An Adaptive Sampling Technique for Graph Diffusion LMS Algorithm

Daniel Gilio Tiglea, Renato Candido, and Magno T. M. Silva

Polytechnic School - University of São Paulo, Brazil

September 4th, 2019

- Introduction
- Proposed sampling mechanism
- Simulation results
- 4 Conclusions

Introduction & Problem Formulation

- $\mathbf{A} \rightarrow V \times V$ adjacency matrix
- $\bullet \mathbf{x}(n) = [x_1(n), \cdots, x_k(n), \cdots, x_V(n)]$
- $\bullet \mathbf{v}(n) = [v_1(n), \cdots, v_k(n), \cdots, v_V(n)]$
- $\mathbf{y}(n) = [y_1(n), \dots, y_k(n), \dots, y_V(n)]$

Introduction & Problem Formulation

Information spreads from one node to another Optimal system processes information

Example: Evolution of Temperature over Time

¹ Instituto Nacional de Meteorologia (INMET), "Normais Climatológicas do Brasil." http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas.

² M. J. M. Spelta, "Brazilian weather stations." https://github.com/mspelta/brazilian-weather-stations #brazilian-weather-stations, 2018.

Problem Formulation

Information spreads from one node to another Optimal system processes information

$$\mathbf{z}_k(n) \triangleq \operatorname{col} \Big\{ [\mathbf{x}(n)]_k, \underbrace{[\mathbf{A}^1 \mathbf{x}(n-1)]_k, \cdots, [\mathbf{A}^{M-1} \mathbf{x}(n-M+1)]_k}_{\text{information spreading}} \\ \mathbf{h}^{\operatorname{o}} = [h_0^{\operatorname{o}}, \, \cdots, \, h_{M-1}^{\operatorname{o}}] \rightarrow \text{ opt. system} \\ y_k(n) = \mathbf{h}^{\operatorname{o}} \cdot \mathbf{z}_k(n) + v_k(n)$$

dLMS Algorithm³

 $^{^3}$ R. Nassif, C. Richard, J. Chen, and A.H. Sayed, "Distributed diffusion adaptation over graph signals," in Proc.

IEEE ICASSP. 2018, pp. 4129-4133

- Introduction
- Proposed sampling mechanism
- Simulation results
- 4 Conclusions

Modifying the dLMS algorithm

Modification: introduction of $\bar{s}_k(n) \in \{0, 1\}$

$$\begin{cases} \boldsymbol{\psi}_k(n+1) = \mathbf{h}_k(n) + \overline{s}_k(n)\mu_k(n)\mathbf{z}_k(n)e_k(n) \\ \mathbf{h}_k(n+1) = \sum_{j \in \mathcal{N}_k} w_{kj}\boldsymbol{\psi}_j(n+1) \end{cases}$$

If $\bar{s}_k(n) = 0$:

- $y_k(n)$ is not sampled
- $\mu_k(n)$, $\mathbf{z}_k(n)$ and $e_k(n)$ are not computed
- $\bullet \ \psi_k(n+1) = \mathbf{h}_k(n)$

Calculating $\bar{s}_k(n)$

Introducing $s_k(n) \in [0, 1]$ such that

$$\bar{s}_k(n) = \begin{cases} 1, \text{ if } s_k(n) > 0.5 \\ 0, \text{ otherwise} \end{cases}$$

$$J_{s,k}(n) = [s_k(n)] \beta s_k(n) + [1 - s_k(n)] \frac{1}{|\mathcal{N}_k|} \sum_{i \in \mathcal{N}_k} e_i^2(n)$$

- ullet eta: introduced to control how much we penalize sampling
- $\sum e_i^2(n)$ is large: $J_{s,k}(n)$ is minimized by making $s_k(n) \approx 1 \rightarrow \text{node } k$ is sampled
- $\sum e_i^2(n)$ is small: $J_{s,k}(n)$ is minimized by making $s_k(n) \approx 0 \rightarrow \operatorname{node} k$ is not sampled

Calculating $s_k(n)$

Auxiliary variable $\alpha_k(n)$ such that $s_k(n) = \phi\left[\alpha_k(n)\right]$

By taking $\dfrac{\partial J_{t,k}(n)}{\partial lpha_k(n)}$ and applying the gradient method:

$$\alpha_k(n+1) = \alpha_k(n) + \mu_s \phi' \left[\alpha_k(n) \right] \left[\frac{1}{|\mathcal{N}_k|} \sum_{i \in \mathcal{N}_k} \varepsilon_i^2(n) - \beta \overline{s}_k(n) \right]$$

- μ_s : step size
- ε_i : last measurement of e_i

AS-dLMS Algorithm

Choosing β

$$\alpha_k(n+1) = \alpha_k(n) + \mu_s \phi' \left[\alpha_k(n)\right] \left[\frac{1}{|\mathcal{N}_k|} \sum_{i \in \mathcal{N}_k} \varepsilon_i^2(n) - \boxed{\beta} \overline{s}_k(n) \right]$$

In order for the sampling to cease in the steady state, $\Delta\alpha_k(n)$ must be negative

Assuming:

- $\phi'[\alpha_k(n)]$ statistically independent from $e_i(n)$ and $\bar{s}_k(n)$
- $\mathrm{E}\{e_i^2(n)\} \approx \sigma_{v_i}^2$ in steady state

$$\beta > \sigma_{\max}^2 \triangleq \max_{i \in \mathcal{V}} \sigma_{v_i}^2$$

• $\beta \in]\sigma_{\max}^2, 10\sigma_{\max}^2] \rightarrow \text{performance preserved}$

Choosing μ_s

$$\alpha_k(n+1) = \alpha_k(n) + \underline{\mu_s} \phi' \left[\alpha_k(n) \right] \left[\frac{1}{|\mathcal{N}_k|} \sum_{i \in \mathcal{N}_k} \varepsilon_i^2(n) - \beta \overline{s}_k(n) \right]$$

Assuming $\beta > \sigma_{\max}^2$, we wish to choose μ_s such that the sampling ceases in at most Δn iterations after the steady state is achieved

$$\mu_s \gtrsim \frac{\xi}{\beta - \sigma_{\max}^2} \left[\rho^{1/\Delta n} - 1 \right]$$

• ξ and ρ : constants that depend on $\phi[\cdot]$

- Introduction
- 2 Proposed sampling mechanism
- Simulation results
- 4 Conclusions

Simulation Conditions

- Randomly generated graphs with 20 nodes
- \bullet Different values of $\sigma^2_{v_k}$ and $\tilde{\mu}_k$ for each node k

Comparison with random sampling

- ullet Random sampling: V_s nodes chosen randomly every iteration
- AS-dLMS ($\beta=0.03$ and $\mu_s=0.22$)
 - Slightly superior steady state performance
 - Same convergence rate as dLMS with all 20 nodes sampled
 - Computational cost: ↑ during transient, ↓↓ during steady state

Different values for β , $\mu_s = 0.22$

$$\beta > \sigma_{\text{max}}^2 = 0.01$$

- $\uparrow \beta$, \downarrow sampled nodes in steady state
- $\beta > 0.01 = \sigma_{\rm max}^2 \rightarrow {\rm nodes}$ cease to be sampled
- $\beta = 1 \rightarrow \text{poor performance}$

Testing the adjustment of μ_s ($\Delta n = 10^4$)

- ullet Nodes cease to be sampled $pprox \Delta n$ iterations after steady state
- $oldsymbol{\circ}$ $\beta=1$ ightarrow poor performance after abrupt change

Illustrative Example - One Realization

$$\beta = 0.03, \, \Delta n = 5 \cdot 10^3 \rightarrow \mu_s = 0.44$$

•: sampled •: not sampled

- Introduction
- 2 Proposed sampling mechanism
- Simulation results
- 4 Conclusions

Conclusions

- AS-dLMS × dLMS with all nodes sampled:
 - · Slight improvement in steady state performance
 - Same convergence rate
 - Computational cost: ↑ during transient, ↓↓ during steady state
- $\uparrow \beta \downarrow$ sampled nodes in steady state
- $\uparrow \uparrow \beta \rightarrow$ poor performance even with proper μ_s
- $\beta \in]\sigma_{\max}^2, 10\sigma_{\max}^2]$
- Theoretical result for $\mu_s \to \text{supported}$ by simulation results

Acknowledgements

Thank you!

Acknowledgements:

- National Council for Scientific and Technological Development (CNPq)
- National Council for the Improvement of Higher Education (CAPES)
- São Paulo Research Foundation (FAPESP)

Choosing μ_s

Assuming $\beta > \sigma_{\max}^2$, how can we choose μ_s such that the sampling ceases in at most Δn iterations after the steady state is achieved?

Maintaining previous assumptions & considering a linear approximation for $\phi'\left[\alpha_k(n)\right]$

$$\phi'[\alpha_k(n)] \approx \rho \alpha_k(n) + \phi'_0,$$

$$\mu_s \gtrsim \frac{\alpha^+}{(\beta - \sigma_{\max}^2)(\phi_0' - \phi_{\alpha^+}')} \left[\left(\frac{\phi_0'}{\phi_{\alpha^+}'} \right)^{1/\Delta n} - 1 \right]$$

Comparison with random sampling

- ullet Random sampling: V_s nodes chosen randomly every iteration
- AS-dLMS ($\beta = 0.03$ and $\mu_s = 0.22$)
 - Slightly superior steady state performance
 - Same convergence rate as dLMS with all 20 nodes sampled
 - Computational cost: ↑ during transient, ↓↓ during steady state

Different values for β , $\mu_s = 0.22 \ (\beta > \sigma_{\rm max}^2)$

- $\uparrow \beta$, \downarrow sampled nodes in steady state
- $\sigma_{v_i}^2 = 0.01 \ \forall \ i \rightarrow \beta = 0.01$ all nodes are always sampled
- $\beta > 0.01 = \sigma_{\rm max}^2 \rightarrow {\rm nodes}$ cease to be sampled
- $\beta = 1 \rightarrow \text{poor performance}$

Testing the adjustment of μ_s

$$\mu_{s} \gtrsim \frac{\xi}{\beta - \sigma_{\max}^{2}} \left[\rho^{1/\Delta n} - 1 \right]$$

$$0 \downarrow \rho = 0.02 \\ \rho = 0.02 \\ \rho = 0.03 \\$$

- ullet Nodes cease to be sampled $pprox \Delta n$ iterations after steady state
- $oldsymbol{\circ}$ $\beta=1$ ightarrow poor performance after abrupt change