An Adaptive Sampling Technique for Graph
Diffusion LMS Algorithm

Daniel Gilio Tiglea, Renato Candido, and Magno T. M. Silva

Polytechnic School - University of S3o Paulo, Brazil

September 4" 2019

@ Introduction
© Proposed sampling mechanism
© Simulation results

@ Conclusions

Introduction

Introduction & Problem Formulation

A \j ~ o A — V xV adjacency matrix
‘\ # o b X(n) = [xl(n)7 B xk(n)ﬂ) :IJV(TL)]
l‘l/ L7 ° V(”) = [’1)1(77,), T 1"/&‘(”)7 o, Uy
|

(
o y(n) = [m(n), -+, wln), e (n

Introduction

Introduction & Problem Formulation

\ =~ @ A — V x V adjacency matrix
“ \#) j _ J y

|

|

-~ b X(n) = [33‘1(7’1), B SUk(n),) :I;V(n)]
19! // ° V(”) = ['1)1(77,), T 1’79(77/)7 B ”‘"(n)]
l o y(n) = [m(n), -+, yum), -+, yu(m)]

Information spreads from one node to another
Optimal system processes information

Introduction

Example: Evolution of Temperature over Time

Monthly Average Temperature'? (°C)

1 Instituto Nacional de Meteorologia (INMET), “Normais Climatolégicas do Brasil." http://www.inmet.gov.br/
portal /index.php?r=clima/normaisClimatologicas.
2 M. J. M. Spelta, “Brazilian weather stations.” https://github.com/mspelta/brazilian-weather-stations

##brazilian-weather-stations, 2018.

Introduction

Problem Formulation

\ =~ @ A — V x V adjacency matrix
\‘ \# /jg) J Yy

|

|

T b X(n) = [331(71), B xk(n)ﬂ T ‘/I;V(n)]
T o v(n) = [vi(n), -+, vx(n), -, vy(n)]
l o y(n) = [pa(n), -+ (), -+, ()
/
Information spreads from one node to another
Optimal system processes information
26(n) col{ [x(m)], [Ax(n—1)]i, -, [AY x(n—M+1)], }

. . hd .
information spreading

h® = 87 -+, hiy_1] — opt. system

yr(n) = h°® - zx(n) + vi(n)

Introduction

dLMS Algorithm?

opt. system

[Adaptation Step

1 I
1 I
1 I
1 I
1 [: N/
| Pi(n+1) = hy(n) + uk(n)Zk(n)ek(n;J L
1 ﬁ> I
1 ex(n) |
= W (n+1) I
1 I
1 I
| [Combination Step |
! L’ hy(n+1) = 3 wyieh;(n + 1) !
1 NG I
; hy(n+1) S |
1 I
P(n+1) P(n+1) P (n+1)

3R Nassif, C. Richard, J. Chen, and A.H. Sayed, “Distributed diffusion adaptation over graph signals,” in Proc.

IEEE ICASSP, 2018, pp. 4129-4133

Proposed sampling mechanism

e Proposed sampling mechanism

Proposed sampling mechanism

Modifying the dLMS algorithm

Modification: introduction of s;(n) € {0, 1}

{ { Yr(n + 1) = hg(n) + 51(n)ur(n)zr(n)ex(n)

hi(n+1) = X jen, wiy¥i(n +1)

If 5x(n) =0:
@ yi(n) is not sampled
@ ux(n), zx(n) and ex(n) are not computed

o Yp(n+1) = hy(n)

Proposed sampling mechanism

Calculating 5x(n)

Introducing si(n) € [0, 1] such that

51(n) = {1, if si(n) > 0,5

0, otherwise

, 1
Jax(n) = [se(n)] s, (n)+[1—sk(n)] 72 e2(n)
| |L€J\/
@ (3: introduced to control how much we penalize sampling
o Ye?(n) is large: Jsx(n) is minimized by making
sg(n) 1 — node k is sampled
(

o Y'e?(n) is small: J,x(n) is minimized by making
sg(n) ~ 0 — node k is not sampled

Proposed sampling mechanism

Calculating si(n)

Auxiliary variable a(n) such that si(n) = ¢ [ax(n)]

1

¢ [ax(n)]

—4) 0 2 4

aJt,k (n) ay(n)

By taking Zave(n) and applying the gradient method:

orlon 1) = wpl)en)] Wlkl S 2(n) — Bau(n)
€N

@ s step size
@ g;: last measurement of ¢;

AS-dLMS Algorithm

Proposed sampling mechanism

Choosing

ox(m+ 1) = ag(m) + ! fos) | 1 35 <Em) = [Tl

€N,

In order for the sampling to cease in the steady state, Aag(n)
must be negative

Assuming:
o ¢ [ax(n)] statistically independent from e;(n) and si(n)

o E{e(n)} ~ o2 in steady state

2

2
A
hax = Max oy

> 0o
/B ey ‘

o B€lo, .« 1002

& ax> 1005 . | — performance preserved

Proposed sampling mechanism

Choosing s

ap(n +1) = ag(n) + 1 ¢ [ar(n [Ml”Z i(n) — Bsi(n)]

zeNk

Assuming 3 > o2, we wish to choose i such that the sampling

ceases in at most An iterations after the steady state is achieved

s ﬁ_% | p/an 1]

max

@ ¢ and p: constants that depend on ¢[-]

Simulation results

© Simulation results

Simulation results

Simulation Conditions

@ Randomly generated graphs with 20 nodes

o Different values of ng and fij for each node k

x1073
10 4
ot]

a i

. '. 5 O
A 0 T T T T T

o » 11

% . asd -

WA = ? = 0.5 A

o . 0
® 1 5 10 15 20

Simulation results

Comparison with random sampling

@ Random sampling: Vs nodes chosen randomly every iteration
@ AS-dLMS (8 = 0.03 and ps = 0.22)

e Slightly superior steady state performance
e Same convergence rate as dLMS with all 20 nodes sampled
e Computational cost: 1 during transient, || during steady state

iterations (x10%) iterations (x10%)

Simulation results

Different values for 3, us = 0.22

f>0o2. . =001

max

MSD (dB)

0 5 10 15 0 5 10 15

iterations (x10%) iterations (x10%)

e 1T B, | sampled nodes in steady state

e 3>0.01 =02, — nodes cease to be sampled

@ =1 — poor performance

Simulation results

Testing the adjustment of p, (An = 10%)

s R 552 [PI/A” — 1]

~ Omax

B Is =

=0.015
0015 | 0.88 ¥ oo
0.02 0.44 & 5=003
003 | 022 o
1 0.0044 , ,

T T
0 2.5 5 7.5 10
iterations (x10%)

@ Nodes cease to be sampled ~ An iterations after steady state

@ 3 =1 — poor performance after abrupt change

Simulation results

lllustrative Example - One Realization

B=0.03 An=5-10° - p, = 0.44

e: sampled e: not sampled

05 1

S

Conclusions

@ Conclusions

Conclusions

Conclusions

AS-dLMS x dLMS with all nodes sampled:

e Slight improvement in steady state performance

e Same convergence rate

e Computational cost: 1 during transient, || during steady state
1 B | sampled nodes in steady state
11 B — poor performance even with proper s
B €]0 i 100]

Theoretical result for us — supported by simulation results

Conclusions

Acknowledgements

Thank you!

Acknowledgements:

QAcnPq @ A FAPESP

CAPES

@ National Council for Scientific and Technological Development (CNPq)
@ National Council for the Improvement of Higher Education (CAPES)
@ S3o Paulo Research Foundation (FAPESP)

Conclusions

Choosing s

Assuming 3 > o2, how can we choose i such that the sampling

ceases in at most An iterations after the steady state is achieved?

Maintaining previous assumptions & considering a linear
approximation for ¢’ [ay(n)]

¢ [an(n)]~ par(n) + 6,

+ / 1/An
S 2 @ ¢0) — 1
Mo ™ (8= 02 (0 — 9r) [(¢>’a+]

Conclusions

Comparison with random sampling

@ Random sampling: Vs nodes chosen randomly every iteration
@ AS-dLMS (8 = 0.03 and ps = 0.22)

(a) MSD (dB)

e Slightly superior steady state performance
e Same convergence rate as dLMS with all 20 nodes sampled
e Computational cost: 1 during transient, || during steady state

iterations (x10%) iterations (x10%)

Conclusions

Different values for 3, u, = 0.22 (8 > 02,.)

max

—A- 5=0.01

W 8=0.02

- 3=0.03
—~ 0 _ —~ 0
m Rakes m
E =z
a -20 A -20
2] 2]
= =
= .40 2 40

-60 -60
20 20
) £ 15)
=10 =10
<° 5 = 5
0 r T T O r T T
0 5 10 15 0 5 10 15
iterations (x10%) iterations (x10%)

e 1T [, | sampled nodes in steady state

e 05 =0,01Vi— =001 all nodes are always sampled
e 3> 0,01 =02, — nodes cease to be sampled

@ =1 — poor performance

Conclusions

Testing the adjustment of

—A- $=0.015 s 20 1
-V 5=0.02 £ 151
- 5=0.03 ® |
04 5= = 1g
=]
0] T

(a) MSD (dB)

—25

1 -

2.5 5.0 7.5 10.0

0.0 2.5 5.0 7.5 10.0
iterations (x10%) iterations (x10%)

@ Nodes cease to be sampled ~ An iterations after steady state

@ 3 =1 — poor performance after abrupt change

	Introduction
	Proposed sampling mechanism
	Simulation results
	Conclusions

	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.298:
	1.297:
	1.296:
	1.295:
	1.294:
	1.293:
	1.292:
	1.291:
	1.290:
	1.289:
	1.288:
	1.287:
	1.286:
	1.285:
	1.284:
	1.283:
	1.282:
	1.281:
	1.280:
	1.279:
	1.278:
	1.277:
	1.276:
	1.275:
	1.274:
	1.273:
	1.272:
	1.271:
	1.270:
	1.269:
	1.268:
	1.267:
	1.266:
	1.265:
	1.264:
	1.263:
	1.262:
	1.261:
	1.260:
	1.259:
	1.258:
	1.257:
	1.256:
	1.255:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

