o resultado.

1.5 1

— 1.0 4 1 1
wl
2]
=
o 0.5 A b b
)
%]
=}
@)

0.0 A b b

0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
(a) _(b) (©)
Epocas
— Treinamento == Validagao

Figura 20: Evolucao do custo durante o treinamento com o modelo KAN. (a) Grid=10 fixo.
(b) Grid=5 na primeira metade e refinamento para grid=10 na segunda metade. (c¢) Grid=3
no primeiro tergo, refinamento para grid=5 no segundo tergo e refinamento para grid=10
no ultimo tergo.

A Figura 21 mostra a evolucao do custo dos trés primeiros modelos de MLP. O Modelo 1
(Fig. 21a) converge para uma perda maior que as dos Modelos 2 e 3 (Figs. 21b e 21c),
o que indica baixa capacidade de representacao, possivelmente pelo niimero reduzido de
parametros treindveis. Embora nao haja diferenca marcante entre os Modelos 2 e 3, a
acuracia final do Modelo 3 é superior, sugerindo que a adigdo de mais uma camada oculta

favoreceu o treinamento, mesmo com numero de parametros similar ao do Modelo 2.

36

1.25 1.25
2001 1.00 1.00
. 1.75 1
ICInJ 0.75 A 0.75 A
1.50 1
E 0.50 A 0.50 A
1
% 1.2511
o] L 0.251 |\ 0.25 7 '\
© 1004 oo e == ST
T T T T T T 0.00 T T T T T T 0.00 T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250 0 50 100 150 200 250
(a)) (c)
Epocas
— Treinamento == Validagao

Figura 21: Evolucao do custo durante o treinamento com as MLPs iniciais. (a) Modelo com
ntimero de neurdnios equivalente & KAN. (b) Modelo com niimero de parametros equivalente.
(¢) Modelo com nimero de parametros equivalente, mas mais camadas ocultas.

Os resultados dos Modelos 4 e 5 estao ilustrados na Figura 22. O Modelo 4 (Fig. 22a)
apresenta desempenho estavel, enquanto o Modelo 5 (Fig. 22b) obteve resultados significa-
tivamente piores, sugerindo necessidade de ajustes adicionais, maior nimero de épocas ou

até mesmo mais dados para convergir adequadamente.

1.25
2.00 1 1.00 -
1.75 1
m 0.75 4
w0
1.50 1
= ! 0.50 1
£ 12541
6 L 0.251 i\
1.00 1 \‘\«.. o~ e v - T
T T T T T T 0.00 T T T T T T
0 50 100 150 200 250 0 50 100 150 200 250
(@)) (b)
Epocas
— Treinamento == Validagao

Figura 22: Evolucao do custo durante o treinamento das MLPs mais profundas. (a) Modelo

4. (b) Modelo 5.

A Tabela 3 contém a acuracia e o nimero de parametros treinaveis de todos os modelos
treinados.

37

Tabela 3: Comparagao entre modelos KAN e MLP.

Modelo/Treinamento | N° Parametros | Acc (%)
KAN 1 6080 89,3
KAN 2 6080 88,94
KAN 3 6080 87,53
MLP 1 340 46,5
MLP 2 6194 73,12
MLP 3 6209 81,01
MLP 4 10138 82,6
MLP 5 17382 55,11

De forma geral, os experimentos indicam que a KAN apresentou desempenho superior
aos modelos MLP equivalentes. Esse resultado sugere que, mesmo em cenarios em que a
interpretabilidade nao seja o principal objetivo, a KAN pode oferecer ganhos relevantes de
desempenho.

5 O algoritmo NoProp

Como uma alternativa ao algoritmo da retropropagacao (backpropagation), foi proposto re-
centemente em [10] o algoritmo NoProp. Esse algoritmo nao requer os calculos progressivos e
regressivos do backpropagation e funciona com base nos principios seguidos pelos modelos de
difusao para treinar cada camada de uma rede neural de forma independente, sem propagar

gradientes. Segundo [10], as principais vantagens desse algoritmo sao:

1. Eficiéncia Computacional — A retropropagagao exige armazenamento e calculo ex-
tensivo de gradientes. O NoProp remove grande parte dessa sobrecarga.

2. Escalabilidade — Como nao ha propagacao reversa, o treinamento em redes muito

profundas torna-se mais estavel.

3. Robustez — Gradientes desaparecendo ou explodindo deixam de ser um problema
central, pois nao ha retropropagacao direta.

4. Novas Perspectivas Bioldégicas — O cérebro humano provavelmente nao usa retro-
propagacao. Métodos como o NoProp podem estar mais alinhados com a cognicao

bioldgica.

Durante o treinamento, cada camada da rede neural recebe um réotulo ruidoso e a entrada

da rede, e preveé o rétulo alvo com base neles. Cada camada é treinada independentemente

38

das outras, utilizando uma perda de denoising. Isso elimina a necessidade da propagacao
durante o treinamento. No entanto, todas as camadas trabalham juntas durante a inferéncia.

Partindo de ruido Gaussiano, cada camada recebe um rétulo ruidoso produzido pela
camada anterior e o refina (denoising). Esse processo é feito camada a camada até que,
na ultima camada, a rede produza a classe correta. O objetivo é, dado um par (x,y) do
conjunto de dados, construir um modelo capaz de prever o rétulo y a partir da entrada z.
Em vez de simplesmente encontrar uma fungao f(z) = y, deseja-se treinar a rede neural para
modelar um processo estocastico que transforma ruido aleatério em uma forma que permita

estimar y.

5.1 Processo estocastico de difusao / Denoising

Esse processo é representado por p. A partir do ruido, ele é refinado em varios passos
até chegar a representagao final z(7T'), usada para prever y. Matematicamente, trata-se da
probabilidade conjunta de todas as representacoes ruidosas intermedidrias z(0), ..., 2(7) do

rotulo y dado x, ou seja,

p(z(t){_olz) = p(z(t)|z(t — 1),) - p(y|=(T))

E'ﬂ

t=1

em que p(z(0)) descreve o ruido gaussiano padrao inicial, p(z(t)|z(t — 1),) descreve como
cada camada remove o ruido de sua entrada e p(y|z(7")) descreve como y é classificado com
base na representacao final z(7"). Esse termo, por sua vez, é parametrizado por uma rede
neural g, ponderada por escalares a(t), b(t), c(t), levando a

2(t) = a(t) dg, (2(t — 1),x) + b(t) - z(t — 1) + \/c(t) e(t)

com €(t) sendo ruido gaussiano.

5.2 Processo reverso de ruido / Variacional posterior

Representado por g, a partir do rétulo y (na forma u(y)), esse processo modela como adicionar

ruido passo a passo até obter z(0), ou seja,

q(z(t)oly.x) = y) - [T alz(t = 1)]=(2)).

Cabe observar que q(z(t —1)|z(t)) descreve o processo de difusao reversa que recupera repre-
sentacoes ruidosas anteriores pela adicao incremental de ruido. A distribuicao condicional

q(2(T)|y) é dada por
q(z(T)y) = T)v/a((1)),

39

que representa uma distribui¢ao gaussiana sobre a variavel latente z(7') com média /a(T)u(y)
e variancia 1 — a(7T). wu(y) representa o rétulo “transformado” (embedding) e a(T) diz o
quanto de u(y) permanece depois da adigao de ruido. Além disso, a distribui¢ao gaussiana

sobre a variavel latente z(t — 1) com média \/a(t — 1)z(t) e variancia 1 — a(t — 1) é dada

a(2(t — 1)]2(8)) = N(2(t — 1)|/alt — 1) 2(),1 — alt — 1)),

em que «(t—1) é um parametro de ruido que controla o quanto do sinal original é preservado

por

no passo t — 1.

5.3 Funcao de perda

No treinamento, o algoritmo NoProp tem por objetivo maximizar log p(y|z). Como isso é
invidvel computacionalmente, otimiza-se um limite inferior variacional (evidence lower bound
— ELBO), ou seja,

log p(y|x) > ELBO

ou ainda
1ng<y|x) > Eq(z(t)?:dy,r) [logp(z(t)tT:0|y,x)) - 1Og q<z(t)?:0|y>x)} .

A perda do algoritmo NoProp é derivada dessa expressao e pode ser escrita como a soma
de trés termos:

£NoProp :Ez(T)Nq [_ 1Ogﬁ9(y|Z(T))]
+ Dkr(q(2(0)|y)lIp(=(0)))

+ 1B [(SNR(E) — SNR(= 1)) g (o(¢ — D.2) —u@)|?] . (27

A derivagao dessa expressao pode ser encontrada em [10]. O primeiro termo do lado direito
representa a entropia cruzada, que mede quao precisa é a representacao z(T') para predizer
corretamente y; o segundo termo ¢é a divergéncia de Kullback—Leibler entre a distribuicao
de z(0) e o ruido Gaussiano padrao, o que for¢a que essas distribui¢oes sejam similares para
que o processo de difusao funcione corretamente; e o terceiro termo mede quao bem cada
camada remove o ruido, comparando quao préximo sua saida estd do rotulo transformado

u(y). Além disso, n é um hiperparametro e a razao sinal ruido é definida como

a(t)

SNR(1) = 1=

A SNR(t) aumenta a medida que o algoritmo se move para camadas posteriores (aumento

de t), o que faz com que a perda aumente. Em outras palavras, o modelo penaliza mais os
erros das camadas posteriores do que das camadas iniciais da rede.

40

5.4 Treinamento e inferéncia

Durante o treinamento, cada camada aprende a remover ruido de u(y) sem necessidade de
uma propagagao direta (forward) ou reversa (backward) pela rede inteira. Para um par (z,y),
obtém-se u(y) a partir de uma matriz Wepeq. Adiciona-se ruido em u(y) para obter z(t), e
cada camada ug(z(t — 1), x) é treinada independentemente para prever u(y) a partir de z e
z(t —1). A perda é calculada e os parametros da rede sao atualizados para maximizar essa
perda, usando um otimizador.

Na inferéncia, a rede com T camadas recebe inicialmente o ruido z(0). Cada camada
utiliza sequencialmente a saida z(t — 1) da camada anterior, que junto com a entrada x
da rede produz a representacao ruidosa seguinte z(t). Isso resulta em uma sequéncia de
representagoes dada por z(0), z(1),---2(T — 1), 2(T). No passo final t = T, z(T') é passada

por um decisor para gerar a predi¢ao ¢, como esquematizado na Figura 23.

ZO _—r up ZI e U2 ----- uT—I ZT_I-—!' UT ZT — y
f 11 I
X X X X

Figura 23: Esquema do algoritmo NoProp. z(0) = z; é um ruido gaussiano, que é trans-
formado sucessivamente até obter z(T) = z7. Cada camada, representada por u(t) = uy,
recebe a entrada x da rede. A camada final consegue obter a predicao y do rétulo y a partir

de z(T'). Fonte: [10].

5.5 Arquitetura das camadas

Cada camada tg(z(t — 1),x) consiste em um caminho convolucional para processar z; um
caminho totalmente conectado para processar z(t — 1) com conexoes residuais; e camadas
adicionais totalmente conectadas para gerar logits. Os logits passam por uma funcao softmazx,
produzindo uma distribuicao sobre as classes. A saida final é obtida calculando-se uma soma
ponderada dos embeddings de classe, como esquematizado na Figura 24.

41

noised label z; 4

|32 channel
cony ‘3,"'3::?:&? [FC (256) I
ReLU | | batch norm |
| max pooling |2x2 . RelU |
, dropout (0.2) 1 ,l;
64 channel FC (256
L e B WS
RelLU J i batch norm
dropout (0.2)] . RelU]
conv__ |28t FoE
RelU batch norm
[max pooling |z=x2 é‘
. +
dropout (0.2)]
¢IIEIIEI'I
FC (256)]
" batch norm |
. |)
Y Y
concat
FC (256)
batch norm
RelU
FC (128) |
" batch norm
RelU |
FC {numcfasm}}

Figura 24: Arquitetura de cada camada Fonte: [10].
42

A seguir, o NoProp ¢ testado em problemas de classificacao.

6 Aplicacao do NoProp em problemas de classificacao

Nesta secao, avalia-se o desempenho do NoProp em trés problemas de classificacao distintos:
o problema das meias-luas, o Statlog (German Credit Data) e, por fim, o MNIST com di-
mensoes reduzidas. Em todos os casos, a abordagem considerada foi o algoritmo NoProp em
tempo discreto. Cabe observar que o impacto de diferentes hiperparametros no treinamento
da rede para cada problema proposto também foi analisado.

6.1 NoProp aplicado ao problema das meias-Luas

Para este problema, foram definidas duas configuragoes distintas para os blocos de denoi-
sing. A primeira consiste em um modelo com apenas uma camada densa, contendo dois
neuronios de saida. A segunda configuracao é composta por duas camadas densas ocultas,
com 64 e 32 neuronios, respectivamente, além de uma camada de saida com dois neuronios.
Em ambas as configuragoes, foram realizados testes com diferentes nimeros de blocos de
denoising, considerando T'= 5 e T' = 10, e o treinamento individual de cada bloco foi com
o Backpropagation utilizando a taxa de aprendizado n = 0.001 e Adam com ; = 0.9 e
By = 0.999.
Na primeira configuracao, foram testados dois cendrios:

1. No primeiro, a dimensao do vetor de laténcia (embedding dim) foi igualada & dimensao
da entrada, possibilitando a comparacao entre as operagoes de soma e concatenacao
dos vetores de ruido a entrada. A evolucao da acuracia durante o treinamento nesses

casos estd ilustrada na Figura 25 (a) e (b).

2. No segundo cenario, utilizou-se um vetor de laténcia de dimensao 16 concatenado a

entrada. A Figura 26 apresenta os resultados obtidos nesse caso.

43

1.0 1.0 1.0
SSRGS ERFEST | |
1 0.9 \'
0.8 0.9-
o 0.8 1
: g 0.6
; o 0.7 1 0.8 1
< . 061t |
= Treinamento com T=5 = Treinamento com T=5 0.7 1 = Treinamento com T=5
0.2 1 Validagdo com T=5 = Validagdo com T=5 : Validagdo com T=5
= Treinamento com T=10 0.5 = Treinamento com T=10 = Treinamento com T=10
Validagdo com T=10 Validagdo com T=10 Validagdo com T=10
0.0 T T T T = 0.4 T T T T 0.6 T T T T T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(@) ()] (©)
Epocas

Figura 25: Evolucdo da acurdcia durante o treinamento com a primeira configuragao. (a)

Cendrio com soma dos ruidos a entrada. (b) Cendrio com concatenacao dos ruidos a entrada.

(c) Cenério com vetor de laténcia de

dimensao 16.

1.000 A

0.975 1

0.950

0.925 1

0.900 -

Acuracia

0.875 1

—

= Treinamento com T=5
Validagao com T=5

= Treinamento com T=10
Validacao com T=10

0.850

0O 10 20 30 40 50
Epocas

Figura 26: Evolucao da acurédcia durante o treinamento com a segunda configuracao.

A Tabela 4 resume as configuracoes avaliadas e os resultados finais obtidos.

44

Tabela 4: Resultados dos modelos com diferentes configuragoes no problema das meias-luas.

Configuracao | T | Operagao na Entrada | Acc (%) | Parametros
1 5 Soma 14,15 40
1 10 Soma, 88,55 70
1 D Concatenacao 94,45 60
1 10 Concatenagcao 92,60 110
1 5 Concatenacao 94,30 256
1 10 Concatenacao 94,55 446
2 D Concatenacao 100,0 12.316
2 10 Concatenagcao 100,0 24.566

Os resultados indicam que o NoProp nao apresenta bom desempenho quando os vetores
de ruido sao somados diretamente a entrada, ainda que essa operagao pudesse reduzir o
nimero de parametros treinaveis. Por outro lado, a concatenacao mostrou-se mais eficaz,
alcancando acuracias elevadas apesar do niimero maior de parametros treinaveis.

Além disso, verificou-se que o nimero de blocos de denoising (T) influencia apenas mar-
ginalmente a velocidade de convergéncia, podendo trazer ganhos mais expressivos apenas em
arquiteturas mais simples. No entanto, no geral, esse hiperparametro nao altera substanci-
almente a acuracia final.

Por fim, observou-se que, embora seja possivel atingir acurdcia de 100% com a con-
figuracao mais complexa, o custo em termos de parametros treinaveis é significativamente
maior que as outras propostas ja verificadas. Essa caracteristica pode se tornar um obstaculo
em cenarios com recursos computacionais limitados, nos quais a paralelizacao do treinamento

nao seja viavel.

6.2 NoProp aplicado ao Problema de Classificacao Financeira

Utilizou-se novamente a base de dados Statlog (German Credit Data) para o problema de
classificagao no contexto financeiro. Nesta etapa, os dados foram previamente transformados
para o formato one-hot encoding, a fim de facilitar o treinamento dos modelos.

Foram avaliadas trés configuracoes distintas para os blocos de denoising:

1. A primeira consiste em um modelo simples, com apenas uma camada de dois neurénios

de saida;

2. A segunda inclui uma camada oculta com 16 neuronios e uma camada de saida com

dois neuronios;

3. A terceira apresenta duas camadas ocultas, com 64 e 32 neuronios, respectivamente,
além da camada de saida.

45

Em todas as configuragoes foram realizados experimentos com T' = 5 e T' = 20 combinado
com embedding_dim = 61 e embedding_dim = 128. Apenas operacao de concatenacao entre
entrada e ruido foi utilizada. Para os modelos com camadas ocultas, aplicou-se Dropout de
20% como forma de regularizacdo. O treinamento individual de cada bloco foi conduzido
com Backpropagation, utilizando taxa de aprendizado n = 0.001 e o otimizador Adam com
B =0.9e [y =0.999.

A Figura 27 mostra os resultados obtidos para a primeira configuragao. Observa-se que a
variacao de hiperparametros em (b) e (¢) nao produziu diferengas significativas em relagao a

(a), tanto na evolugao do treinamento quanto na acuricia final, que se manteve praticamente

inalterada.
1.0
0.9 1 . i
S 0.8 A 1 .
\E y V‘\I\\\' sl D) OV R
8 _..\"‘/ \‘.-' N " 4 " "
< 0.7 1 b
0.6 T
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(a) 0! (©)
Epocas
— Treinamento == Validagéo

Figura 27: Evolucao da acurdcia durante o treinamento com a primeira configuracao pro-
posta para a classificacio financeira. (a) T = 5, embedding dim = 61. (b) T" = 5,
embedding-dim = 128. (c¢) T' = 20, embedding-dim = 61.

No treinamento da segunda configuracao, apresentado na Figura 28, nota-se uma pequena
diferenga em (b) e uma melhora marginal em (c) em comparagao com (a). Entretanto,
no geral, os resultados de validacao sao ligeiramente inferiores aos obtidos pela primeira
configuracao.

46

Acurécia

1.0

0.9 1 b
0.8 1 . b
N TN NFSITFY T D pA N -
Vaat < e v 1= PNy T AN AR ANV YL
0.7 1 "] NZR A 14 " ’
0.6 T T T T T T T T T T T T T T T
10 20 30 40 50 0 10 20 30 40 50 10 20 30 40 50
(a) () (©)
Epocas
— Treinamento == Validacéo

Figura 28: Evolucao da acuracia durante o treinamento com a segunda configuracao pro-
posta. (a) T' = 5, embedding_dim = 61. (b) T = 5, embedding_dim = 128. (c) T" = 20,

embedding_dim = 61.

A Figura 29 apresenta os resultados da terceira configuracao. Nesse caso, os modelos

sofrem de owverfitting. A inclusdo de mais blocos de (a) para (b) reduziu a velocidade de

convergéncia, mas nao houve diferenga perceptivel entre (a) e (¢). A acurdcia nos dados de

validacao foi pior em comparagao as demais configuracoes, justamente em razao do overfit-

ting.
© \"Il c} AN 'Y'“‘I'I n TR
5 1 N A vt v 1 —
3 by P N AR WL
o i 11y
> Y
Q
<
0.6 ; — — —
20 40 60 80 100 0 20 40 60 80 100 20 40 60 80 100
(a) (b (©)
Epocas
= Treinamento == Validagao
Figura 29: Evolucao da acurdcia durante o treinamento com a terceira configuracao pro-

posta. (a) T' = 5, embedding-dim = 61. (b) T' = 5, embedding-dim = 128. (c¢) T = 20,

embedding_dim = 61.

A Tabela 5 resume os resultados obtidos em todas as configuracoes avaliadas.

47

Tabela 5: Resumo dos resultados para as diferentes configuragoes avaliadas.

Configuracao | embedding dim | T | Acc (%) | Parametros

1 61 5) 77 1476

1 128) 78 2414

1 61 20 76 5166

2 61 5) 74 10416
2 128 5) 76 16044
2 61 20 75 40926
3 61) 75 45776
3 128 5) 74 67484
3 61 20 72 182366

De forma geral, os resultados sao consistentes com os obtidos em outras redes analisadas.
Destaca-se que os modelos com blocos de camada tnica apresentaram o melhor desempe-
nho, o que é promissor, pois sugere a possibilidade de treinar blocos individualmente sem a
necessidade do backpropagation para esse problema em especifico.

6.3 NoProp aplicado ao MNIST com Dimensoes Reduzidas

O NoProp foi inicialmente avaliada no problema de classificacao de imagens do MNIST,
demonstrando a viabilidade de realizar tarefas desse tipo com uma arquitetura altamente
paralelizavel e sem a necessidade de propagacao global do erro. Entretanto, no artigo original,
os blocos de denoising sao compostos por redes convolucionais relativamente complexas, cujo
treinamento nao é trivial.

Com o intuito de verificar se é possivel resolver o problema do MNIST utilizando blocos

mais simples, foram definidas trés configuragoes compostas apenas por camadas densas:

1. Primeiro, uma configuracao simples, com apenas uma camada de saida contendo dez

neuronios;

2. Segundo, uma configuracao com duas camadas ocultas com 64 e 16 neurdnios, respec-
tivamente, seguidas de uma camada de saida com dez neuronios. Entre as camadas
ocultas, aplicaram-se normalizacao Batch e regularizacao Dropout com taxa de 20%;

3. Terceiro, uma configuragao com quatro camadas ocultas com 256, 128, 64 e 16 neuronios,
respectivamente, seguidas de uma camada de saida com dez neuronios. Entre as ca-
madas ocultas, também foram aplicados Batch Normalization e Dropout com taxa de

20%.

Todos os modelos foram treinados com 7" = 10 blocos de denoising e dimensao de embed-
ding embedding_dim = 128, mantidos fixos. Apenas operacao de concatenagao entre entrada

48

e ruido foi utilizada. O treinamento individual de cada bloco foi realizado com Backpropa-
gation, utilizando taxa de aprendizado n = 0.001 e o otimizador Adam, com parametros
b1 = 0.9 e By = 0.999. Para viabilizar a comparagao com outras arquiteturas avaliadas
e reduzir o custo computacional, a base de dados foi pré-processada, redimensionando as
imagens para 7 X 7 com anti-aliasing.

A Figura 30 apresenta a evolugao da acuracia durante o treinamento para as trés confi-
guragoes propostas. Observa-se que os modelos testados nao foram capazes de alcancar bons
resultados no MNIST reduzido. Além disso, o aumento da profundidade das redes internas

dos blocos de denoising levou, paradoxalmente, a um desempenho ainda pior.

1.0

0.8 1 b 1

0.6 1 b b
.©
(U]
© 0.4 A g E
5
Q
<< 0.2 1 b b

0.0 T T T T T T T T T T T T T T T T T T

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
(a)) (c)
Epocas
— Treinamento == Validagéo

Figura 30: Evolugao da acurdcia durante o treinamento no MNIST reduzido. (a) Primeira

configuragao. (b) Segunda configuracdo. (c) Terceira configuragao.

Esses resultados sugerem que o NoProp, quando aplicado a blocos exclusivamente den-
sos, nao é capaz de resolver adequadamente o problema de classificacado no MNIST com
dimensoes reduzidas. Além disso, tal limitacao é particularmente desinteressante, uma vez
que ainda nao existem métodos consistentes para treinar blocos individuais sem o uso de
backpropagation. Em comparacao com as outras redes analisadas, o NoProp apresentou os
piores resultados.

7 Conclusoes

A aplicacao da KAN em diferentes cenarios de classificacao e regressao demonstrou resultados
bastante expressivos, destacando-se principalmente pela capacidade de extrair representacoes
simbdlicas compactas e interpretaveis. Nos problemas de regressao, a rede mostrou-se ca-

paz de aproximar fungoes lineares e nao lineares com boa precisao, fornecendo expressoes

49

analiticas muito préximas das formas originais, o que a diferencia de arquiteturas tradicio-
nais como as MLPs. J4 nos problemas de classificacao, como o das meias-luas e o MNIST
reduzido, a KAN apresentou desempenho superior ou, no minimo, competitivo em relacao
as MLPs equivalentes, evidenciando seu potencial tanto em termos de acuracia quanto de
interpretabilidade. Em aplicagoes préticas, como o caso do Statlog (German Credit Data),
embora a acuracia obtida tenha sido inferior a da MLP, a KAN mostrou-se promissora
por possibilitar a extragao de expressoes simbodlicas que permitem avaliar a relevancia de
variaveis de entrada, algo de grande valor em contextos onde a transparéncia do modelo é
fundamental.

No caso do NoProp, os resultados obtidos confirmam que a arquitetura é conceitualmente
interessante, pois abre caminho para o treinamento altamente paralelizavel de redes sem a
necessidade de propagacao global do erro. Entretanto, os experimentos mostraram que,
quando os blocos de denoising sao compostos apenas por camadas densas, o desempenho
ainda é limitado, especialmente em tarefas mais complexas como o MNIST. Observou-se que,
em problemas mais simples, como o das meias-luas ou a classificacao financeira, o NoProp
pode atingir bons resultados com arquiteturas relativamente pequenas. No entanto, o fato
de que cada bloco ainda precisa ser treinado com backpropagation limita o alcance pratico
da abordagem. Seria mais promissor se os blocos de denoising pudessem ser simplificados
de tal forma que métodos alternativos de treinamento pudessem ser aplicados em nivel local,
eliminando completamente a dependéncia do backpropagation em todos os niveis e reforcando
o carater altamente paralelizavel do método.

De forma geral, os objetivos propostos neste trabalho foram alcancados, uma vez que
tanto a KAN quanto o NoProp foram avaliados em diferentes contextos e comparados a
MLPs, revelando suas principais vantagens e limitacoes. Ainda assim, abrem-se caminhos
interessantes para trabalhos futuros: no caso do NoProp, investigar estratégias alternativas
de treinamento dos blocos de denoising; no caso da KAN, explorar novas aplicagoes, como a
solucao de equagoes diferenciais ordinarias (EDOs), nas quais sua capacidade interpretativa
poderia se mostrar ainda mais relevante. Essas extensoes poderiam nao apenas reforgar os
resultados obtidos, mas também expandir significativamente o leque de aplicagoes dessas

arquiteturas.

A Método dos Minimos Quadrados Nao Linear

Dado um conjunto de dados {(z;, y;) }I,, deseja-se encontrar os parametros @ que minimizam

a soma dos quadrados dos residuos, expressa de forma matricial como
S(0) = |ly — f(X,0)* (28)

A minimizacao de S(€) normalmente requer métodos iterativos, pois nao ha solucao fechada
para problemas nao lineares [13]. Um dos métodos mais utilizados é o método de Gauss-

20

Newton, que aproxima a funcao por uma expansao de Taylor de primeira ordem e resolve
um sistema linear iterativamente [3].

Para Exemplificar, considere um modelo genérico da forma
9(x) = a+bf(cz +d), (29)

em que @ = [a b ¢ d] representa os parametros a serem ajustados e f é uma func¢ao nao linear
qualquer [1].
Dado um conjunto de observacoes {(x;,y;)}, define-se o vetor de residuos como

r(0) =y —g(x,8). (30)

A matriz Jacobiana J(8), contendo as derivadas parciais dos residuos em relagao aos parametros,
é definida como

67“2‘
Jij = o, (31)

Para este modelo, os elementos da matriz Jacobiana sao dados por:

—1 —fl(exy1+d) —bf'(cx1+d)xy —bf'(cxy +d)
—1 —f(cxa+d) —bf'(cxa+d)xs —bf'(cxe+d)

T=1. . . . (32)
—.1 —f’(ca':n—l—d) —bf’(c:c;de)a:n —bf’(c'xn—l—d)
A atualizagao iterativa dos parametros ocorre resolvendo o sistema
(JT)AG = J'r, (33)
em que A representa a corre¢ao nos parametros e r é o vetor de residuos [12].
Os parametros sao entao atualizados como
0 «— 0+ A6. (34)

Para iniciar o processo iterativo, é necessdrio fornecer um chute inicial 8. A escolha
de um bom valor inicial pode impactar significativamente a convergéncia do método. Em
geral, aproximacoes baseadas em conhecimento prévio do problema podem ser utilizadas
para definir esse valor [1]. Esse processo é repetido até que a variagdo nos parametros seja
suficientemente pequena ou um critério de parada seja atingido.

O método de Gauss-Newton se mostra eficiente quando os residuos sao aproximadamente
lineares em relacao aos parametros, garantindo uma boa convergéncia na maioria dos casos
préticos [3].

51

Referéncias

[1] D. M. Bates and D. G. Watts. Nonlinear Regression Analysis and Its Applications. John
Wiley & Sons, 1988.

[2] C. M. Bishop. Deep Learning: Foundations and Concepts. Springer, 2024.
3] A. Bjorck. Numerical Methods for Least Squares Problems. SIAM, 1996.

[4] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303-314, 1989.

[5] 1. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press.

[6] S. Haykin. Neural networks and learning machines. Prentice Hall, Upper Saddle River,
3 edition, 2009.

[7] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv, https:
//arxiv.org/abs/1412.6980, 2014.

[8] A. N. Kolmogorov. On the representation of continuous functions of several variables
as superpositions of continuous functions of a smaller number of variables. Dokl. Akad.
Nauk, 1956.

9] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436-444, 2015.

[10] Q. Li, Y. W. Teh and R. Pascanu. NoProp: Training Neural Networks without Back-
propagation or Forward-propagation. arXiv, https://arxiv.org/abs/2503.24322,
2025.

[11] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljacic, T. Y. Hou, and
M. Tegmark. KAN: Kolmogorov-Arnold networks. arXiv, https://arxiv.org/abs/
2404 .19756, 2024.

[12] J. J. Moré. The levenberg-marquardt algorithm: implementation and theory. Numerical
Analysis, pages 105-116, 1978.

[13] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 2006.

[14] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65(6):386-408, 1958.

[15] D. E. Rumelhart, G. E. Hinton, and Ronald J. Williams. Learning representations by
back-propagating errors. Nature, 323(6088):533-536, 1986.

[16] L. Schumaker. Spline Functions: Computational Methods. SIAM, 2015.

52

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/2503.24322
https://arxiv.org/abs/2404.19756
https://arxiv.org/abs/2404.19756

Anexo 1 - Artigo aceito no SBrT 2025

23

XLIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2025, 29 DE SETEMBRO A 2 DE OUTUBRO-11 DE 2025, NATAL, RN

Comparagdes entre a rede Kolmogorov-Arnold e a
rede perceptron multicamada

Pedro H. S. Soares, Renato Candido e Magno T. M. Silva

Resumo— Neste trabalho, as classicas redes perceptron mul-
ticamada (MLP) sao comparadas com as recém-propostas redes
Kolmogorov-Arnold (KAN) em um problema de regressiao e
outro de classificacdo binaria. A KAN, baseada em splines
ajustaveis, apresenta uma maior interpretabilidade as custas de
uma complexidade computacional elevada e uma convergéncia
mais lenta.

Palavras-Chave— aprendizado de maquina, redes neurais, te-
orema de Kolmogorov-Arnold, splines, interpretabilidade.

Abstract— In this work, classical multilayer perceptron (MLP)
networks are compared with the newly proposed Kolmogorov-
Arnold networks (KAN) in a regression problem and a binary
classification problem. KAN, based on adjustable splines, offers
greater interpretability at the cost of higher computational
expense and slower convergence.

Keywords— machine learning, neural networks, Kolmogorov-
Arnold theorem, splines, interpretability.

I. INTRODUCAO

Nos tltimos anos, o aprendizado de maquina vem ganhando
destaque no desenvolvimento tecnoldgico, influenciando como
hardwares e softwares sdo projetados e mudando radicalmente
a interacdo homem-mdquina [1]-[3]. Em aprendizado pro-
fundo, a rede perceptron multicamada (multilayer perceptron
— MLP) € protagonista na solug¢do de problemas ndo lineares,
respaldada pelo teorema da aproximagdo universal [1]. No en-
tanto, a profundidade dessas redes dificulta o entendimento de
como o problema é resolvido [1]-[3]. Em outras palavras, as
redes MLP conseguem de fato resolver problemas complexos,
mas as solucdes em si sdo uma “caixa-preta”, dificultando ou
mesmo impedindo sua interpretabilidade.

A fim de possibilitar a interpretabilidade dos mode-
los, foi proposta recentemente a rede Kolmogorov-Arnold
(Kolmogorov-Arnold network — KAN), inspirada pelo teo-
rema de representacio homdnimo [4]. Enquanto as redes
MLP possuem fungdes de ativagdo fixas nos neurdnios, as
KANSs consideram as fungdes de ativacdo como pardmetros
ajustdveis. Os pesos sdo substituidos por funcdes univariadas
parametrizadas como splines. Essa mudanca faz com que as
KANs possam superar as MLPs em termos de precisio e
interpretabilidade em alguns casos [4].

Neste trabalho, a KAN é comparada com a MLP em um
problema de regressdo e em outro de classificacdo bindria.
O artigo estd organizado da seguinte forma. Na Secdo II, a

Pedro H. S. Soares, Renato Candido e Magno T. M. Silva, Depto. de Enge-
nharia de Sistemas Eletronicos, Escola Politécnica, Universidade de Sao Paulo,
Sdo Paulo, SP, Brasil, emails: soares.pedro@usp.br; renatocan@lps.usp.br;
magno.silva@usp.br. Este trabalho foi financiado pela CAPES (cédigo
de financiamento 001) e pelo CNPq (122941/2024-1, 303826/2022-3 e
404081/2023-1).

KAN ¢ revisitada. Na Secdo III, sdo mostrados os resultados
da comparag¢do com a MLP e na Secdo IV, as conclusdes.

II. REVISITANDO A KAN

O teorema de representagdo de Kolmogorov-Arnold estabe-
lece que dada uma fungdo continua multivariada f : [0,1]" —
R, entdo existe um conjunto de func¢des continuas univariadas
{pgp} € {®y} tais que f pode ser representada como [4], [5]

yTn) = Zzio 2, <Zz:1 d’q,p(xp)) - (D

A motivacdo desse teorema € utilizar fungdes univariadas para
reduzir a complexidade no célculo de funcdes multivariadas.

A KAN se baseia nesse teorema, considerando fungdes
B-splines. Essas funcgdes, definidas em intervalos especificos
denominados intervalos de nd, sdo construidas a partir da
combinagdo linear de polindmios de grau baixo e utilizadas
para aproximar curvas continuas de maneira suave [6]. Assim,
a combinacdo linear com coeficientes ¢; das fungdes de base
B, i, levam a B-spline de grau k, ou seja,

bg.p(Tp) = ZZO ¢iBik(xp),)

em que as funcdes de base

f(xl,CC27 .

x,—t; titk 1—Z
p_ Y i+k+ P B

B; =
ik (@) Litk+1—tit1

Bi k—1(wp)+ i+ 1,k—1(Tp),

livk—ti
sdo definidas com a férmula de Cox-deBoor, t; é o i-ésimo
née Byog=1parat, <x <ty e Byo=0, caso contrério,
¢=0,--- ,m. Para { > m, assume-se By ;(z,) = 0 [4], [6].

Na KAN, cada fun¢do de ativagdo ¢, ,(x,) é aproximada
por uma B-spline como em (2) e portanto, representada por
um conjunto de m + 1 coeficientes c¢;. No ajuste desses
coeficientes, empregam-se algoritmos de treinamento similares
aos da MLP, como o algoritmo backpropagation [1]. E im-
portante garantir que as fungdes base sejam iguais para todas
funcdes de ativagdo. Para isso, € necessario definir o ntimero de
intervalos de nds, denominado grid, e o grau das func¢des base
como hiperpardmetros. Também & necessdrio verificar durante
o treinamento o dominio das B-splines e atualizar os limites
dos nds para que comporte os dados de treinamento [4].

A KAN se assemelha a MLP, pois ambas possuem uma
estrutura de camadas conectadas, em que todos os neurdnios
de uma camada estdo ligados aos neurdnios das camadas
subsequentes. A principal diferenca estd na forma como a
ativagdo de cada neur6nio € calculada: na MLP, a entrada
é ponderada por pesos ajustiveis e a saida passa por uma
fungdo de ativacdo fixa, enquanto na KAN, cada componente
da entrada é processado por uma fun¢do de ativacdo ajustdvel
baseada em B-splines, e a saida € obtida por uma soma simples
dessas transformagdes, conforme ilustrado na Figura 1.

XLIII SIMPOSIO BRASILEIRO DE TELECOMUNICACOES E PROCESSAMENTO DE SINAIS - SBrT 2025, 29 DE SETEMBRO A 2 DE OUTUBRO-11 DE 2025, NATAL, RN

0 MLP {7 KAN

T W o S

-
ustives o ausives

Fig. 1. Comparacdo entre as ativacdes de uma MLP e de uma KAN.

ITI. RESULTADOS

Considerou-se inicialmente um problema de regressdo com
o objetivo de aproximar a fungio f(z,y) = sin®(z + y),
utilizando 4000 pontos (z,y), gerados aleatoriamente no do-
minio [—n, 7] x [-m, 7]. A KAN e a MLP foram configuradas
com trés camadas, contendo 3, 2, 1 e 24, 25, 1 neuro6nios,
respectivamente. Ambas foram treinadas por 3000 épocas com
o otimizador Adam (81 = 0.9 e B2 = 0.999) [7]. Na KAN,
consideraram-se ainda k = 3 e o valor do grid iniciando com
3 e dobrando a cada 1000 épocas. Esse aumento, conhecido
como extensdo de grid [4], resultou no aumento do nimero
de parametros treindveis a cada 1000 épocas. Na MLP, foram
usadas ReLU nos neur6nios das camadas ocultas e tangente
hiperbdlica para o neurdnio de saida. Essas configuragdes
permitem que o nimeros de parametros treindveis de am-
bas as redes estejam proximos. Para comparacdo, também
considerou-se um modelo da KAN com grid fixo igual a 12.

Em termos de custo computacional, na KAN com grid
varidvel foram utilizados 462 pardmetros ao final de 130 s
de treinamento, enquanto na MLP, foram treinados 463 para-
metros em 134 s. Apesar do mesmo custo neste caso, a raiz
do erro quadritico médio (root mean-square error — RMSE)
atingida pela KAN € de 0,0529 e o coeficiente de determinagdo
(R?) é de 0,9776, enquanto para a MLP essas métricas foram
de 0,0228 e 0,9958, respectivamente. Na Figura 2-(a), é
possivel observar que a KAN apresentou uma convergéncia
mais lenta que a MLP. Apesar do nimero de parimetros finais
da KAN com grid variavel ser o mesmo da KAN com grid
fixo, a extensdo de grid ao longo do treinamento € essencial
para se obter um melhor desempenho. No entanto, isso causa
um aumento da funcdo custo (pico da curva verde em torno
da época 2000), mas que logo volta ao patamar de antes
da alteracdo do grid. Esses resultados sugerem que a KAN
apresenta resultados promissores em termos de desempenho
para um custo computacional semelhante ao da MLP, embora
a MLP ainda consiga um desempenho um pouco superior.

No problema de classificag@o bindria, considerou-se o Ger-
man Credit Dataset [8], que contém 1000 instancias compostas
por 20 varidveis. A varidvel-alvo assume valor d = 1 para
clientes confidveis e d = —1 para aqueles considerados de
risco. Para se obter o mesmo custo computacional, a KAN
e a MLP foram configuradas com 2 e 3 camadas, contendo
2,1 e 20,13, 1 neurdnios, respectivamente. Consideraram-se
para a KAN k£ = 3 e grid = 5, enquanto para a MLP, ReLU
nos neurdnios das camadas ocultas e tangente hiperbdlica para
o de saida. Ambas foram treinadas com otimizador Adam
(B1=0.9¢e B2 =0.999) ao longo de 1000 épocas.

A KAN atingiu uma acurdcia de 68% e a MLP de 77%.
Novamente, a MLP convergiu mais rdpido que a KAN, como
pode ser observado na Figura 2-(b). Em termos de custo
computacional, a MLP treinou 707 parametros por 17,3 s,
enquanto a KAN treinou 714 parametros por 33,2 s. Apesar do
desempenho inferior que o da MLP, simplificando a KAN com
a técnica de poda (f = 0,1) como em [4] e utilizando o método
dos minimos quadrados ndo linear [9], foi possivel extrair uma
expressdo de saida da KAN. As fungdes de ativag@o treinadas
foram ajustadas considerando trés fun¢des candidatas: afim,
cosseno e tangente hiperbdlica. Para selecionar o melhor
ajuste de cada fung@o de ativagdo, foi utilizado o maior
valor de coeficiente de determinacdo. Ao final do processo,
a composicdo das funcdes resultou em

d= —0,025cos (—0,032z + 1,842 - 10~ 425 + 6,374)

+ 0,210 tanh(2,151x13 + 1,23522 + 2,198x4
—0,00925 + 45,244) — 0,116.

Essa expressdo € relativamente compacta e leva a mesma
acuracia da KAN com os dados de teste. Ela possibilita
verificar a relevancia de cada componente da entrada (xy,
k = 1,---,20) na decisdo de crédito, algo que ndo se
consegue facilmente com a MLP. Isso faz da KAN um modelo
promissor quando se deseja buscar interpretabilidade.

0.2 —
; - 0.4 <ZC
2 0.1+ <
-0.2 o
% ! %
0.0 1 << —_———————| =1
O —— i —— -V e e e ——— 0 0 O
0 500 1000 1500 2000 2500 3000
~ 2 = — MLP - Trei t 0.60
A "MLP - Validagio Z
) = KAN - Treinamento L 0.55 <
= KAN - Validagao o)
\5/ 1 A _Eﬁg ?x? - 3%‘5{?1;,312611t0 g
2 ixa - Validagio 0.50 ;
5 N
0 - . : . : 0.45 ~
0 200 400 600 800 1000
Epocas

Fig. 2. Evolugdo do custo durante o treinamento para os problemas de (a)
regressdo e (b) classificagdo bindria.

IV. CONCLUSOES
Quando se busca interpretabilidade, a KAN é uma boa
alternativa a rede MLP, apesar da convergéncia mais lenta no
treinamento e do desempenho inferior em alguns casos.

REFERENCIAS

[1] S. Haykin, Neural networks and learning machines, Prentice Hall, 2009.

[2] 1. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.

[3] C. M. Bishop, Deep Learning, Springer, 2024.

[4] Z. Liu et al, “KAN: Kolmogorov-Arnold networks,”
https://arxiv.org/abs/2404.19756, 2024.

[5] A. N. Kolmogorov, “On the representation of continuous functions of
several variables as superpositions of continuous functions of a smaller
number of variables,” Dokl. Akad. Nauk, 1956.

[6] L. Schumaker, Spline Functions: Computational Methods, SIAM, 2015.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv, https://arxiv.org/abs/1412.6980, 2014.

[8] H. Hofmann, “Statlog (German Credit Data),” UCI Machine Learning
Repository, 1994, DOI: https://doi.org/10.24432/C5NC77.

[9] D. M. Bates and D. G. Watts, Nonlinear Regression Analysis and Its
Applications, John Wiley & Sons, 1988.

arXiv,

	Resumo
	Introdução
	Objetivos
	Cronograma de Atividades

	Fundamentos Teóricos
	O Perceptron de Rosenblatt
	A rede MLP
	Treinamento da MLP
	Teorema da Aproximação Universal

	Rede Kolmogorov–Arnold
	Teorema da Representação de Kolmogorov–Arnold
	B-splines
	Construção Intuitiva da KAN
	Propagação e Treinamento da KAN
	Extração da Expressão Simbólica
	Extensão de Nós em Redes KAN
	Esparsificação e Poda em Redes KAN

	Aplicação da KAN em Problemas de Classificação e Regressão
	Problema das Meias-Luas
	Problemas de Regressão
	Problema de Classificação Financeira
	Classificação multi-classe com o MNIST

	O algoritmo NoProp
	Processo estocástico de difusão / Denoising
	Processo reverso de ruído / Variacional posterior
	Função de perda
	Treinamento e inferência
	Arquitetura das camadas

	Aplicação do NoProp em problemas de classificação
	NoProp aplicado ao problema das meias-Luas
	NoProp aplicado ao Problema de Classificação Financeira
	NoProp aplicado ao MNIST com Dimensões Reduzidas

	Conclusões
	Método dos Mínimos Quadrados Não Linear
	Referências
	Anexo 1 - Artigo aceito no SBrT 2025

