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ABSTRACT One of the worst drawbacks in chaos-based communica-

Many communication systems based on the synchronism (Bllon systems by Iaclf of robu_stness of Ch‘f"o“c synchaoniz
chaotic systems have been proposed in the literature. Hovy-on with respect to noise and mterlsymbo_l mterferencé)_(IS
ever, due to the lack of robustness of chaos synchronizatio troduged by the channel. Even'mmor noise Ieyelg or simple
even minor channel imperfections are enough to hinder co Inear distortions are enough t_o hl_nder communicationq®, 1
munication. In this paper, we propose an adaptive equalizaMany _c_haos_—based comm_unlcatl_on systems tend to present
tion scheme to recover a binary sequence modulated by p({ohlbmve bit error rates in nonideal channels when com-
chaotic signal, which in turn is generated by Ikeda maps. Th8aer to their conventional counterparts. Therefor_e, Ay
proposed scheme employs the normalized Ieast-mean-squapéoaChes are based on the assumption of a rather ideal ¢hanne
(NLMS) algorithm with a modification to enable chaotic syn- W']Eh a high signal-to-noise ratio (see, €.g., [4,7,11] amlrt
chronization even when the communication channel is nott erences).

ideal. Simulation results show that the modified NLMS can 10 Mitigate the ISl introduced by the channel, it usual to
successfully equalize the channel in different scenarios. consider an equalizer in the receiver. Equalization scseme
applied to chaotic signals have been proposed in the literat

Index Terms— Chaotic synchronization, chaotic com- for different approaches of message encoding (see, e, [1
munication system, adaptive equalizers, LMS algorithm.  16] and their references). However, we are not aware of works
on equalization applied in the discrete-time domain for the

1. INTRODUCTION chaotic modulation which feeds back the message into the
In the last two decades, the feasibility of communicatiosrsy CSG as in [6].
tems based on the synchronism of chaotic systems has been In this paper, we propose an adaptive equalization scheme
theoretically and experimentally investigated (e.g. [Jl-A  for a discrete-time chaos-based communication system in
chaotic system deterministically generates trajectarighe  which the message is fed back into the CSG. As CSG, we
state space that are aperiodic, limited and present depe@ade assume variants of the Ikeda maps. The paper is organized as
on initial conditions [5]. Therefore, chaotic signals héeen  follows. In Section 2, we describe a discrete-time versibn o
proposed as broadband information carriers with the piaient the Wu and Chua’s chaotic modulation [11], which besides a
of providing high level of privacy in data transmission [, 7 noisy and dispersive channel includes an adaptive equalize

Recently, some works with a practical approach usingrhe synchronization of Ikeda maps is discussed in Section 3.
chaos in the signal level have appeared, mainly in the dpticad normalized least-mean-squares (NLMS) type algorithm
communication domain (see, e.g., [6]). This is somewha&pplied to chaotic modulation is derived in Section 4. In
natural since chaotic generators can be easily created usiSection 5, we obtain the interval of the step-size to ensure a
the intrinsic nonlinear properties of lasers. This fact wadocal and weak stability of the proposed algorithm. Finally
exploited in [6], where a high-speed long-distance commuSection 6 presents simulation results and in Section 7, we
nication based on chaos synchronization was demonstratefiaft the conclusions.
over a commercial fibre-optic channel. The continuous-time
system of [6] considers a chaotic modulation in which the 2. PROBLEM FORMULATION

message is fed back into the chaotic signal generator (CSGig. 1 shows the chaotic communication system under consid-
In this context, it is common to model the CSG using variantsration, which is a discrete-time version of the one progose
of the Ikeda map, since this map can be envisioned as arising, wu and Chua [11]. In this scheme, the binary information
from a string of light pulses impinging on a partially trans- signalm(n) € {—1, +1} is encoded by using the second
mitting mirror of a ring cavity with a nonlinear dispersive component of the state vectetn), i.e., s(n) = m(n)zs(n).
medium [5, 8]. Then, the signak(n) is fed back and transmitted through
This work was partly supported by FAPESP under Grant 208824, & Communica{[ion channel, whqse mOd_el is ConSFitUted _by a
and by CNPq under Grants 303926/2010-4 and 302423/2011-7. transfer functionH(z) and additive white Gaussian noise




(AWGN). We assume ain/-tap FIR adaptive equalizer, with The system described by (2) is autonomous and is caiéesl
input regressor vector(n) = [r(n) r(n—1) -+ r(n—M+1)|"  ter, whereas the one described by (3) depends@n— 1)
and outpug(n)=r"(n)w(n —1), where(-)” indicates trans- and is calledslave. Notice thatm(n — 1), defined in (1), de-
position andw(n — 1) is the equalizer weight vector. The pends on the master system, so the mafjxalso depends
equalizer must mitigate the intersymbol interferenceointr onx(n — 1).
duced by the channel and recover the encoded sighg|
with a delay of A samples. If transmitter and receiver syn- 3. COMPLETE SYNCHRONIZATION FOR AN
chronize, i.e., ifX(n) — x(n), then using the output of the IDEAL CHANNEL
equalizer and the estimate o§(n), the information signal
can be decoded via
m(n) £ 3(n)/Z2(n), Y
whereZ, (n) is the second component of the state veg{ar). &€(n) =[A(n) — A¢(n)] &(n — 1). (8)
We also assume that there is a training sequence so that the
errore(n) = m(n— A) —m(n) is used to adapt the equalizer Master and slave are saidmpletely synchronized if £(n) — 0
coefficients in a supervised manner. asn grows [17]. Consequently, they synchronize completely
if the eigenvalues ofA,.(n) — A.(n)] satisfy |\;(n)| < 1,
1 =1,2, forall n [18].
To prove theoretically that\; »(n)| < 1 for all n is not
a simple task and some assumptions on the transmitted and
recovered message are necessary, even when the channel is
ideal. This occurs since in the lkeda mAp(n) and A,.(n)
depend onn(n — 1) andm(n — 1), respectively. Therefore,
we show next some numerical simulations to illustrate that
the synchronization between master and slave can be adhieve
| _ _ _Receiver _ _ _  foranideal channel, considering the usual parameterfiéor t
Ikeda map:C; = 0.4,Cy =0.9,C3 = 6,andR = 1 [5].
Fig. 1. Chaotic communication system with an adaptive  Fig. 2 shows|\; »(n)| as a function ofn in two situa-
equalizer. tions: form(n) = 1 and form(n) € {—1, +1}. Asit
) ] ) ~_ can be noticed, we have synchronization for both cases sinc
In this paper, the lkeda map is used in both CSGsinFig. 1\, , ()| < 1 independently of the message considered. Fur-
Therefore, the equg‘uons governing the global dynamical sy thermore, the largest Lyapunov exponent whefn) = 1 is
tem have the following form [5] approximately0.507, which means thai(n) is chaotic [5].
x(n) =A,(n)x(n — 1) + [R 0]7, ?) Form(n) e {-1, +1}, th_e generat_ed §ignals still present the
R N . properties that characterize chaotic signals, althougth.yia-
X(n) =A, (n)X(n—1) +[R 0], (3) punov exponent was not computed. We intend to pursue this
matter elsewhere.

The synchronization error is defined§(®) = %X(n) — x(n),
which can be rewritten, using (2) and (3), as

Z—A

wherex(n) £ [z1(n) x2(n)]", X(n) £ [Z1(n) Z2(n)]”, and

R is a constant, parameter of the Ikeda map. In the CSG of

the transmitter, we have the mati (n) given by = 0.15 —n(n)=1
p " ) 0 Sﬂ\/‘ 0.1 = = =m(n)e{£l}
N cosf, —sinb, < 0.05
At(n) = Cq sin 6, cos 0, } [ 0 m(n—1) } » (4) = 0 N
0 10 20 30
where n
0, =C) — . 023 > (5)  Fig. 2. Absolute value of the eigenvalues(@f, (n) — A;(n)]
1+ai(n—1) +a23(n - 1)m*(n— 1) along the iterations; lkeda mag(Q) = 0; X(0) = [0.1 —

andC;, i = 1,2,3 are constant parameters of the Ikeda map?-11"; C1 = 0.4, C5 = 0.9, C3 = 6, and R = 1).
In the CSG of the receiver, we have
4. THE CHAOTIC NLMS ALGORITHM

A _C cos (9\” —sin é\n 1 0 6
r(n) = sind. cos . 0 m(n—1) |’ (6)  To obtain a stochastic gradient algorithm to adapt the equal
" " izer in the scheme of Fig. 1, we define the following instanta-
where neous cost-function
~ C
Hn = Cl 5

1+ 2D+ 2n—-DmEn—-1) 0 J(n) = €*(n) = [m(n — A) — m(n)]*. 9)



Computing the gradient of(n) with respect to the coefficient

vectorw(n — 1), we obtain
Oe(n)

ow(n —1)

om(n)
ow(n —1)

VwJ(n) = 2e(n) = —2e(n) . (10)

Assuming thatiy(n) # 0 for all n and taking into account

the equalizer in the scheme of Fig. 1, (1) can be rewritten as__

_ i)

Za(n)

_ r(n)w(n —

Za(n)

~

D, (11)

Using (11) and recalling thak (n) depends only o&(n — 1)
ands(n — 1), which in turn do not depend o (n — 1), we
arrive at

e(n) 9s(n)

Za(n) Ow(n)

e(n)

~

Vwd(n) =—-2 ()

r(n). (12)

Thus, the update equation of the chabtitS (cLMS) algo-
rithm is given by

e(n)
Za(n)

To obtain a normalized version of cLMS, we first define
thea posteriori error as

wn)=wn-—1)+u r(n). (13)

ep(n) =m(n —A) — W (14)
Using (13),e,(n) can be rewritten as
() [wln— 1) + (o)
ep(n) =m(n—A) - = :
Z2(n)
oy |1 IEI

To enforcee,(n) = 0 at each iteratiom, we must select
w(n) = z3(n)/||r(n)||?. Introducing a fixed step-sizg to
control the rate of convergence and a regularization fattor
to prevent division by zero ip(n), and replacing the resulting
step size in (13), we obtain the update equation of the cNLM
algorithm, i.e.,

L552716111'11.
b e (). (16)

w(n)=w(n—1)

We prevent division by a value close to zero in the com-
putation of m(n), by makingm(n) = signs(n)za(n)]
when|Z2(n)| < e, wheree is a small positive constant and
signz] = —1if z < 0 orsigiz] = 1if x > 0.

In order to ensure the stability of the algorithm and to
avoid wrong estimates whety (n) is too large, we introduce
a bound forzy(n), i.e., if [Z2(n)| > X, we simply make
Z2(n) < Xsignzz(n)], whereX is a positive constant. We
do not observe performance degradation in different simula
tion scenarios, when we uséd = 100. The proposed algo-
rithm is summarized in Table 1.

Table 1. Summary of the cNLMS algorithm.
Initialize the algorithm by setting:
w(—1)=0, %(0)=[0.1 —0.1]", b=[R 0]"
0, : small positive constantsy: large positive constant
Forn=0,1, 2, 3 ..., compute:
s(n) =r"(n)w(n —1)
if |Za(n)| > X
Ta(n) <= Xsignza(n) ]

end
if |Z2(n)| <e
m(n) = signs(n) z2(n) |
else
. 8(n)
m(n) = ()
end

e(n) =m(n —A) —m(n)

fie

. Cs
Opi1 = — — = —
w1 = O T Baee)
cos 5n+1 — sin §n+1 1 0
A, 1) =C. Py P N
(n+1) 2 sin @41 coanHH 0 m(n) }

X(n+1)=A, (n+1)X(n)+b
S end

5. STABILITY CONDITIONS

Note that cNLMS depends not only on the estimation erUsing (11), the update equation of cNLMS can be rewritten

ror e(n), but also oz (n). Sincezs(n) depends nonlinearly
ons(n), ctNLMS is a nonlinear version of NLMS. Moreover,

the synchronization between master and slave in chaotie com
munication system depends on the mitigation of the intersym

bol interference, which is the role played by the equalizer.

1We use the ternthaotic for the algorithms derived here only for dis-
tinguishing them from the original versions of LMS and NLMig@ithms
(see, e.g., [18]). The use of this term does not imply a chaeti@vior of the
algorithms.

as N
- —* _r)r"(n)| wn —
+ a(m(n) 5 a7

wherel is the identity matrix with dimensiond/ x M. The
matrix between brackets hdg — 1 eigenvalues equal to one
and one eigenvalue equalXe=1—7r” ()rn) /[ +]/r(M)|/?].



Noticing that = = ? ;
0 Tl r i :
6+ [r(n)]? = = I
] : A 2
and for|r(n)||2 > 6, v"(n)r(n)/(6 + [lr(n)|?) =~ 1,inor- 0 e 0 1000
der to ensuré);| < 1, we must choos@ in the following = 5 £ b=
interval SZ o0 g gAle
0<p<2. (18) =< S o
] T =05
The norm of the second term of the r.h.s. of (17) is bounded, 0 500 1000~ 0 500 1000
i e. iterations iterations
e [[r(n)]] T )
0<plre(n)|mn)| ——F—= < n X — < 0. 2
Therefore, using (deterministic) exponential stabiligults g No Bqualizer : cNLMS

for the LMS algorithm [19], we conclude that cNLMS is sta-
ble in a robust sense jf is chosen in the interval (18).

20 i i i i i i i i i
0 100 200 300 400 500 600 700 800 900 1000
iterations

6. SIMULATION RESULTS Fig. 3. Estimated sequence with (a) No equalizer and (b)

In all simulations, we assume the lkeda map with= 0.4, cNLMS (u = 0.1, § = 1072, ¢ = 0.1); (c) Errors after de-
Cy = 0.9, C3 = 6, andR = 1[5, p.202]. The state vec- cision; (d) Average of the coefficients of cNLMS and Wiener
tors of (2) and (3) were initialized as(0) = 0 andx(0) =  (dashed lines); (e) Estimated cMSE; average of 1000 runs,
[0.1 — 0.1]7, respectively. Other initializations also al- SNR = 30dB; M = 2; A = 0.
low equally good results in terms of synchronization when
the equalizer mitigates reasonably well the intersymbtelrin  to achieve the steady-state again. The equalizer plays-an im
ference. Furthermore, we assume the transmission of a byortant role to mitigate the intersymbol interference sitie
nary sequencen(n) € {—1,1} and equalizers initialized as performance of the system without equalizer is much worse.
w(0) = 0. For comparison, we also consider the system of ConsideringSNR = 30 dB, M = 5, A = 3, and the
Fig. 1 without equalizer, in whicB(n) = r(n). channelHs(z) = ho + 2~* + hoz=2,0 < hy < 0.5, we

We first assume that the encoded sequesteg is trans-  optain BER curves as a function &f,, as shown in Fig. 5.
mitted through the infinite impulse response (lIR) channelt is important to remark that in the case with no equalizer,
Hi(2) = 1/[1+0.627"] with SNR = 30 dB andA = 0.  the delay is due only to the channel. Therefore, we compared
The sequence estimated via the cNLMS equalizer and thye recovered sequence with the transmitted one, assuming
error after the decision device (both for one realizatia®) a A — 1 in this case. The smaller the valuelof the lower the
shown in Figs. 3-(b) and (c). The average of the two coefintersymbol interference introduced by the channel. We can
ficients and theVISE(n) = E{e’(n)} along the iterations, observe that cNLMS outperforms the case with no equalizer
estimated by an ensemble-averagel@d0 runs, are shown for , > 0, providing a reasonable BER. The case with no
respectively in Figs. 3-(d) and (e). In Fig. 3-(e), we alsov8h  equalizer achieves a BER equal to that of cNLMS only for the
the MSE curve for the case without equalizer. We can observigeg| channel, = 0). Note that the relatively higBER ~
that the cNLMS converges in the meanwg ~ [1 0.6]", 102 in the left of Fig. 5 is only due to channel noise and
whose coefficients are shown as dashed lines in Fig. 3-(d)eflects the extreme sensitivity of chaotic synchronizatim
Therefore, the equalizer is working as expected since thigojse. Obviously, the adaptive filters used here cannoteack
solution mitigates the intersymbol interference, recm@r this problem. In the optical communication field, it is passi
properly the transmitted sequence, which can be confirmeg) obtain much higher values of SNR and consequently lower
through the errors after the decision device shown in Fig. 3yajues of BER, as [6] did. The issue of channel equalization
(c). The communication is completely lost in the case withyas successfully solved as shows the almost coincidence of

no equalizer as shown if Figs. 3-(a) and (e). the cNLMS and Wiener solution curves.
Now, we assume that the encoded sequefegis trans-
mitted initially through the real part of the telephonic ohal 7. CONCLUSION

of [20] and changed to its imaginary partrat= 1000, with

SNR = 30 dB andA = 8. The results for this case are In this paper, we proposed a supervised equalization scheme
shown in Fig. 4. cNLMS converges to the Wiener solution,based on the NLMS algorithm for recovering a binary se-
whose coefficients are shown as dashed lines in Fig. 4-(d). §uence in chaos-based digital communication systems. Sim-
is important to notice that cNLMS is able to track the abruptulations show that the proposed algorithm can successfully
variation in the channel, leading approximately 600 ifereg  permit chaotic communications. As far as we are concerned,



this is the first adaptive scheme proposed for the chaotic mod[4]
ulation in which the message is fed back into the CSG. Al-
though we considered the lkeda map in the simulations, the
cNLMS algorithm can be also used with other chaotic maps
(e.g., Henon map).
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Fig. 4. Estimated sequence with (a) No equalizer and (b)
c¢NLMS (1 = 0.5, § = 107°, ¢ = 0.1); (c) Errors after de-
cision; (d) Average of the coefficients of cNLMS and Wiener
(dashed lines); (e) Estimated cMSE; average of 1000 run&l]
SNR = 30dB; M = 15; A =8.
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Fig. 5. Bit error rate as a function of the channéh(z) = o
ho + 2z~ + hoz~2 with SNR = 30 dB; cNLMS (1 = 0.1,
d=e=107"°).
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