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Introduction

Example: Evolution of Temperature over Time

Monthly Average Temperature'? (°C)

1 Instituto Nacional de Meteorologia (INMET), “Normais Climatolégicas do Brasil." http://www.inmet.gov.br/
portal /index.php?r=clima/normaisClimatologicas.
2 M. J. M. Spelta, “Brazilian weather stations.” https://github.com/mspelta/brazilian-weather-stations

##brazilian-weather-stations, 2018.
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. . hd .
information spreading

h® = 87 -+, hiy_1] — opt. system

yr(n) = h°® - zx(n) + vi(n)
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dLMS Algorithm?

opt. system

[Adaptation Step
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3R Nassif, C. Richard, J. Chen, and A.H. Sayed, “Distributed diffusion adaptation over graph signals,” in Proc.

IEEE ICASSP, 2018, pp. 4129-4133
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Proposed sampling mechanism

Modifying the dLMS algorithm

Modification: introduction of s;(n) € {0, 1}

{ { Yr(n + 1) = hg(n) + 51(n)ur(n)zr(n)ex(n)

hi(n+1) = X jen, wiy¥i(n +1)

If 5x(n) =0:
@ yi(n) is not sampled
@ ux(n), zx(n) and ex(n) are not computed

o Yp(n+1) = hy(n)



Proposed sampling mechanism

Calculating 5x(n)

Introducing si(n) € [0, 1] such that

51(n) = {1, if si(n) > 0,5

0, otherwise

, 1
Jax(n) = [se(n)] s, (n)+[1—sk(n)] 72 e2(n)
| |L€J\/
@ (3: introduced to control how much we penalize sampling
o Ye?(n) is large: Jsx(n) is minimized by making
sg(n) 1 — node k is sampled
(

o Y'e?(n) is small: J,x(n) is minimized by making
sg(n) ~ 0 — node k is not sampled



Proposed sampling mechanism

Calculating si(n)

Auxiliary variable a(n) such that si(n) = ¢ [ax(n)]

1

¢ [ax(n)]

—4 ) 0 2 4

aJt,k (n) ay(n)

By taking Zave(n) and applying the gradient method:

orlon 1) = wpl)en )] Wlkl S 2(n) — Bau(n)
€N

@ s step size
@ g;: last measurement of ¢;

AS-dLMS Algorithm
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Choosing

ox(m+ 1) = ag(m) + ! fos ) | 1 35 <Em) = [Tl

€N,

In order for the sampling to cease in the steady state, Aag(n)
must be negative

Assuming:
o ¢ [ax(n)] statistically independent from e;(n) and si(n)

o E{e(n)} ~ o2 in steady state

2

2
A
hax = Max oy

> 0o
/B ey ‘

o B€lo, .« 1002

& ax> 1005 . | — performance preserved



Proposed sampling mechanism

Choosing s

ap(n +1) = ag(n) + 1 ¢ [ar(n [Ml”Z i(n) — Bsi(n )]

zeNk

Assuming 3 > o2, we wish to choose i such that the sampling

ceases in at most An iterations after the steady state is achieved

s ﬁ_% | p/an 1]

max

@ ¢ and p: constants that depend on ¢[-]
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Simulation results

Simulation Conditions

@ Randomly generated graphs with 20 nodes

o Different values of ng and fij for each node k
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Simulation results

Comparison with random sampling

@ Random sampling: Vs nodes chosen randomly every iteration
@ AS-dLMS (8 = 0.03 and ps = 0.22)

e Slightly superior steady state performance
e Same convergence rate as dLMS with all 20 nodes sampled
e Computational cost: 1 during transient, || during steady state

iterations (x10%) iterations (x10%)



Simulation results

Different values for 3, us = 0.22

f>0o2. . =001

max

MSD (dB)

0 5 10 15 0 5 10 15

iterations (x10%) iterations (x10%)

e 1T B, | sampled nodes in steady state

e 3>0.01 =02, — nodes cease to be sampled

@ =1 — poor performance



Simulation results

Testing the adjustment of p, (An = 10%)

s R 552 [PI/A” — 1]

~ Omax

B Is =

=0.015
0015 | 0.88 ¥ oo
0.02 0.44 & 5=003
003 | 022 o
1 0.0044 , ,

T T
0 2.5 5 7.5 10
iterations (x10%)

@ Nodes cease to be sampled ~ An iterations after steady state

@ 3 =1 — poor performance after abrupt change



Simulation results

lllustrative Example - One Realization

B=0.03 An=5-10° - p, = 0.44

e: sampled e: not sampled

05 1

S
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Conclusions

AS-dLMS x dLMS with all nodes sampled:

e Slight improvement in steady state performance

e Same convergence rate

e Computational cost: 1 during transient, || during steady state
1 B | sampled nodes in steady state
11 B — poor performance even with proper s
B €]0 i 100 ]

Theoretical result for us — supported by simulation results
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Conclusions

Choosing s

Assuming 3 > o2, how can we choose i such that the sampling

ceases in at most An iterations after the steady state is achieved?

Maintaining previous assumptions & considering a linear
approximation for ¢’ [ay(n)]

¢ [an(n)]~ par(n) + 6,

+ / 1/An
S 2 @ ¢0 ) — 1
Mo ™ (8= 02 (0 — 9r) [(¢>’a+ ]




Conclusions

Comparison with random sampling

@ Random sampling: Vs nodes chosen randomly every iteration
@ AS-dLMS (8 = 0.03 and ps = 0.22)

(a) MSD (dB)

e Slightly superior steady state performance
e Same convergence rate as dLMS with all 20 nodes sampled
e Computational cost: 1 during transient, || during steady state

iterations (x10%) iterations (x10%)
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Different values for 3, u, = 0.22 (8 > 02,.)

max
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e 1T [, | sampled nodes in steady state

e 05 =0,01Vi— =001 all nodes are always sampled
e 3> 0,01 =02, — nodes cease to be sampled

@ =1 — poor performance
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Testing the adjustment of
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@ Nodes cease to be sampled ~ An iterations after steady state

@ 3 =1 — poor performance after abrupt change



	Introduction
	Proposed sampling mechanism
	Simulation results
	Conclusions

	1.Plus: 
	1.Reset: 
	1.Minus: 
	1.EndRight: 
	1.StepRight: 
	1.PlayPauseRight: 
	1.PlayRight: 
	1.PauseRight: 
	1.PlayPauseLeft: 
	1.PlayLeft: 
	1.PauseLeft: 
	1.StepLeft: 
	1.EndLeft: 
	anm1: 
	1.298: 
	1.297: 
	1.296: 
	1.295: 
	1.294: 
	1.293: 
	1.292: 
	1.291: 
	1.290: 
	1.289: 
	1.288: 
	1.287: 
	1.286: 
	1.285: 
	1.284: 
	1.283: 
	1.282: 
	1.281: 
	1.280: 
	1.279: 
	1.278: 
	1.277: 
	1.276: 
	1.275: 
	1.274: 
	1.273: 
	1.272: 
	1.271: 
	1.270: 
	1.269: 
	1.268: 
	1.267: 
	1.266: 
	1.265: 
	1.264: 
	1.263: 
	1.262: 
	1.261: 
	1.260: 
	1.259: 
	1.258: 
	1.257: 
	1.256: 
	1.255: 
	1.254: 
	1.253: 
	1.252: 
	1.251: 
	1.250: 
	1.249: 
	1.248: 
	1.247: 
	1.246: 
	1.245: 
	1.244: 
	1.243: 
	1.242: 
	1.241: 
	1.240: 
	1.239: 
	1.238: 
	1.237: 
	1.236: 
	1.235: 
	1.234: 
	1.233: 
	1.232: 
	1.231: 
	1.230: 
	1.229: 
	1.228: 
	1.227: 
	1.226: 
	1.225: 
	1.224: 
	1.223: 
	1.222: 
	1.221: 
	1.220: 
	1.219: 
	1.218: 
	1.217: 
	1.216: 
	1.215: 
	1.214: 
	1.213: 
	1.212: 
	1.211: 
	1.210: 
	1.209: 
	1.208: 
	1.207: 
	1.206: 
	1.205: 
	1.204: 
	1.203: 
	1.202: 
	1.201: 
	1.200: 
	1.199: 
	1.198: 
	1.197: 
	1.196: 
	1.195: 
	1.194: 
	1.193: 
	1.192: 
	1.191: 
	1.190: 
	1.189: 
	1.188: 
	1.187: 
	1.186: 
	1.185: 
	1.184: 
	1.183: 
	1.182: 
	1.181: 
	1.180: 
	1.179: 
	1.178: 
	1.177: 
	1.176: 
	1.175: 
	1.174: 
	1.173: 
	1.172: 
	1.171: 
	1.170: 
	1.169: 
	1.168: 
	1.167: 
	1.166: 
	1.165: 
	1.164: 
	1.163: 
	1.162: 
	1.161: 
	1.160: 
	1.159: 
	1.158: 
	1.157: 
	1.156: 
	1.155: 
	1.154: 
	1.153: 
	1.152: 
	1.151: 
	1.150: 
	1.149: 
	1.148: 
	1.147: 
	1.146: 
	1.145: 
	1.144: 
	1.143: 
	1.142: 
	1.141: 
	1.140: 
	1.139: 
	1.138: 
	1.137: 
	1.136: 
	1.135: 
	1.134: 
	1.133: 
	1.132: 
	1.131: 
	1.130: 
	1.129: 
	1.128: 
	1.127: 
	1.126: 
	1.125: 
	1.124: 
	1.123: 
	1.122: 
	1.121: 
	1.120: 
	1.119: 
	1.118: 
	1.117: 
	1.116: 
	1.115: 
	1.114: 
	1.113: 
	1.112: 
	1.111: 
	1.110: 
	1.109: 
	1.108: 
	1.107: 
	1.106: 
	1.105: 
	1.104: 
	1.103: 
	1.102: 
	1.101: 
	1.100: 
	1.99: 
	1.98: 
	1.97: 
	1.96: 
	1.95: 
	1.94: 
	1.93: 
	1.92: 
	1.91: 
	1.90: 
	1.89: 
	1.88: 
	1.87: 
	1.86: 
	1.85: 
	1.84: 
	1.83: 
	1.82: 
	1.81: 
	1.80: 
	1.79: 
	1.78: 
	1.77: 
	1.76: 
	1.75: 
	1.74: 
	1.73: 
	1.72: 
	1.71: 
	1.70: 
	1.69: 
	1.68: 
	1.67: 
	1.66: 
	1.65: 
	1.64: 
	1.63: 
	1.62: 
	1.61: 
	1.60: 
	1.59: 
	1.58: 
	1.57: 
	1.56: 
	1.55: 
	1.54: 
	1.53: 
	1.52: 
	1.51: 
	1.50: 
	1.49: 
	1.48: 
	1.47: 
	1.46: 
	1.45: 
	1.44: 
	1.43: 
	1.42: 
	1.41: 
	1.40: 
	1.39: 
	1.38: 
	1.37: 
	1.36: 
	1.35: 
	1.34: 
	1.33: 
	1.32: 
	1.31: 
	1.30: 
	1.29: 
	1.28: 
	1.27: 
	1.26: 
	1.25: 
	1.24: 
	1.23: 
	1.22: 
	1.21: 
	1.20: 
	1.19: 
	1.18: 
	1.17: 
	1.16: 
	1.15: 
	1.14: 
	1.13: 
	1.12: 
	1.11: 
	1.10: 
	1.9: 
	1.8: 
	1.7: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.11: 
	0.10: 
	0.9: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


