
A Sampling Algorithm for Diffusion Networks
Daniel G. Tiglea, Renato Candido, and Magno T. M. Silva

Escola Politécnica, University of São Paulo, Brazil
{dtiglea, renatocan, magno}@lps.usp.br

Abstract—In this paper, we propose a sampling mechanism
for adaptive diffusion networks that adaptively changes the
amount of sampled nodes based on mean-squared error in the
neighborhood of each node. It presents fast convergence during
transient and a significant reduction in the number of sampled
nodes in steady state. Besides reducing the computational cost, the
proposed mechanism can also be used as a censoring technique,
thus saving energy by reducing the amount of communication
between nodes. We also present a theoretical analysis to obtain
lower and upper bounds for the number of network nodes
sampled in steady state.

Index Terms—Diffusion strategies, energy efficiency, adaptive
networks, distributed estimation, convex combination.

I. INTRODUCTION

Over the last decade, adaptive diffusion networks have
attracted widespread attention since they can be used to ef-
ficiently estimate certain parameters of interest using informa-
tion collected at spatially distributed nodes connected through
a particular topology [1]–[12]. Many efforts have been devoted
to obtain diffusion strategies that are able to learn and adapt
from continuous streaming data and exhibit fast convergence,
good tracking capability, and low computational cost. When
these strategies are implemented on wireless sensor networks,
energy consumption is the most critical constraint [10]–[12].

As a result, several selective transmission mechanisms have
been proposed to reduce the energy consumption associated
with the communication processes. Some of these approaches
aim to reduce the amount of information sent in each trans-
mission [13], [14], while others turn links off according to
selective communication policies [7]–[10]. Finally, a certain
set of solutions seeks to censor the nodes by avoiding the
transmission of information to any of their neighbors [11],
[12], [15], [16]. This allows the censored nodes to turn their
transmitters off, thus saving more energy, and reduces the
amount of information used in the processing [12], [15].

Recently, we proposed in [17] a sampling mechanism for
the graph diffusion algorithm of [18]. This mechanism changes
adaptively the amount of sampled nodes in the graph based on
mean-squared error (MSE) in the neighborhood of each node.
Thus, the number of sampled nodes decreases when the MSE
is low, allowing for fast convergence in the transient and a
significant reduction in the computational cost in steady state.

This paper extends our previous work [17] in different ways:
(i) the algorithm of [17] is generalized to adaptive diffusion
networks in order to reduce their computational cost, (ii) we

This work was supported by FAPESP under Grant 2017/20378-9, by
CNPq under Grants 132586/2018-5 and 304715/2017-4, and by CAPES under
Finance Code 001.

obtain theoretical lower and upper bounds for the number of
network sampled nodes in steady state, and (iii) we show that,
with slight modifications, the proposed scheme can also be
used as a censoring technique.

The paper is organized as follows. In Sec. II, we revisit
the Adapt-Then-Combine diffusion Normalized Least-Mean-
Squares (ATC dNLMS) algorithm [1]. In Sec. III, the adaptive
sampling algorithm is derived. In Sec. IV, we present a theo-
retical analysis to predict bounds for the number of sampled
nodes in steady state. Simulation results are shown in Sec. V
and Sec. VI closes the paper with the conclusions.
Notation. We use normal fonts for scalars and boldface
letters for vectors. Moreover, p¨qT denotes transposition, | ¨ |
cardinality, Et¨u the mathematical expectation and ‖¨‖ the
Euclidean norm.

II. DISTRIBUTED ADAPTIVE FILTERING

Let us consider a network of V nodes with a predefined
topology. Two nodes are considered neighbors if they can
exchange information, and we denote by Nk the neighborhood
of node k including k itself. Each node k has access to an input
signal ukpnq and to a reference signal dkpnq “ uT

kpnqw
o `

vkpnq, where ukpnq “ rukpnq ukpn´1q ¨ ¨ ¨ ukpn´M`1qsT

is an M -length regressor vector, wo is an optimal system,
and vkpnq is the measurement noise at node k, which is
assumed to be independent of the other variables and zero-
mean with variance σ2

vk
. The objective of the network is to

obtain an estimate of wo in a distributed manner by solving
minw

řV
k“1 Et|dkpnq ´ uT

kpnqw|2u [1]–[3], [10], [11].
Several adaptive solutions have been proposed in the lit-

erature for this task, one of them being the ATC dNLMS
algorithm [1]–[3]. It consists in two steps, given by

#

ψkpn` 1q“wkpnq`µkpnqukpnqekpnq

wkpn` 1q“
ř

jPNk
cjkψjpn` 1q,

(1a)
(1b)

where ψk and wk represent respectively the local and com-
bined estimates of wo at node k, µkpnq“ rµk{rδ`}ukpnq}

2s

is a normalized step size with 0ărµkă2 and a regularization
parameter δą0, and

ekpnq “ dkpnq ´ uT
kpnqwkpnq (2)

is the estimation error [1]. Furthermore, tcjku are combination
weights satisfying cjk ě 0,

ř

jPNk
cjk “ 1, and cjk “ 0

for j R Nk [2], [3]. Possible choices for tcjku include the
Uniform, Laplacian, Metropolis, and Relative Degree rules [1],
as well as adaptive schemes [4]–[6], such as the Adaptive
Combination Weights (ACW) algorithm [19]. It incorporates
information from the noise profile across the network, and

is obtained by solving an optimization problem in regards to
tcjku. It can be summarized as [19]

cjkpnq “
σ´2
jk pnq

ř

`PNk
σ´2
`k pnq

if j P Nk or 0, otherwise, (3)

where σ2
jk is updated as

σ2
jkpnq“p1´νkqσ

2
jkpn´1q`νk‖ψjpn`1q´wkpnq‖2, (4)

with νk ą 0 for k “ 1, ¨ ¨ ¨ , V . Hence, larger weights are
assigned to the nodes with smaller noise variances [19].

It is worth noting that one could also employ a Combine-
Then-Adapt (CTA) strategy, in which the order of (1a) and (1b)
is reversed [1]. For simplicity, in this paper we only consider
the ATC strategy in our analysis, but the results can be
straightforwardly extended to CTA versions as well.

III. THE SAMPLING ALGORITHM

We propose an algorithm to decide if each node of the
network should be sampled or not at each iteration. For
this purpose, we introduce the variable sskpnq P t0, 1u and
recast (1a) as

ψkpn` 1q “ wkpnq ` sskpnqµkpnqukpnqekpnq. (5)

If sskpnq“ 1, dkpnq is sampled, ekpnq is computed as in (2),
the combination weights are updated according to (3) and (4),
and (5) coincides with (1a). In contrast, if sskpnq“0, dkpnq is
not sampled, uT

kpnqwkpnq, ekpnq and µkpnq are not computed,
tcjku are not updated, and ψkpn`1q“wkpnq.

To determine sskpnq, we define skpnq P r0, 1s such that
sskpnq “ 0 for skpnq ă 0.5 and sskpnq “ 1 otherwise. We then
minimize the following cost function with respect to skpnq:

Js,kpnq“rskpnqsβs̄kpnq`
“

1´skpnq
‰
ř

jPNk
cikpnqe

2
i pnq, (6)

where βą0 is a parameter introduced to control how much
the sampling of the nodes is penalized. Thus, when the error
is high in magnitude or when node k is not being sampled
(s̄k “ 0), Js,kpnq is minimized by making skpnq closer to
one, leading to the sampling of node k. This ensures that the
algorithm keeps sampling the nodes while the error is high and
resumes the sampling of idle nodes at some point, enabling it
to detect changes in the environment. In contrast, when node k
is being sampled (s̄k“1) and the error is small in magnitude
in comparison to β, Js,kpnq is minimized by making skpnq
closer to zero, which leads the algorithm to stop sampling
node k. This desirable behavior depends on a proper choice
for β, which is addressed in Sec. IV.

Inspired by convex combination of adaptive filters (see [20],
[21] and their references), rather than directly adjusting skpnq,
we update an auxiliary variable αkpnq related to it via [21]

skpnq “ φrαkpnqs fi
sgmrαkpnqs ´ sgmr´α`s

sgmrα`s ´ sgmr´α`s
, (7)

where sgmrxs “ p1`e´xq´1 is a sigmoidal function and α`

is the maximum value αk can assume. It is worth noting that
φrα`s“1 and φr´α`s“0. In the literature, α`“4 is usually
adopted [21].

By taking the derivative of (6) with respect to αkpnq, we
obtain the following stochastic gradient descendent rule:

αkpn`1q“αkpnq`µsφ
1rαkpnqs

”

ř

iPNk
cikpnqe

2
i pnq´βs̄kpnq

ı

, (8)

where µs ą 0 is a step size and

φ1rαkpnqsfi
dskpnq

dαkpnq
“

sgmrαkpnqst1´sgmrαkpnqsu

sgmrα`s´sgmr´α`s
. (9)

It is worth noting that, because of the function φr¨s, (8) does
not diverge even for large values of µs [20], [21].

Equation (8) cannot be used for sampling since it requires
the errors to be computed to decide if the nodes should be
sampled or not, which is contradictory. To address this issue,
we replace eipnq in (8) by its latest measurement we have
access to, which is denoted by εipnq. When the node is
sampled, εipnq“eipnq. We thus obtain

αkpn`1q“αkpnq`µsφ
1rαkpnqs

”

ÿ

iPNk

cikpnqε
2
i pnq´βsskpnq

ı

. (10)

This algorithm is named as adaptive sampling diffusion
NLMS (AS-dNLMS). It reduces the number of sampled nodes
in steady state, decreasing the computational cost at the
expense of a slight increase during the transient. Table I
shows the number of sums and multiplications executed per
iteration in a single node of the network for both the dNLMS
and AS-dNLMS algorithms with ACW weights. When the
node is sampled, AS-dNLMS requires

ř

iPNk
s̄ipnq`2 more

multiplications and |Nk|`1 more additions than the original
dNLMS algorithm. On the other hand, when the node is
not sampled, AS-dNLMS requires 3M`2´

ř

iPNk
s̄ipnq less

multiplications and 4M´|Nk|`1 less sums. Thus, the higher
the order of the filter M , the higher the computational cost
reduction of AS-dNLMS in comparison with the original
dNLMS algorithm. Considering the network as a whole, the
computational cost of AS-dNLMS depends on the number of
sampled nodes, which is addressed in Sec. IV.

Finally, we remark that a different version of AS-dNLMS
can be obtained if, instead of using (5), ψk is not updated at all
when node k is not sampled. Assuming that the nodes can store
past information from their neighbors, this allows us to cut the
number of communications between nodes, since in this case
ψk and ε2k remain static when s̄k“0 and there is no need for
node k to retransmit them. In other words, when node k is
not sampled in this version of the algorithm, it only receives
data and carries out (1b), and can thus turn its transmitter
off. This results in a reduction in energy consumption as well
as the computational cost. Lastly, when the node is sampled,
ε2i pnq “ e2i pnq can be sent bundled with the local estimates
ψi in both versions of AS-dNLMS so as to not increase the
number of transmissions.

IV. THEORETICAL ANALYSIS

The good behavior of AS-dNLMS depends on a proper
choice for β. Thus, we study how to choose this parameter
such that we can ensure that every node will cease to be
sampled at some point during steady state. To do so, we ex-
amine (10) while node k is being sampled. In this case, ε2i pnq
and βs̄kpnq can be replaced by e2i pnq and β, respectively.
Then, subtracting αkpnq from both sides of (10) and taking
expectations, we get

Et∆αkpnqu“µsE
!

φ1rαkpnqs
”

ř

iPNk
cikpnqe

2
i pnq´β

ı)

, (11)

TABLE I: Comparison between dNLMS and AS-dNLMS: number of operations per iteration for each node k.

Algorithm Multiplications (
Â

) Sums (
À

)
dNLMS Mp3` |Nk|q ` 4 Mp3` |Nk|q ` 3

AS-dNLMS s̄kpnq ¨ p3M ` 4q `M |Nk| `
ř

iPNk
s̄ipnq ` 2 s̄kpnq ¨ p4M ` 2q `M |Nk| ´M ` |Nk| ` 2

where ∆αkpnq fi αkpn`1q´αkpnq.
To make the analysis more tractable, φ1rαkpnqs and the term

between brackets in (11) are assumed statistically independent.
We also assume that the combination weights tciku are static.
Simulation results show that these assumptions are reasonable
and the analysis also holds for adaptive combination weights,
as can be seen in Section V.

In order to stop sampling node k, αkpnq should decrease
along the iterations until it becomes negative. Since φ1rαkpnqs
is always positive, to enforce Et∆αkpnqu to be negative while
node k is sampled, β must satisfy

β ą
ř

iPNk
cikEte2i pnqu. (12)

We then assume that, during steady state, Ete2i pnqu « σ2
vi ,

which leads to
ř

iPNk
cikEte2i pnqu ď σ2

max fi maxi σ
2
vi , (13)

where i “ 1, 2, ¨ ¨ ¨ , V . Thus, the condition

β ą σ2
max (14)

is sufficient to ensure that, in the mean, the nodes will cease
to be sampled during steady state.

Assuming that (14) is satisfied, we can estimate upper and
lower bounds for the expected number of sampled nodes Vs
in steady state. For this purpose, we consider each sskpnq as a
Bernoulli random variable that is equal to one with probability
psk or to zero with probability 1 ´ psk in steady state for
k “ 1, ¨ ¨ ¨ , V . Thus,

V psmin
ď EtVsu ď V psmax

, (15)
where psmin and psmax are upper and lower bounds for psk .

It is useful to note that the sampling mechanism exhibits a
cyclic behavior in steady state. Hence, we could approximate
psk by the expected “duty cycle” of the mechanism, i.e.,

ppsk “ θk{pθk ` θkq, (16)
where θk denotes the expected number of iterations per cycle
in which node k is sampled and θk is the expected number of
iterations in which it is not. Since we are only interested in
estimating psmin

and psmax
, we do not have to evaluate (16)

for every k. Instead, we only need to estimate upper and
lower bounds for θk and θk. To do so, we must understand
under which circumstances node k remains sampled for the
greatest (or lowest) number of iterations in the mean. One way
to do this is to estimate the maximum and minimum values
Etαkpnqu and Et∆αkpnqu can assume during steady state.

Firstly, let us assume that at a certain iteration n, αkpnq is
negative but close to zero. Thus, setting αkpnq to zero in (10)
and taking expectations, we obtain

Etαkpn` 1q|αkpnq Æ 0u “ µsφ
1
0

ř

iPNk
cikEtε2i pnqu, (17)

where φ10“φ
1r0s. Thus, at ǹ 1 the sampling of node k resumes

and, recalling (14), Et∆αkpn`1q|αkpn` 1qą0uă0. There-
fore, from iteration ǹ 1 onward, αk decreases until it becomes
negative again, meaning that (17) yields the maximum value

αk can assume in the mean during steady state. Moreover,
assuming σ2

min ď Etε2i pnqu ď σ2
max for all i, (17) yields a

different value for each node k that lies in
µsφ

1
0σ

2
min ď Etαs.s.

kmax
u ď µsφ

1
0σ

2
max, (18)

where Etαs.s.
kmax

u denotes the maximum value αkpnq can
assume in the mean in steady state and σ2

min fi mini σ
2
vi ,

i“ 1, ¨ ¨ ¨ , V . Analogously, we now assume that at a certain
iteration n, αkpnq is positive but approximately zero. Making
this replacement in (10) and taking expectations, we obtain

Etαkpn`1q|αkpnqÇ0u“µsφ
1
0E

!

ř

iPNk
cikε

2
i pnq´β

)

. (19)

Thus, at n`1, node k ceases to be sampled. Therefore, we
observe from (14) that Et∆αkpnq|αkpn` 1q ă 0u ą 0 and
conclude that (19) provides the minimum value αk can assume
in the mean during steady state. For each node k, (19) yields
a different value that lies in the interval

µsφ
1
0pσ

2
min ´ βq ď Etαs.s.

kmin
u ď µsφ

1
0pσ

2
max ´ βq, (20)

where Etαs.s.
kmin

u denotes the minimum value αkpnq can as-
sume in the mean in steady state.

Next, we replace φ1rαkpnqs in (10) by its first-order Taylor
expansion around αkpnq“0, which is simply equal to the con-
stant φ10. When node k is being sampled (ssk“1), subtracting
αkpnq from both sides of (10) and taking expectations yields

´µsφ
1
0pβ´σ

2
minqďEt∆αkpnquď´µsφ

1
0pβ´σ

2
maxqă0. (21)

Analogously, when the node is not sampled (sskpnq “ 0),

µsφ
1
0σ

2
minďEt∆αkpnquďµsφ

1
0σ

2
max. (22)

Thus, in both cases there are upper and lower bounds for
Et∆αkpnqu during steady state.

From a certain iteration n0 onward, we consider the model

Etαkpn0 ` θkqu“Etαkpn0qu ` θkEt∆αkpnqu. (23)
In order to estimate an upper bound θmax for θk, we assume
that Etαkpn0qu “ Etαs.s.

kmax
u and calculate the expected

number of iterations required for Etαkpnqu to fall below zero
in the scenario where the node is sampled for the maximum
number of iterations. This occurs if Etαkpn0qu“µsφ

1
0σ

2
max,

which is the upper bound for Etαs.s.
kmax

u, and Et∆αkpnqu “
´µsφ

1
0pβ ´ σ2

maxq, which is the least negative variation for
Et∆αkpnqu according to (21). Making θk“θmax and setting
Etαkpn0 ` θmaxqu“0 in (23), after some algebra we get

θmax “ maxtσ2
max{pβ ´ σ

2
maxq, 1u, (24)

where we are taking into account the fact that the node must
be sampled at least once during each cycle. Analogously, using
(23) for the lower bound θk “ θmin, we obtain

θmin “ maxtσ2
min{pβ ´ σ

2
minq, 1u. (25)

For θk, we replace θk in (23) by θk and consider that at
the iteration n0, Etαkpn0qu “ Etαs.s.

kmin
u. Thus, the upper

bound θmax for θk can be obtained by setting Etαkpn0qu “
µsφ

1
0σ

2
min, which is the lower bound for Etαs.s.

kmin
u, and

Et∆αkpnqu “ µsφ
1
0σ

2
min, which is the minimum value for

Et∆αkpnqu according to (22). We then get

θmax “ maxtpβ ´ σ2
minq{σ

2
min, 1u. (26)

Analogously, for the lower bound θmin of θk, we get

θmin “ maxtpβ ´ σ2
maxq{σ

2
max, 1u. (27)

Replacing (24) to (27) in (16) and (15), after some algebraic
manipulations we finally obtain that, for β ě σ2

max,

V
σ2
min

β
ď EtVsu ď V

σ2
max

β
. (28)

This indicates that the higher the parameter β, the smaller
the amount of sampled nodes in the mean during steady state,
which is in accordance with our expectations. Since there is a
trade-off between the tracking capability and the gains in terms
of computational cost provided by the sampling mechanism,
we should care not to choose excessively high values for β.
Simulation results suggest that βą5σ2

max can deteriorate the
performance in non-stationary environments. It is also worth
noting that the upper and lower bounds for EtVsu coincide
when σ2

min“σ
2
max. This makes sense, since in this case there

is no reason for some nodes to be sampled more often than
the others in steady state. Furthermore, although we initially
assumed βąσ2

max, it is interesting to note that (28) also holds
for β“σ2

max, since in this case the theoretical upper bound for
EtVsu is equal to the total number of nodes in the network.

V. SIMULATION RESULTS

In this section, we test the proposed algorithm and the
analysis of Sec. IV. The results presented were obtained
over an average of 100 realizations. For the sake of better
visualization, we filtered the curves by a moving-average
filter with 64 coefficients. We consider the network shown in
Fig. 1(a). The signals ukpnq and vkpnq are generated from
i.i.d. zero-mean Gaussian random processes with variances
σ2
uk
“ 1 and σ2

vk
as shown in Fig. 1(b) for k “ 1, ¨ ¨ ¨ , V .

For the optimal system wo, we consider a random vector with
M“50 coefficients uniformly distributed in r´1, 1s.

To set the combination weights, we use the ACW algorithm
with νk“0.2 for k“1, ¨ ¨ ¨ , V [19]. We also use δ“10´5 and
different values of µ̃k for each node k, as shown in Fig. 1(c).
As a performance indicator, we adopt the network mean-square
deviation (MSD), given by 1

V

řV
k“1 Et‖wopnq´wkpnq‖2u.

Furthermore, in the simulations of Figs. 2 and 4 we consider
β“1.7σ2

max“0.68 and µs“0.1571 for the AS-dNLMS algo-
rithm. These values were chosen due to the good performance
they provided in terms of MSD, computational cost reduction
and energy saving in these simulations.

Firstly, we compare the behavior of the AS-dNLMS algo-
rithm with that of the original dNLMS with a random sampling
technique in which Vs nodes are randomly sampled at each
iteration. In order to simulate a change in the environment,
in the middle of each realization we flip wo. Figs. 2(a), 2(b)
and 2(c) present respectively the MSD performance and the
average number of sums and multiplications per iteration. We
can observe from Fig. 2(a) that the more nodes are sampled,
the faster the convergence rate. AS-dNLMS is able to detect

(a)

0.08

0.24

0.4

σ
2 v
k

(b)

1 5 10 15 20

Node k

0

0.5

1

µ̃
k

(c)

Fig. 1: (a) Network topology, (b) σ2
vk

, and (c) µ̃k used in the experiments..

the change in the optimal system and, since all nodes are sam-
pled during the transients, it converges as fast as the dNLMS
algorithm with all nodes sampled. From Figs. 2(b) and 2(c)
we also observe that during the transients the computational
cost of AS-dNLMS is slightly higher than that of the dNLMS
algorithm with all nodes sampled, but decreases significantly
after AS-dNLMS converges and ceases to sample every node
at every iteration.

0.0 2.5 5.0 7.5 10.0

iterations (×103)

−30

−20

−10

0

10

20

(a
)

M
S

D
(d

B
)

Vs=20

Vs=15

Vs=10

Vs=5

AS-dLMS

1

1.9

2.8

(b
)
⊕
×

10
4

0.0 2.5 5.0 7.5 10.0

iterations (×103)

1

1.5

2

(c
)
⊗
×

10
4

Fig. 2: Comparison between dNLMS with a random sampling tech-
nique with different amounts of sampled nodes and AS-dNLMS (β“0.68,
µs“0.1571). (a) MSD curves, (b) Sums, and (c) Multiplications per iteration.

In Fig. 3 we present simulation results showing the average
number of sampled nodes during steady state in a stationary
environment, as well as the theoretical bounds given by (28)
for different values of β{σ2

maxě1. We can see that the higher
β is, the less nodes are sampled, as expected. Furthermore,
the experimental results lie between the theoretical curves for
all values of β{σ2

max, validating the results of Sec. IV.

100 101 102

β/σ2
max

20

15

10

5

0

E
{V

s
}

Experimental

Theoretical Bounds

Fig. 3: Average number of sampled nodes during steady state and
comparison with theoretical bounds of (28).

Finally, we consider the energy-saving version of AS-
dNLMS in which node k does not communicate with its
neighbors when it is not sampled. To assess its performance,
we compare it with the ACW-Selective algorithm of [11]
(ACW-S), the partial-update algorithm of [13] (PU-dNLMS),
and the dNLMS algorithm with a probabilistic transmission
strategy in which each link of the network is active at a

certain iteration n with probability pk (PT-dNLMS) [7]. In our
simulations, we adjusted the parameters of all the algorithms
to obtain roughly the same level of MSD during steady state.
For comparison, we also present the results obtained with the
original dNLMS algorithm and with the non-cooperative case.
In Fig. 4(a) we present the MSD performance, and in Fig. 4(b)
the number of communication processes per iteration tpnq.
To enable the comparison with the PU-dNLMS algorithm, we
scaled the number of communication processes by the ratio
of data sent in each transmission in this plot. We observe that
AS-dNLMS initially requires just as many transmissions as
the original dNLMS algorithm, but this number drastically
decreases after it converges. During steady state, it led to
the lowest number of communication processes among all the
solutions tested. It is interesting to note that, in a scenario
where the nodes are able to broadcast their estimates to all
their neighbors at once, the comparison shown in Fig. 4(b)
is unfair with the AS-dNLMS and ACW-S algorithms, since
in this case they are the only solutions that would lead to an
actual reduction in the number of communication processes.

0 10 20 30 40

iterations (×103)

−30

−20

−10

0

10

20

(a
)

M
S

D
(d

B
)

Non-cooperative

dNLMS

PU-dNLMS (L = 20)

PT-dNLMS (pk = 0.25)

ACW-S (Et = 1.6, Er = 2)

AS-dNLMS

0 10 20 30 40

iterations (×103)

0

70

140

(b
)
t(
n

)

Fig. 4: Comparison between the energy-saving version of AS-dNLMS
(β“0.68, µs“0.1571) and other techniques found in the literature [7], [11],
[13]. (a) MSD, and (b) Communications per iteration.

VI. CONCLUSIONS

In this paper, we generalize the sampling mechanism of [17]
for adaptive diffusion networks. The proposed mechanism
uses the information from more nodes when the error in the
network is high and less nodes otherwise. Besides reducing the
computational cost, it can be used to save energy by avoiding
transmissions of nodes that are not sampled. We observed
from simulations that AS-dNLMS maintains the convergence
rate of dNLMS during transient while displaying a lower
computational cost in steady state. The energy-saving version
of AS-dNLMS presents a slight increase in steady-state MSD,
but still exhibits a good tradeoff between performance and
energy consumption. The theoretical bounds for the number of
sampled nodes obtained in Sec. IV present a good agreement
with simulations, and are useful for the proper choice of
algorithm parameters. It should be mentioned that, although
we compared the proposed AS-dNLMS algorithm with other
techniques in Sec. V, it may be used in conjunction with these
methods, as well as many others [9], [11]–[14], to further
reduce the computational cost and the energy consumption
associated with the communication processes. For future work,
we intend to compare AS-dNLMS with other state-of-the-art

censoring mechanisms [12] and test it with other diffusion
schemes, such as decoupled algorithms [6].

REFERENCES

[1] A. H. Sayed, Adaptation, Learning, and Optimization over Networks,
vol. 7, Foundations and Trends in Machine Learning, now Publishers
Inc., Hanover, MA, 2014.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over
adaptive networks: formulation and performance analysis,” IEEE Trans.
Signal Process., vol. 56, pp. 3122–3136, 2008.

[3] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for
distributed estimation,” IEEE Trans. Signal Process., vol. 58, pp. 1035–
1048, 2009.

[4] N. Takahashi, I. Yamada, and A. H. Sayed, “Diffusion least-mean
squares with adaptive combiners: formulation and performance anal-
ysis,” IEEE Trans. Signal Process., vol. 58, pp. 4795–4810, 2010.

[5] C.-K. Yu and A. H. Sayed, “A strategy for adjusting combination weights
over adaptive networks,” in Proc. IEEE ICASSP, Vancouver, Canada,
2013, pp. 4579–4583.

[6] J. Fernandez-Bes, , J. Arenas-Garcı́a, M. T. M. Silva, and
L. A. Azpicueta-Ruiz, “Adaptive diffusion schemes for heterogeneous
networks.,” IEEE Trans. Signal Process., vol. 65, pp. 5661–5674, 2017.

[7] C. G. Lopes and A. H. Sayed, “Diffusion adaptive networks with
changing topologies,” in Proc.IEEE ICASSP, Las Vegas, NV, 2008,
pp. 3285–3288.

[8] X. Zhao and A. H. Sayed, “Single-link diffusion strategies over adaptive
networks,” in Proc. IEEE ICASSP, Kyoto, Japan, 2012, pp. 3749–3752.

[9] S. Xu, R. C. de Lamare, and H. V. Poor, “Adaptive link selection
algorithms for distributed estimation,” EURASIP Journal on Advances
in Signal Processing, vol. 2015, no. 1, pp. 86, 2015.

[10] N. Takahashi and I. Yamada, “Link probability control for probabilistic
diffusion least-mean squares over resource-constrained networks,” in
Proc. IEEE ICASSP, Dallas, TX, 2010, pp. 3518–3521.

[11] R. Arroyo-Valles, S. Maleki, and G. Leus, “A censoring strategy
for decentralized estimation in energy-constrained adaptive diffusion
networks,” in Proc. of IEEE Workshop on Signal Processing Advances
in Wireless Communications (SPAWC), Darmstadt, Germany, 2013, pp.
155–159.

[12] J. Fernandez-Bes, R. Arroyo-Valles, J. Arenas-Garcı́a, and J. Cid-
Sueiro, “Censoring diffusion for harvesting WSNs,” in Proc. of IEEE
International Workshop on Computational Advances in Multi-Sensor
Adaptive Processing (CAMSAP), Cancun, Mexico, 2015, pp. 237–240.

[13] R. Arablouei, S. Werner, Y. Huang, and K. Doğançay, “Distributed
least mean-square estimation with partial diffusion,” IEEE Trans. Signal
Process., vol. 62, no. 2, pp. 472–484, 2013.

[14] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Trading off complexity
with communication costs in distributed adaptive learning via Krylov
subspaces for dimensionality reduction,” IEEE Journal of Selected
Topics in Signal Processing, vol. 7, no. 2, pp. 257–273, 2013.

[15] D. K. Berberidis, V. Kekatos, G. Wang, and G. B. Giannakis, “Adaptive
censoring for large-scale regressions,” in Proc. IEEE ICASSP, Brisbane,
Australia, 2015, pp. 5475–5479.

[16] L. Yang, H. Zhu, K. Kang, X. Luo, H. Qian, and Y. Yang, “Distributed
censoring with energy constraint in wireless sensor networks,” in Proc.
IEEE ICASSP, Calgary, Canada, 2018, pp. 6428–6432.

[17] D. G. Tiglea, R. Candido, and M. T. M. Silva, “An adaptive sampling
technique for graph diffusion LMS algorithm,” in Proc. of European
Signal Processing Conference (EUSIPCO), A Coruña, Spain, 2019, pp.
1364–1368.

[18] R. Nassif, C. Richard, J. Chen, and A. H. Sayed, “Distributed diffusion
adaptation over graph signals,” in Proc. IEEE ICASSP, Brighton, UK,
2018, pp. 4129–4133.

[19] S. Tu and A. H. Sayed, “Optimal combination rules for adaptation and
learning over networks,” in IEEE International Workshop on Computa-
tional Advances in Multi-Sensor Adaptive Processing (CAMSAP), San
Juan, Puerto Rico, 2011, pp. 317–320.

[20] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H. Nasci-
mento, and A. H. Sayed, “Combinations of adaptive filters: performance
and convergence properties,” Signal Processing Magazine, vol. 33, pp.
120–140, 2016.

[21] M. Lázaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and
J. Arenas-Garcia, “Adaptively biasing the weights of adaptive filters,”
IEEE Trans. Signal Process., vol. 58, pp. 3890–3895, 2010.

