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Abstract

Many communication systems applying synchronism of chaotic systems have

been proposed as an alternative spread spectrum modulation that improves the

level of privacy in data transmission. However, due to the lack of robustness of

chaos synchronization, even minor channel imperfections are enough to hinder

communication. In this paper, we propose an adaptive equalization scheme

based on a modified normalized least-mean-squares (NLMS) algorithm, which

enables chaotic synchronization when the communication channel is not ideal.

As an example of application, this scheme is used to recover a binary sequence

modulated by a chaotic signal generated by an Hénon map. Simulation results

show that the modified NLMS can successfully equalize the channel in different

scenarios.

Keywords: Synchronization of chaotic maps; chaos-based communication;

adaptive equalization; non ideal channels.

1. Introduction1

In the last two decades, the feasibility of communication systems based on2

the synchronism of chaotic systems has been theoretically and experimentally3

investigated (e.g., [1]-[5]). Chaotic signals are deterministic, aperiodic, lim-4

ited, and present sensitive dependence on initial conditions [6]. Therefore, they5

have been proposed as broadband information carriers and may yield interesting6

properties like multipath and jamming immunity [7]-[9]. Besides, they have the7

potential of providing high level of privacy in data transmission [10, 4].8
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Recently, some works with a practical approach using chaotic synchroniza-9

tion have appeared, mainly in the optical communication domain (see, e.g.,10

[4, 11]). This is somewhat natural since chaotic generators can be easily created11

using the intrinsic nonlinear properties of lasers [11]. This fact was exploited12

in [4], where a high-speed long-distance communication system based on chaos13

synchronization was demonstrated over a commercial fibre-optic link. In this14

system, it was possible to obtain bit error ratios next to the usually expected in15

a conventional communication system. However, it is important to notice that16

the dispersion effects were compensated in a non-adaptive manner. The system17

as proposed in [4] would perform badly in a wireless channel where distortions18

vary constantly in time due to multipath, changing noise sources, and other19

time-variant impairments.20

In fact, one of the worst drawbacks in chaos-based communication systems is21

the lack of robustness of chaotic synchronization with respect to noise and inter-22

symbol interference (ISI) introduced by the channel. Even minor noise levels or23

simple linear distortions are enough to hinder communication, which usually de-24

pends on identical synchronization [12, 13]. Many chaos-based communication25

systems, if implemented as proposed in the literature, tend to present prohibitive26

bit error rates in non ideal channels when compared to their conventional coun-27

terparts [13]. Although some preliminar results were obtained in more realistic28

channels [5, 14, 15], it is of paramount importance to propose schemes that can29

adapt to the practical impairments of real communication channels. Otherwise30

they have no chance of being of commercial interest.31

In conventional communication systems, it is usual to consider an equalizer in32

the receiver to mitigate the ISI introduced by the channel [16]-[18]. Equalization33

schemes applied to chaotic synchronization have been proposed in the literature34

for different approaches of message encoding (see, e.g., [19]-[24] and their ref-35

erences). To the best of our knowledge, only [24] considers the equalization in36

the discrete-time domain applied to a Wu and Chua’s chaotic synchronization37

scheme, in which an encoded message is fed back into the chaotic signal gener-38

ator (CSG). The main drawback of the scheme of [24] is that it uses the Ikeda39

map to encode the message and the encoded signal may not be chaotic. This40

occurs because the Ikeda map presents a stable fixed point besides the chaotic41
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attractor [6].42

In this paper, we propose an adaptive equalizer for a chaotic synchronization43

scheme in a master-slave configuration using the Hénon map, which ensures that44

the transmitted signal is in fact chaotic, as we shall see. As in [24], the chaotic45

synchronization scheme considered here feeds back the encoded message into the46

CSG. As this situation is a discrete-time model for the practical set described47

in [4], we consider it as a relevant scenario.48

The paper is organized as follows. In Section 2, we describe a discrete-time49

version of the Wu and Chua’s chaotic synchronization [3, 10], which besides50

a noisy and dispersive channel includes an adaptive equalizer. In Section 3,51

we modify the normalized least-mean-squares (NLMS) algorithm to take into52

account the Hénon map. The interval of the step-size to ensure a local and weak53

stability of the proposed algorithm is obtained in Section 4. Section 5 presents54

simulation results of a communication system based on this scheme and, in55

Section 6, we draft the conclusions. Although we consider the Hénon map in56

this paper, our scheme can be straightforwardly extended to other chaotic maps.57

2. Problem formulation58

Figure 1 shows the chaotic synchronization problem under consideration. It59

is based in a discrete-time version of the one proposed in [3]. In our scheme, a60

binary signal m(n) ∈ {−1, +1} is encoded by using the first component of the61

master state vector x(n), via a coding function62

s(n) = c (x1(n),m(n)) , (1)

so that m(n) can be recovered using the inverse function with respect to m(n),63

i.e.,64

m(n) = c−1 (x1(n), s(n)) . (2)

Then, the signal s(n) is fed back into the chaotic signal generator (CSG) and

transmitted through a communication channel, whose model is constituted by a

transfer function H(z) and additive white Gaussian noise (AWGN). We assume

an M -tap adaptive equalizer, with input regressor vector

r(n) = [r(n) r(n− 1) · · · r(n−M + 1)]
T
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and output

ŝ(n)=rT (n)w(n− 1),

where (·)T indicates transposition and

w(n− 1) = [w0(n−1) w1(n−1) · · · wM−1(n−1) ]T

is the equalizer weight vector. The equalizer must mitigate the intersymbol65

interference introduced by the channel and recover the encoded signal s(n) with66

an unavoidable delay of ∆ samples.67
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Figure 1: Chaotic synchronization system with an adaptive equalizer.

If transmitter and receiver identically synchronize [25], i.e., if x̂(n)→ x(n),68

then using the output of the equalizer and the estimate of x1(n), m(n) can be69

decoded via70

m̂(n) , c−1 (x̂1(n), ŝ(n))→ m(n), (3)

where x̂1(n) is the first component of the slave state vector x̂(n). Thus, the71

estimation error72

e(n) = m(n−∆)− m̂(n) (4)

can be used as an equalization criterion. Once identical synchronization between73

master-slave is obtained, m(n) can be used to transmit information between the74

two systems, being m̂(n) the decoded binary message.75

We are assuming that there is a training sequence {m(n − ∆)}, known in76

advance at the receiver. In this case, the equalizer works in the training mode77

and updates its coefficients in a supervised manner, using the estimation error78
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in conjunction with an adaptive algorithm. If we intend to transmit information79

using m(n), the receiver will not have access to {m(n−∆)} and this sequence80

will be replaced by the output of the decision device, as shown in Figure 2. In81

this case, the equalizer works in the so-called decision-directed mode. Due to82

variations in the communication channel, the switching between these two modes83

must occur whenever the mean-squared error achieves a predefined threshold84

[16]-[18]. Although this switching occurs in the practice, we only consider the85

training mode in the simulations of Section 5.

CSG

(·)−1

equalizer

decision
device

m̂(n)

e(n)

ŝ(n)r(n)

x̂1(n)

x̂(n)

Figure 2: Receiver of the chaotic communication system with an adaptive equalizer in the

decision-directed mode.

86

In this paper, the Hénon map [26] is used in both CSGs of Figure 1. There-

fore, the equations governing the global dynamical system can be written as

x(n + 1) = Ax(n) + b + f (s(n)) , (5)

x̂(n + 1) = Ax̂(n) + b + f (ŝ(n)) , (6)

where x(n) , [x1(n) x2(n)]
T

, x̂(n) , [x̂1(n) x̂2(n)]
T

,87

A =





0 β

1 0



 , b =





α

0



 , f (s(n)) =





−s2(n)

0



 , (7)

being β and α real constant parameters of the map.88

In [27] it was shown that, under ideal channel conditions, i.e., when r(n)≡89

s(n) and the equalizer is an identity system, identical synchronization between90

master and slave is obtained if all the eigenvalues of A are inside the unit circle.91
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Since the eigenvalues of A are ±
√

β, we conclude that for |β| < 1, master92

and slave identically synchronize under ideal conditions. Therefore, from (3),93

m̂(n)→ m(n).94

As coding function, we consider [10, 24]95

s(n) = c (x1(n),m(n)) = x1(n) ·m(n) (8)

which leads to the decoding96

m̂(n) =
ŝ(n)

x̂1(n)
. (9)

This particular choice associated to the Hénon map has an interesting property:97

for a binary polar message (m(n) = ±1), we can observe from (8) that s2(n)=98

x2
1(n). Thus, (5) does not depend on m(n) and the message does not disturb99

the Hénon CSGs. This means that, the transmitted signal is in fact chaotic as100

long as the signals generated by the CSGs are chaotic. For instance, this is not101

the case in [24], where the Ikeda map was used or in [27], where an additive102

coding function was employed instead of the multiplicative one as that of (8).103

3. The chaotic NLMS algorithm104

Stochastic-gradient algorithms update the coefficients of an adaptive equal-105

izer using the following equation106

w(n) = w(n− 1)− ρ∇wĴ(n), (10)

where ρ is a step size and ∇wĴ(n) is the gradient vector of the instantaneous107

cost-function Ĵ(n) to be minimized. Using (10), the coefficient vector w(n−1) is108

updated in the direction opposite to that of the gradient of Ĵ(n), which in turn109

is a function of the estimation error. Different functions lead to algorithms with110

different properties as convergence rate, computational cost, tracking capability,111

among others [17, 18]. The squared error is the cost-function most used in the112

literature and leads to the popular LMS algorithm.113

In order to obtain a version of the LMS algorithm to adapt the equalizer114

in the scheme of Figure 1, we begin by defining the following instantaneous115

cost-function116

Ĵ(n) = e2(n) = [m(n−∆)− m̂(n)]
2
. (11)
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Computing the gradient of Ĵ(n) with respect to the coefficient vector w(n− 1),117

we obtain118

∇wĴ(n) = 2e(n)
∂e(n)

∂w(n− 1)
= −2e(n)

∂m̂(n)

∂w(n− 1)
. (12)

Assuming that x̂1(n) 6= 0 for all n and taking into account the equalizer in the119

scheme of Figure 1, (3) can be rewritten as120

m̂(n) =
ŝ(n)

x̂1(n)
=

rT (n)w(n− 1)

x̂1(n)
. (13)

Using (13) and recalling that x̂1(n) depends only on x̂(n− 1) and ŝ(n − 1),121

which in turn do not depend on w(n− 1), we arrive at122

∇wĴ(n) = −2
e(n)

x̂1(n)

∂ŝ(n)

∂w(n)
= −2

e(n)

x̂1(n)
r(n). (14)

Thus, replacing (14) in (10) and considering ρ = µ as step size, we arrive at the123

update equation of the chaotic2 LMS (cLMS) algorithm, given by124

w(n) = w(n− 1) + µ
e(n)

x̂1(n)
r(n). (15)

It is well known in the adaptive filtering literature that one problem with the125

LMS algorithm is how to choose the step-size µ to enable a high convergence126

rate, provide an acceptable steady-state mean-square error, and even ensure127

its stability [17, 18]. Variable step-size algorithms make this choice in a more128

proper manner and may outperform their non-normalized counterparts, mainly129

when the statistics of the input signals change quickly. This is the case of130

the normalized LMS algorithm [17, 18]. Therefore, a normalized version of the131

cLMS algorithm is more adequate to update the coefficients of the equalizer in132

the scheme of Figure 1.133

To obtain a normalized version of cLMS, we first define the a posteriori error134

as135

ep(n) = m(n−∆)− rT (n)w(n)

x̂1(n)
. (16)

2We use the term chaotic for the algorithms derived here only for distinguishing them from

the original versions of LMS and NLMS algorithms (see, e.g., [18]). The use of this term does

not imply a chaotic behavior of the algorithms.
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Using (15), ep(n) can be rewritten as

ep(n) = m(n−∆)−
rT (n)

[

w(n− 1) + µ
e(n)

x̂1(n)
r(n)

]

x̂1(n)

= e(n)

[

1− µ
‖r(n)‖2
x̂2

1
(n)

]

. (17)

To enforce ep(n) = 0 at each iteration n, we must select µ(n) = x̂2
1(n)/‖r(n)‖2.136

Introducing a fixed step-size µ̃ to control the rate of convergence and a regular-137

ization factor δ to prevent division by zero in µ(n), and replacing the resulting138

step size in (15), we obtain the update equation of the chaotic NLMS (cNLMS)139

algorithm, i.e.,140

w(n) = w(n− 1) +
µ̃

δ + ‖r(n)‖2 x̂1(n)e(n)r(n). (18)

Note that cNLMS depends not only on the estimation error e(n), but also141

on x̂1(n). Since x̂1(n) depends nonlinearly on ŝ(n − 1), cNLMS is a nonlinear142

version of NLMS. Moreover, the synchronization between master and slave in143

chaotic communication system depends on the mitigation of the intersymbol144

interference, which is the role played by the equalizer.145

We prevent division by a value close to zero in the computation of m̂(n), by

making

m̂(n) = sign[ ŝ(n) x̂1(n) ]

when |x̂1(n)| < ε, where ε is a small positive constant and

sign[x] =







−1, x < 0

1, x ≥ 0
.

In order to ensure the stability of the algorithm and to avoid wrong estimates146

when x̂1(n) is too large, we introduce a bound for x̂1(n), i.e., if |x̂1(n)| > X,147

we simply make x̂1(n)← Xsign[x̂1(n)], where X is a positive constant. We do148

not observe performance degradation in different simulation scenarios, when we149

used X = 100. The proposed algorithm is summarized in Table 1.150
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Table 1: Summary of the cNLMS algorithm.

Initialize the algorithm by setting:

w(−1) = 0, x̂(0) = [ 0.1 − 0.1 ]T

A =





0 β

1 0



, b =





α

0





α, β: parameters of the Hénon map

δ, ε: small positive constants

X: large positive constant

0 < µ̃ < 2

For n = 0, 1, 2, 3 . . . , compute:

ŝ(n) = rT (n)w(n− 1)

if |x̂1(n)| > X

x̂1(n)← Xsign[ x̂1(n) ]

end

if |x̂1(n)| ≤ ε

m̂(n) = sign[ ŝ(n) x̂1(n) ]

else

m̂(n) =
ŝ(n)

x̂1(n)

end

e(n) = m(n−∆)− m̂(n)

w(n) = w(n− 1) +
µ̃

δ + ‖r(n)‖2 x̂1(n)e(n)r(n)

x̂(n + 1) = Ax̂(n) + b +





−ŝ2(n)

0





end

4. Stability conditions151

Using (13), the update equation of cNLMS can be rewritten as

w(n) =

[

I− µ̃

δ + ‖r(n)‖2 r(n)rT (n)

]

w(n− 1)

+ µ̃ x̂1(n)m(n)
r(n)

δ + ‖r(n)‖2 , (19)
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where I is the identity matrix with dimensions M ×M . The matrix between

brackets has M − 1 eigenvalues equal to one and one eigenvalue equal to

λ1 = 1− µ̃
rT (n)r(n)

δ + ‖r(n)‖2 .

Noticing that152

0 ≤ rT (n)r(n)

δ + ‖r(n)‖2 < 1,

and for ‖r(n)‖2 ≫ δ, rT (n)r(n)/(δ + ‖r(n)‖2) ≈ 1, in order to ensure |λ1| < 1,153

we must choose µ̃ in the interval154

0 < µ̃ < 2. (20)

The norm of the second term of the r.h.s. of (19) is bounded, i.e.,155

0 ≤ µ̃ |x̂1(n)| |m(n)| ‖r(n)‖
δ + ‖r(n)‖2 ≤ µ̃X

√
δ

2δ
<∞.

Therefore, using (deterministic) exponential stability results for the LMS algo-156

rithm [28], we conclude that cNLMS is stable in a robust sense if µ̃ is chosen in157

the interval (20).158

5. Simulation results159

In order to verify the behavior of the cNLMS algorithm, we have performed160

simulations assuming the Hénon map with α = 1.4 and β = 0.3. The state161

vectors of (5) and (6) were initialized as x(0) = 0 and x̂(0) = [ 0.1 − 0.1 ]T ,162

respectively. Other initializations also allow equally good results in terms of163

synchronization when the equalizer mitigates reasonably well the intersymbol164

interference. Furthermore, the equalizers were initialized as w(0) = 0 and, for165

comparison, we also consider the system of Figure 1 without equalizer, in which166

ŝ(n) = r(n).167

As performance measure, we consider the excess mean-square error (EMSE)168

[17, 18], defined as169

EMSE , E
{

e2

a(n)
}

, (21)

where E{·} represents the expectation operation,

ea(n) = rT (n)[wo −w(n− 1)],

10



and wo is the Wiener solution [17, 18], computed as

wo = R−1p,

being R = E{r(n)rT (n)} the autocorrelation matrix of the input signal of the170

equalizer and p = E{s(n − ∆)r(n)}, the cross-correlation vector between the171

input signal and the sequence s(n − ∆). The Wiener solution is known as172

optimal linear solution and depends on the delay ∆. Since most adaptive filters173

converge in the mean to the Wiener solution, it is considered as a benchmark174

for the cNLMS algorithm. The EMSE measures how much E{Ĵ(n)} exceeds its175

minimum value due to adaptation. If the algorithm found the Wiener solution176

wo at each time instant, the EMSE would be zero. Since the actual filter177

coefficients are never exactly equal to the optimum values, the EMSE measures178

the effect of this difference on the error variance [17, 18].179

Another performance measure considered in this paper is the bit error rate180

(BER) [16]. BER curves were estimated after the convergence of cNLMS and181

counting the number of errors when comparing m(n − ∆) with the sequence182

obtained at the output of a decision device applied to m̂(n). We disregarded183

3×105 bits due to the initial convergence and used 106 bits in to computation of184

the BER. In this case, the BER obtained with the Wiener solution is considered185

as benchmark for the proposed scheme.186

We first assume that m(n) ≡ 1 and, consequently, s(n) = x1(n). In this

case, the output of the communication channel is assumed to be related to its

input by the following difference equation

r(n) = s(n)− 0.6r(n− 1),

which corresponds to the following transfer function187

H1(z) =
1

1 + 0.6z−1
.

Since H1(z) is an infinite impulse response (IIR) channel and the equalizer is188

assumed to be a finite impulse response (FIR) filter, the perfect equalization is189

possible in the absence of noise. In this simple case,190

wo = [ 1 0.6 ]T . (22)
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Although there is no transmission of information between master and slave in191

this situation, this simulation shows that the equalizer plays an essential role to192

enable the synchronization of the map as we shall see next.193

The effect of the channel H1(z) can be observed by comparing the recon-194

structed attractors, using s(n) and r(n). Due to the channel effect, the dynami-195

cal characteristics of the signal s(n) = x1(n) are lost, as observed by comparing196

the attractors of Figures 3-(a) and 3-(b). In Figure 3-(c), it is possible to notice197

that the equalizer is able to eliminate the channel effect, recovering an attractor198

similar to the original one.
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s
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-2 -1 0 1 2
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r
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2

4

ŝ(n)

(c
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ŝ
(n

+
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2

Figure 3: Reconstructed attractor using the: (a) transmitted, (b) received and (c) recovered

with cNLMS signals in the case m(n) ≡ 1; M = 2; ∆ = 0; H1(z).

199

The sequence m̂(n) estimated by the cNLMS equalizer is shown in Figure 4-(b).200

The average of the two coefficients and the EMSE along the iterations, estimated201

by an ensemble-average of 1000 runs, are shown respectively in Figures 4-(c) and202

(e). We can observe that cNLMS coefficients approach to wo of (22), as shown203

by the dashed lines in Figure 4-(c). Therefore, the equalizer is working as ex-204

pected since this solution mitigates the intersymbol interference, enabling the205

synchronization of the Hénon map, which can be confirmed by means of Fig-206

ure 4-(d), since for n > 2000 the graphic of x1(n) vs. x̂1(n) becomes close to a207

12



line (blue dots in the figure). There is no synchronization in the case with no208

equalizer as shown in Figure 4-(a).209
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Figure 4: Recovery sequence with (a) No equalizer and (b) one run of cNLMS (µ = 0.005,

δ=10−5, ε=0.1); (c) Average of the coefficients of cNLMS and Wiener solution (dashed lines);

(d) x1(n) vs. x̂1(n): red dots for 0 < n ≤ 2000 and blue dots for n > 2000 (e) Estimated

EMSE; average of 1000 runs; M = 2; ∆ = 0; H1(z).

In the following simulations, we assume the transmission of a binary equiprob-210

able random sequence m(n) ∈ {−1, 1}. We consider again Channel H1(z) with211

∆ = 0 and absence of noise. The sequence estimated via the cNLMS equalizer212

and the error after the decision device (both for one realization) are shown in213

Figures 5-(b) and (c). The average of the two coefficients and the EMSE along214

the iterations, estimated by an ensemble-average of 1000 runs, are shown re-215

spectively in Figures 5-(d) and (e). Again, cNLMS approaches to wo of (22)216

and the equalizer recovers properly the transmitted sequence, which can be217

confirmed through the errors after the decision device shown in Figure 5-(c).218

The communication is completely lost in the case with no equalizer as shown in219

Figure 5-(a).220

The effect of the communication channel can also be observed by means of221
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Figure 5: Recovery sequence with (a) No equalizer and (b) cNLMS (µ = 0.005, δ = 10−5,

ε=0.1); (c) Error after decision; (d) Average of the coefficients of cNLMS and Wiener solution

(dashed lines); (e) Estimated EMSE; average of 1000 runs; M = 2; ∆ = 0; H1(z).

the reconstructed attractors using the transmitted and received signals. They222

are shown in Figures 6-(a) and 6-(b). Due to the channel effect, the dynamical223

characteristics of the transmitted signal are lost, as observed in Figure 6-(b). In224

Figure 6-(c), it is possible to notice that the equalizer is able to eliminate the225

channel effect, recovering again an attractor similar to the original one.226

Next, we verify the behavior of the equalizer in case of an abrupt variation

in the channel. For this, we consider the following noiseless scenario: initially,

s(n) is transmitted through the real part of the telephonic channel of [29], so

that r(n) is given by

r(n) =−0.005s(n) + 0.009s(n−1)−0.024s(n−2)+0.850s(n−3)

−0.218s(n−4)+0.050s(n−5)−0.016s(n−6).

Then, at n = 5 × 103, this channel is abruptly changed to the imaginary part
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Figure 6: Reconstructed attractor using the: (a) transmitted, (b) received and (c) recovered

with cNLMS signals in the case of m(n) binary equiprobable random sequence (parameters

as in Figure 5).

of the same telephonic channel, i.e.,

r(n) =− 0.004s(n)+0.030s(n−1)−0.104s(n−2)+0.520s(n−3)

+0.273s(n−4)−0.074s(n−5)+0.020s(n−6).

For both channels, we assumed an equalizer with M = 25 coefficients and a227

delay of ∆ = 12 samples.228

The results for this scenario are shown in Figure 7. As it can be noticed,229

cNLMS converges to the Wiener solution [18], whose coefficients are shown as230

dashed lines in Figure 7-(d). It is important to notice that cNLMS is able to231

track the abrupt variation in the channel, achieving the steady-state again. The232

equalizer plays an important role to mitigate the intersymbol interference since233

the performance of the system without equalizer is much worse as observed in234

Figure 7-(a).235
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Figure 7: Recovery sequence with (a) No equalizer and (b) cNLMS (µ=0.2, δ=10−5, ε=0.1);

(c) Error after decision; (d) Average of the coefficients of cNLMS and Wiener solution (dashed

lines); (e) Estimated EMSE; average of 1000 runs; M = 25; ∆ = 12; abrupt time-varying

channel scenario.

To verify the behavior of the equalizer with a time-varying channel, we236

considered the transmission of s(n) through the noiseless channel, given by237

r(n) = h0(n)s(n) + s(n− 1) + h0(n)s(n− 2), (23)

in which h0(n) varies linearly from 0.1 to 0.3 at n = 0 and n = 3 × 103,238

respectively. The results for this scenario are shown in Figure 8. As it can be239

noticed, the equalizer is able to adapt as the channel varies, obtaining a good240

estimate of the instantaneous Wiener solution, shown by the dashed lines of241

Figure 8-(d).242

To show the sensitivity of chaotic synchronization to the intersymbol inter-243

ference (ISI), we obtain BER curves of the system for the channel given by (23)244

in the absence of noise with M = 21 and ∆ = 11. They are shown in Fig-245

ure 9. It is important to remark that in the case with no equalizer, the delay is246
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Figure 8: Recovery sequence with (a) No equalizer and (b) cNLMS (µ=0.2, δ=10−5, ε=0.1);

(c) Error after decision; (d) Average of the coefficients of cNLMS and Wiener solution (dashed

lines); (e) Estimated EMSE; average of 1000 runs; M = 15; ∆ = 8; smooth time-varying

channel scenario.

due only to the channel. Therefore, we compared the recovered sequence with247

m(n−∆), assuming ∆ = 1 in this case. The smaller the value of h0 the lower248

the intersymbol interference introduced by the channel. We can observe that249

cNLMS eliminates approximately the channel effects, achieving a quasi -perfect250

equalization (BER < 10−5) for 0 ≤ h0 ≤ 0.15, whereas the Wiener solution251

provides a quasi -perfect equalization for 0 ≤ h0 ≤ 0.25. The distance between252

cNLMS and Wiener is due to the step size (µ = 0.05) considered in the simula-253

tions. It is well known that there is a tradeoff in all adaptive algorithms, which254

states that the smaller the step size, the smaller the steady-state EMSE (and255

BER), and consequently the closer the algorithm to the Wiener solution [17, 18].256

However, a too small step-size causes a low convergence and the algorithm may257

not be able to track the variations in the channel. Both solutions outperform258

the case with no equalizer for 0 < h0 < 0.5. In the case of h0 = 0, we have259
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the ideal channel and the equalizer is not necessary. Note that a minor chan-260

nel imperfection (e.g., h0 = 0.05) is enough to completely lose the transmitted261

message and the equalizer is essencial to permit communication. In the case262

of h0 = 0.5, the channel presents a deep spectral null and instead of a linear263

transversal equalizer, we should use a decision feedback equalizer to eliminate264

the channel effects [16, 18].265
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Figure 9: Bit error rate for the channel (23) as function of h0 in the absence of noise; cNLMS

(µ̃=0.05, δ=10−5, ε=0.1).

To show also the sensitivity of chaotic synchronization to noise, we added266

white Gaussian noise to the signal at the output of the channel (23) in order267

to obtain a signal-to-noise ratio (SNR) of 60 dB. The BER curves for this case268

are shown in Figure 10. Since the equalizer only tries to eliminate the ISI, the269

bit error rates are higher that those of Figure 9, mainly when the ISI is low.270

Even for the ideal channel (h0 = 0), the perfect recovery of the message is not271

possible since we have a BER of approximately 8 × 10−4. Assuming again the272

channel (23) with h0(n) = 0.25, we obtain BER curves as a function of SNR273

as shown in Figure 11. For comparison, we also include the BER curve for the274

non dispersive AWGN channel, obtained with the system of Figure 1 without275

equalizer. This BER curve works as a benchmark for the equalization in a noisy276

and dispersive environment. The closer the BER obtained in a dispersive and277

noisy channel to the BER of the AWGN channel, the more efficient in terms278

of mitigation of ISI the equalizer is. We can observe that the BER obtained279

with the cNLMS algorithm is close to that of the Wiener solution, and both are280

slightly outperformed by the AWGN case. Again, the absence of the equalizer in281

a dispersive channel leads to prohibitive error rates. It is important to emphasize282
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that to permit chaotic communications using the system of Figure 1 in the283

presence of noise, the transmitter should encode the signal s(n) using an error-284

correcting code prior to transmission [16].
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Figure 10: Bit error rate for the channel (23) as function of h0 with SNR = 60 dB; cNLMS

(µ̃=0.05, δ=10−5, ε=0.1).
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Figure 11: Bit error rate for the non dispersive AWGN channel and for the channel (23) with

h0 = 0.25 as a function of SNR; cNLMS (µ̃=0.05, δ=10−5, ε=0.1).

6. Conclusion286

In this paper, we proposed a supervised equalization scheme based on the287

NLMS algorithm for a master-slave synchronization scheme using maps. Simu-288

lations of different scenarios show that the proposed algorithm can successfully289

permit chaotic synchronization for non ideal channels. For low signal-to-noise290

ratios, it is essencial to include error-correcting codes in the transmitter, since291

the equalizer only deals with intersymbol interference. Although we considered292

the Hénon map in the simulations, the cNLMS algorithm can be modified to293

be used with other chaotic maps, e.g., the Ikeda map [24]. As an example of294
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application, the proposed scheme was used to recover a binary polar sequence295

in a chaos-based digital communication system.296
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