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1. Introduction

This paper proposes an adaptive equalization

scheme to recover a binary sequence modula-

ted by a chaotic signal, which in turn is genera-

ted by Ikeda maps. The proposed scheme em-

ploys the normalized least-mean-squares (NLMS)

algorithm with a modification to enable chaotic

synchronization even when the communication

channel is not ideal.

This chaotic communication system

1. provides an alternative spread spectrum modu-

lation that improves the level of privacy in data

transmission;

2. may present the properties of spread spectrum

modulations, as multipath and jamming immu-

nity.

2. Problem Formulation

- The binary signal m(n) ∈ {−1, +1} is encoded by

using the second component of the state vector

x(n), i.e.,
s(n) = m(n)x2(n)

- The signal s(n) is fed back and transmitted th-

rough a communication channel (ISI + noise)

- The adaptive equalizer is an M -tap FIR filter with

input regressor vector r(n) and output

ŝ(n) = r
T(n)w(n− 1)

- ∆ is the delay of the cascade channel + equalizer

- If transmitter and receiver completely synchronize,

x̂(n)→ x(n) and the information signal can be de-

coded via
m̂(n) , ŝ(n)/x̂2(n)

where x̂2(n) is the estimate of x2(n) and the se-

cond component of the state vector x̂(n)

- The equalizer is adapted in a supervised manner

through the error

e(n) = m(n−∆)− m̂(n)

where {m(n−∆)} is a training sequence

- The equations governing the global dynamical

system have the following form (Ikeda map)

Master: x(n) = At(n)x(n− 1) + [ R 0 ]T

Slave: x̂(n) = Ar(n)x̂(n− 1) + [ R 0 ]T

where x(n) , [x1(n) x2(n)]T, x̂(n) , [x̂1(n) x̂2(n)]T,

and R is a constant.

In the chaotic signal generator (CSG) of the trans-

mitter, we have

At(n) = C2

[
cos θn − sin θn

sin θn cos θn

] [
1 0
0 m(n− 1)

]
,

where

θn = C1 −
C3

1 + x2
1(n− 1) + x2

2(n− 1)m2(n− 1)
,

Ci, i = 1, 2, 3 are constant parameters of the Ikeda

map and m2(n− 1) = 1.

In the CSG of the receiver, we have

Ar(n) = C2

[
cos θ̂n − sin θ̂n

sin θ̂n cos θ̂n

] [
1 0
0 m̂(n− 1)

]
,

where

θ̂n = C1 −
C3

1 + x̂2
1(n− 1) + x̂2

2(n− 1)m̂2(n− 1)
.
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3. Synchronization for an
ideal channel

The synchronization error is defined as ξ(n) ,

x̂(n)− x(n), which can be rewritten as

ξ(n) = [Ar(n)−At(n)] ξ(n− 1)

Master and slave are said completely synch-

ronized if ξ(n)→0 as n grows. Consequently,
they synchronize completely if the eigenvalues of
[Ar(n)−At(n)] satisfy |λi(n)| < 1, i = 1, 2, for all n.

In the figure below, we show a numerical simula-
tion to illustrate that the synchronization between

master and slave may be achieved for an ideal

channel, considering two situations: m(n) = 1 and
a binary equiprobable random message, m(n) ∈
{−1, +1}.
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Maximum absolute value of the eigenvalues of
[Ar(n)−At(n)] along the iterations; Ikeda map
(x(0) = 0; x̂(0) = [0.1 − 0.1]T; C1 = 0.4, C2 = 0.9,

C3 = 6, and R = 1)

We have synchronization for both cases, since
maxi |λi(n)| < 1, ∀n for the two cases considered.

4. The cNLMS algorithm

To obtain the stochastic gradient algorithm shown in
table below, we define the following instantaneous
cost-function

Ĵ(n) = e2(n) = [m(n−∆)− m̂(n)]2

and follow the same steps for obtaining the NLMS
algorithm.

Initialize the algorithm by setting:

w(−1) = 0, x̂(0) = [ 0.1 − 0.1 ]T , b = [ R 0 ]T

δ, ε: small positive constants

X : large positive constant

For n = 0, 1, 2, 3 . . . , compute:

ŝ(n) = r
T(n)w(n− 1)

To avoid wrong estimates when x̂2(n) is too large

if |x̂2(n)| > X

x̂2(n)← Xsign[ x̂2(n) ]

end

To prevent division by a value close to zero

if |x̂2(n)| ≤ ε

m̂(n) = sign[ ŝ(n) x̂2(n) ]

else

m̂(n) =
ŝ(n)

x̂2(n)
end

e(n) = m(n−∆)− m̂(n)

w(n) = w(n− 1) +
µ̃c

δ + ‖r(n)‖2
x̂2(n)e(n)r(n)

θ̂n+1 = C1 −
C3

1 + x̂2
1(n) + x̂2

2(n)m̂2(n)

Ar(n + 1) = C2

[
cos θ̂n+1 − sin θ̂n+1

sin θ̂n+1 cos θ̂n+1

] [
1 0
0 m̂(n)

]

x̂(n + 1) = Ar (n + 1) x̂(n) + b

end
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5. Stability conditions

The update equation of cNLMS can be rewritten as

w(n) =

[
I − µ̃

δ + ‖r(n)‖2
r(n)rT(n)

]
w(n − 1)

+ µ̃ x̂2(n)m(n)
r(n)

δ + ‖r(n)‖2
(⋆)

The matrix between brackets has M−1 eigenvalues

equal to one and one eigenvalue equal to

λ1 = 1 − µ̃ r
T(n)r(n)/[δ + ‖r(n)‖2].

Noticing that

0 ≤ r
T(n)r(n)

δ + ‖r(n)‖2
< 1,

and for ‖r(n)‖2 ≫ δ, r
T(n)r(n)/(δ + ‖r(n)‖2) ≈ 1, in

order to ensure |λ1| < 1, we must choose µ̃ in the

interval

0 < µ̃ < 2

The norm of the second term of the r.h.s. of (⋆) is

bounded since

0 ≤ µ̃ |x̂2(n)| |m(n)| ‖r(n)‖
δ + ‖r(n)‖2

≤ µ̃ X

√
δ

2δ
< ∞.

Therefore, using (deterministic) exponential stabi-

lity results for the LMS algorithm, we conclude that

cNLMS is stable in a robust sense if µ̃ is chosen

in the interval 0 < µ̃ < 2.

6. Simulation results

- The parameters of the Ikeda map were set as

C1 = 0.4, C2 = 0.9, C3 = 6, and R = 1

- The state vectors were initialized as x(0) = 0 and

x̂(0) = [ 0.1 − 0.1 ]T

- We assume the transmission of a binary se-

quence m(n) ∈ {−1, 1}
- The equalizers were initialized as w(0) = 0

- For comparison, we also consider the chaotic

communication system without equalizer, in which

ŝ(n) = r(n)

Scenario 1

The encoded sequence s(n) is transmitted through

the channel

H1(z) =
1

1 + 0.6z−1

with SNR = 30 dB, ∆ = 0 and M = 2.

cNLMS approaches to wo ≈ [ 1 0.6 ]T and there-

fore, the equalizer is working as expected since

this solution mitigates the intersymbol interference,

recovering properly the transmitted sequence. The

communication is completely lost in the case with

no equalizer.
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Estimated sequence with (a) No equalizer and (b) cNLMS

(µ=0.1, δ=10−2, ε=0.1); (c) Errors after decision; (d) Average

of the coefficients of cNLMS and Wiener (dashed lines);

(e) Estimated cMSE; average of 1000 runs.

Scenario 2

The encoded sequence s(n) is transmitted initially

through the real part of the telephonic channel [Pic-

chi & Prati, 1987] and changed to its imaginary part

at n = 1000, with SNR = 30 dB, ∆ = 8, and M = 15.
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Estimated sequence with (a) No equalizer and (b) cNLMS

(µ=0.5, δ=10−5, ε=0.1); (c) Errors after decision; (d) Average

of the coefficients of cNLMS and Wiener (dashed lines);

(e) Estimated cMSE; average of 1000 runs.

cNLMS converges to the Wiener solution and is

able to track the abrupt variation in the chan-

nel, leading approximately 600 iterations to achieve

the steady-state again. The equalizer plays an im-

portant role to mitigate the intersymbol interference

since the performance of the system without equali-

zer is much worse.

Scenario 3

We assume SNR = 30 dB, M = 5, ∆ = 3, and the

channel H3(z) = h0 + z−1 + h0z
−2, 0 ≤ h0 ≤ 0.5 to

obtain BER curves as a function of h0. The smaller

the value of h0 the lower the intersymbol interference

introduced by the channel.
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Bit error rate as a function of the channel

H3(z) = h0 + z−1 + h0z
−2 with SNR = 30 dB;

cNLMS (µ=0.1, δ=ε=10−5).

cNLMS outperforms the case with no equalizer

for h0 > 0. The relatively high BER ≈ 10−2 in the

left of the figure is only due to channel noise and

reflects the extreme sensitivity of chaotic synchroni-

zation to noise. The issue of channel equalization

was successfully solved as shows the almost

coincidence of the cNLMS and Wiener solution

curves.

7. Conclusions

In this paper, we proposed a supervised equaliza-

tion scheme based on the NLMS algorithm for re-

covering a binary sequence in chaos-based digital

communication systems. The main conclusions are:

- simulations show that the proposed algorithm

can successfully permit chaotic communicati-

ons;

- this is the first adaptive scheme proposed for

the chaotic modulation in which the message

is fed back into the CSG; and

- although we considered the Ikeda map in the si-

mulations, the cNLMS algorithm can be also

used with other chaotic maps (e.g., Hénon

map).


