Channel equalization for synchronization of Ikeda maps
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1 IntrOdUCtion where master and slave may be achieved for an ideal
6 — O Cs channel, considering two situations: m(n) = 1 and
n — Vi1 9 ' '
This paper proposes an adaptive equalization L +zi(n — 1) + 25(n — I)m?(n — 1) a binary equiprobable random message, m(n) &
scheme to recover a binary sequence modula- C;, 1 = 1,2, 3 are constant parameters of the |keda -1, +1}.
ted by a chaotic signal, which in turn is genera- map and m*(n — 1) = 1.
ted by lkeda maps. The proposed scheme em- In the CSG O‘f theArecelver, we h_ave _ = 0.1 1
ploys the normalized least-mean-squares (NLMS) A(n)=Cy| 0 gn — sl gn (1) m(% e Z 01
algorithm with a modification to enable chaotic ] T BRI - X 005
where 05 |
synchronization even when the communication C z
- - A, =C - . 0
channel is not ideal. L1 #2(n — 1)+ 22(n — 1)m2(n — 1)
This chaotic communication system
n
1. provides an alternative spread spectrum modu- | |
lation that | the level of bri 1 dat m(n) m(n — A) Maximum absolute value of the eigenvalues of
ation | a. mproves the level of privacy In dald z7A A, (n) — Ai(n)] along the iterations; Ikeda map
transmission; (x(0) = 0; %(0) = [0.1 —0.1]"; C; =04, Cy = 0.9,

2. may present the properties of spread spectrum C3 =06, and R = 1)

modulations, as multipath and jamming immu- s(n) We have synchronization for both cases, since

|
¢ | max; |\i(n)| < 1, Vn for the two cases considered.
m ' 4. The cNLMS algorithm
CSG |
|
|

nity.

2. Problem Formulation

- The binary signal m(n) € {—1, +1} is encoded by

table below, we define the following instantaneous

using the second component of the state vector cost-function

m To obtain the stochastic gradient algorithm shown in

x(n), i.e., ) e J(n) = €*(n) = [m(n — A) — m(n)]’
s(n) =m(n)xrs(n -
_ _Traﬂsml_tter_ . and follow the same steps for obtaining the NLMS
-The signal s(n) is fed back and transmitted th- algorithm.
rough a communication channel (ISI + noise) channel
- The adaptive equalizer is an M-tap FIR filter with ) Initialize the algorithm by setting;
input regressor vector r(n) and output P — o w(=1)=0, x(0)=[0.1 =01, b=[R 0]
s(n)=r"(n)w(n — 1) Zo(n) o m(n N | 0, ¢: small positive constants
\1/
- A is the delay of the cascade channel + equalizer I | X: large positive constant
- If transmitter and receiver completely synchronize, |
R , _ , I Forn =0,1, 2, 3 ..., compute:
x(n) — x(n) and the information signal can be de- |
coded via | s(n) =r'(n)w(n — 1)
m(n) = s5(n)/Za(n) ] | To avoid wrong estimates when z,(n) is too large
if |2 > X
where z,(n) is the estimate of xy(n) and the se- | sz(nﬂ o
~ ] To(n) — Xsign| Zy(n) |
cond component of the state vector x(n) ond

- The equalizer is adapted in a supervised manner To prevent division by a value close to zero
through the error | Receiver if |Zo(n)| <e

________J

e(n) =m(n — A) —m(n) Chaotic communication system m(n) = sign|s(n) Zx(n) |
. . else
where {m(n — A)} is a training sequence R
: : . S(n)
-The equations governing the global dynamical 3. Synch ronization for an mn) = Zo(n)
system have the following form (Ikeda map) ideal channel end
e(n) =m(n —A) —m(n)
Master: x(n) = Ay(n)x(n —1)+[R 0] The synchronization error is defined as &(n) = _
L R . x(n) — x(n), which can be rewritten as w(n)=w(n—1)- He To(n)e(n)r(n)
Slave: x(n)=A,(n)X(n—1)+[R 0] 0+ ||r(n)]|?
£(n) = [A(n) — Ay(n)] €(n — 1) R
where x(n) £ [z1(n) z2(n)]', X(n) £ [T1(n) Z2(n)] , Ops1 = C — CSAQ —
and B is a constant Master and slave are said completely synch- 1+ 25(n) + 23(n)m?*(n)
A ronized if £&(n)—0 as n grows. Consequently, o5 d) snd o 1T1 0o
In the chaotic signal generator (CSG) of the trans- they synchronize completely if the eigenvalues of A(n+1)=0Cy| o _
- . . sin 6,11 cosOp,1 | |0 m(n)

mitter, we have A,(n) — Ay(n)| satisfy |N\;(n)| < 1, = 1,2, for all n. - Il

- AT - _ | | X(n+1)=A,(n+1)X(n)+b

B cost, —sind, | |1 0 In the figure below, we show a numerical simula-
At(n) — CQ : 9 : : . . end
sinf,  cosf,| |0 m(n—1) tion to illustrate that the synchronization between
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5. Stability conditions

The update equation of cNLMS can be rewritten as

_| z r(n)r'(n | w(n —
+ /ji'\Q(n)m(n>5 —I—I"’(IZL)HQ (%)

The matrix between brackets has M —1 eigenvalues
equal to one and one eigenvalue equal to

M =1—fir'(n)r(n)/[0 + [r(n)]].

Noticing that
r'(n)r(n)
0 <
T O+ [lr(n)]?
and for [|r(n)[|* > &, r"(n)r(n)/(6 + [Ir(n)[]*) ~ 1, in
order to ensure |\| < 1, we must choose ;i in the
interval

<1,

0<p<?2

The norm of the second term of the r.h.s. of (%) is
bounded since

Ir(n)] V6

<nX—<oo.

0 < p|xo(n)| |m(n) 5+ e(n)|2 = 20

Therefore, using (deterministic) exponential stabi-
lity results for the LMS algorithm, we conclude that
cNLMS is stable in a robust sense if ;i is chosen
in the interval 0 < ;1 < 2.

6. Simulation results

- The parameters of the |lkeda map were set as
Ci=04,C,=0.9, Cg = 0, and R =1

- The state vectors were initialized as x(0) = 0 and
x(0)=[0.1 —0.1]"

-We assume the transmission of a binary se-
quence m(n) € {—1,1}

- The equalizers were initialized as w(0) = 0

- For comparison, we also consider the chaotic
communication system without equalizer, in which

s(n) =r(n)

Scenario 1

The encoded sequence s(n) Is transmitted through

the channel
1

1+ 0.6z1
with SNR =30dB, A =0and M = 2.

Hl(Z) —

cNLMS approaches to w, =~ |1 0.6]" and there-
fore, the equalizer is working as expected since
this solution mitigates the intersymbol interference,
recovering properly the transmitted sequence. The
communication is completely lost in the case with
no equalizer.
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Scenario 2

The encoded sequence s(n) is transmitted initially
through the real part of the telephonic channel [Pic-
chi & Prati, 1987] and changed to its imaginary part
at n = 1000, with SNR = 30 dB, A =8, and M = 15.
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QCNPq

cNLMS converges to the Wiener solution and is
able to track the abrupt variation in the chan-
nel, leading approximately 600 iterations to achieve
the steady-state again. The equalizer plays an im-
portant role to mitigate the intersymbol interference
since the performance of the system without equali-
zer iIs much worse.

Scenario 3

We assume SNR = 30dB, M =5, A = 3, and the
channel Hs(z) = hg+ 27" + hoz™2, 0 < hy < 0.5 10
obtain BER curves as a function of hy. The smaller
the value of i the lower the intersymbol interference
introduced by the channel.
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Bit error rate as a function of the channel
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cNLMS outperforms the case with no equalizer
for by > 0. The relatively high BER ~ 1072 in the
left of the figure is only due to channel noise and
reflects the extreme sensitivity of chaotic synchroni-
zation to noise. The issue of channel equalization
was successfully solved as shows the almost
coincidence of the cNLMS and Wiener solution
curves.

7. Conclusions

In this paper, we proposed a supervised equaliza-
tion scheme based on the NLMS algorithm for re-
covering a binary sequence in chaos-based digital

communication systems. The main conclusions are:

- simulations show that the proposed algorithm
can successfully permit chaotic communicati-

ons,

-this is the first adaptive scheme proposed for
the chaotic modulation in which the message
is fed back into the CSG; and

- although we considered the lkeda map in the si-
mulations, the cNLMS algorithm can be also
used with other chaotic maps (e.g., Hénon

map).
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