
DANIEL GILIO TIGLEA

Can adaptive diffusion networks do better with less data?

São Paulo
2024

DANIEL GILIO TIGLEA

Can adaptive diffusion networks do better with less data?

Corrected Version

Doctoral Thesis presented to the Polytechnic

School of the University of São Paulo to obtain

the degree of Doctor of Science.

São Paulo
2024

Nome: TIGLEA, Daniel G.
Título: Can adaptive diffusion networks do better with less data?
Tese apresentada à Escola Politécnica da Universidade de São Paulo para obtenção do título de
Doutor em Ciências.

Aprovado em: 19/06/2024

Banca Examinadora

Prof. Dr. Magno Teófilo Madeira da Silva

Instituição: Escola Politécnica da Universidade de São Paulo

Julgamento: APROVADO

Prof. Dr. Cássio Guimarães Lopes

Instituição: Escola Politécnica da Universidade de São Paulo

Julgamento: APROVADO

Profa. Dra. Luana Ianara Rubini Ruiz

Instituição: Johns Hopkins University

Julgamento: APROVADO

Prof. Dr. Denis Gustavo Fantinato

Instituição: Universidade Estadual de Campinas

Julgamento: APROVADO

Prof. Dr. Wallace Alves Martins

Instituição: Institut Supérieur de l'Aéronautique et de l'Espace

Julgamento: APROVADO

DANIEL GILIO TIGLEA

Can adaptive diffusion networks do better with less data?

Corrected Version

Doctoral Thesis presented to the Polytechnic

School of the University of São Paulo to obtain

the degree of Doctor of Science.

Concentration area:

Electronic Systems

Supervisors:

Prof. Dr. Magno Teófilo Madeira da Silva

Dr. Renato Candido

São Paulo
2024

 Autorizo a reprodução e divulgação total ou parcial deste trabalho, por qualquer meio
convencional ou eletrônico, para fins de estudo e pesquisa, desde que citada a fonte.

Este exemplar foi revisado e corrigido em relação à versão original, sob
responsabilidade única do autor e com a anuência de seu orientador.

São Paulo, ______ de ____________________ de __________

Assinatura do autor: ________________________

Assinatura do orientador: ________________________

Catalogação-na-publicação

Tiglea, Daniel Gilio
 Can adaptive diffusion networks do better with less data? / D. G. Tiglea --
versão corr. -- São Paulo, 2024.
 194 p.

 Tese (Doutorado) - Escola Politécnica da Universidade de São Paulo.
Departamento de Engenharia de Sistemas Eletrônicos.

 1.Sistemas distribuídos 2.Filtros elétricos adaptativos 3.Redes de
computadores (Sensores) 4.Processamento de sinais (Amostragem)
5.Amostragem em soluções distribuídas I.Universidade de São Paulo. Escola
Politécnica. Departamento de Engenharia de Sistemas Eletrônicos II.t.

31 julho 2024

To my parents,
Paulo and Virgínia

ACKNOWLEDGMENTS

I would like to thank my advisors, Drs. Magno Silva and Renato Candido, without whom I

would never have made it this far. Their technical advice was crucial to the elaboration of this

dissertation, and to my academic training. I am in their debt because of this, and I sincerely

thank them for this. Perhaps even more importantly, after more than six years of everyday

interactions with Drs. Magno Silva and Renato Candido, during which they were always very

supportive and patient with me, I dare thank them for their friendship as well.

I would also like to thank Professors Denis Fantinato and Wallace Alves Martins for their

suggestions during the qualification exam. In fact, their recommendations have somehow

helped shape this dissertation even before I started my PhD, due to their insightful comments

on my Master’s thesis. Also, many thanks to prof. Luiz A. Azpicueta-Ruiz for his collaboration

and helpful comments, which have also enriched this work.

I also thank the Coordination of Superior Level Staff Improvement (CAPES) for the finan-

cial support for this work (project 88887.512247/2020-00).

I am also grateful to a handful of friends, who contributed to this work not through technical

advice, but through moments of relaxation that made this journey (and my life as a whole)

more pleasant. Thus, my special thanks to Amanda Macedo, Camila Zilio, Felipe Ribeiro,

Leonardo Lopes, Leonardo Macedo, Luis Felipe and Luis Henrique Fabbri, Mariana Rabello,

Rafael Orsoni, Rodrigo Martins, and Rodrigo Scolaro.

I would also like to thank my girlfriend, Bruna, from the bottom of my heart, for her pa-

tience, support, love, and care throughout these years.

Finally, I would also like to thank my parents, Paulo and Virginia, for their love and sup-

port, for teaching me so much throughout my life, and for instilling in me the appreciation for

Science. It is not that I would never have finished this journey without them. I never would

have even started it.

ABSTRACT

TIGLEA, D. G. Can adaptive diffusion networks do better with less data? 2024. Thesis

(Doctor in Electric Engineering) – Polytechnic School of the University of São Paulo, São

Paulo, 2024.

Adaptive diffusion networks consist of a collection of agents that can measure and process

locally streaming data, and that can cooperate with one another to improve the overall perfor-

mance. Since their inception, these networks have consolidated themselves as interesting tools

for distributed estimation and learning, and have spun several types of solutions for these prob-

lems. To reduce the amount of data measured, processed, and transmitted over these networks,

several techniques have been proposed in the literature, which usually affect the performance of

the original solutions, but are necessary in order to extend the network lifetime. In this work,

in addition to an extensive literature review, we present sampling techniques that eliminate the

need to measure and process the data at every node and every time instant. By controlling the

sampling of the nodes based on their estimation error, the proposed techniques are able to main-

tain the convergence rate of the original solutions, while achieving a lower computational cost

and better performance in the steady state. This comes at the expense of only a slight increase in

the computational cost during the transient phase in comparison with that of the original solu-

tions. Moreover, with slight modifications, the techniques presented can also be used to restrict

the number of transmissions between the nodes in the network. Lastly, we conduct a theoretical

analysis in order to understand the performance of the proposed solutions, which agrees with

the simulation results.

Keywords: Adaptive networks. Distributed estimation. Nonlinear adaptive filtering. Graph

filtering. Sampling. Energy efficiency.

RESUMO

TIGLEA, D. G. Redes de difusão adaptativas podem se sair melhor com menos dados?
2024. Tese (Doutorado em Engenharia Elétrica) – Escola Politécnica da Universidade de São

Paulo, São Paulo, 2024.

As redes de difusão adaptativa consistem em um conjunto de agentes capazes de medir e pro-

cessar localmente dados em tempo real e de cooperar entre si para melhorar o desempenho

geral. Desde o seu surgimento, essas redes se consolidaram como ferramentas interessantes

para estimação e aprendizagem distribuída e deram origem a diversos tipos de soluções para

esses problemas. A fim de reduzir a quantidade de dados medidos, processados e transmitidos

nessas redes, diversas técnicas foram propostas na literatura. Frequentemente, elas afetam o de-

sempenho das soluções originais, mas são necessárias para prolongar a vida útil da rede. Neste

trabalho, além de uma extensa revisão bibliográfica, são apresentadas técnicas de amostragem

que eliminam a necessidade de medir e processar os dados em todos os nós a cada instante de

tempo. Ao controlar a amostragem dos nós com base no seu erro de estimação, as técnicas pro-

postas são capazes de manter a taxa de convergência das soluções originais, ao mesmo tempo em

que alcançam menor custo computacional e melhor desempenho no regime permanente. Isso

ocorre às custas apenas de um ligeiro aumento no custo computacional durante o transitório em

comparação com o das soluções originais. Além disso, com pequenas modificações, as técnicas

apresentadas também podem ser utilizadas para restringir o número de transmissões entre os

nós da rede. Por último, é apresentada uma análise teórica para compreender o desempenho das

soluções propostas, que concorda com os resultados de simulações.

Palavras-chave: Redes adaptativas. Estimação distribuída. Filtragem adaptativa não linear.

Filtragem em grafos. Amostragem. Eficiência energética.

LIST OF ACRONYMS

ACW adaptive combination weights

APA affine projection algorithm

AS adaptive-sampling

ASC adaptive-sampling-and-censoring

ATC adapt-then-combine

cdf cumulative density function

CTA combine-then-adapt

dAPA diffusion APA

dGLMS diffusion Graph LMS

dKLMS diffusion kernel LMS

dLMS diffusion LMS

dNLMS diffusion NLMS

dRLS diffusion RLS

DTAS Dynamic-Tuning AS

DTRAS Dynamic-Tuning-and-Resetting AS

FIR finite impulse response

GSP graph signal processing

i.i.d. independent and identically distributed

IoT internet of things

LMS least mean squares

MSD mean square deviation

MSE mean square error

NEMSE network excess MSE

NLMS normalized least mean squares

NMSD network MSD

NMSE network MSE

pdf probability density function

rhs right-hand side

RFF random Fourier features

RLS recursive least squares

SNR signal-to-noise ratio

VSS variable step size

WSN wireless sensor network

LIST OF ALGORITHMS

1 The ATC dLMS Algorithm of Eq. (2.12). 22

2 The ATC dLMS Algorithm of Eq. (2.29) for Clustered Multitask Networks. . . 39

3 The ATC RFF-dLMS Algorithm of Eq. (2.45). 45

4 The ATC dGLMS Algorithm of Eq. (2.50). 51

5 The ATC AS-dNLMS Algorithm. 64

6 The noise power estimation algorithm proposed in [265]. 90

7 The ATC DTAS-dNLMS Algorithm. 92

8 Summary of the sampling reset mechanism of DTRAS-dNLMS. 96

LIST OF FIGURES

1 Number of publications with the words “wireless sensor networks” in their title

from 1991 through 2022 [122]. 11

2 A timeline with several of the main events related to wireless communication

technology and network applications, as well as some milestones of the adaptive

diffusion network and graph signal processing fields. 17

3 A collection of nodes with their respective desired signals d and input signals u. 19

4 A network of nodes with their respective desired signals d and input signals u

and a predefined topology. In particular, the neighborhood of node k is high-

lighted. 21

5 Network used in the simulations of Sec. 2.2.2. The neighborhood of node 1 is

highlighted in red. 31

6 Steady-state NMSD (in dB) versus step size µ for various strategies, as well as

the theoretical results from (2.18) and (2.19). 32

7 NMSD along the iteration obtained with various strategies, considering two

different step sizes. 33

8 Example of a clustered network structure. 38

9 A discrete periodic time sequence represented as a graph. 47

10 Schematic representation of a linear shift-invariant graph filter whose output is given

by (2.47). The output of each block with the matrix A, having the vector upnq as its

input, is given by the left-multiplication of upnq by A, i.e., by the vector Aupnq. 48

11 Network used in the simulations of Secs. 2.2.7.1 and 2.2.7.2. Edges represent

communication links. The nodes that are circled in black use a normalized

step size rµk � 1, whereas the others use rµk � 0.1 in (2.53). (a) Daily average

temperature measured by 100 weather stations on 06/21/2002 (�F). The arrow

points to the station whose data are used in Fig. 13. (b) Clusters adopted for

the multitask algorithms in Secs. 2.2.7.1 and 2.2.7.2. (c) Scenario studied in

Sec. 2.2.7.2. Blue nodes are unobserved, whereas the red ones are observed.

Edges represent communication links. The arrow points to the station whose

data are used in Fig. 15. This figure was created using the GSPBOX toolkit [249]. 52

12 SRRE curves along the iterations for the training dataset obtained with the

dNLMS, RFF-dKNLMS, dGNLMS, multitask dNLMS, and noncooperative

NLMS algorithms. 55

13 Comparison between the temperature measured at the station indicated by an

arrow in Fig. 11 and the estimates provided by the dNLMS, RFF-dKNLMS,

dGNLMS, multitask dNLMS, and noncooperative NLMS algorithms. 56

14 SRRE curves for the unobserved nodes along the iterations for the training

dataset obtained with the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS

algorithms. 58

15 Comparison between the temperature measured at the station indicated by

an arrow in Fig. 11b and the estimates provided by the dGNLMS, multitask

dGNLMS, and RFF-dGKNLMS algorithms. 58

16 (a) Network used in the simulations of Sections 3.1.6.1 to 3.1.6.4. (b) Noise

variance σ2
vk

for k � 1, � � � ,V . 72

17 Comparison between dNLMS with Vs nodes randomly sampled per iteration

and AS-dNLMS (β� 1.6σ2
max, µζ � 0.06). (a) NMSD curves and (b) Multipli-

cations per iteration. 74

18 Theoretical bounds and average number of nodes sampled by AS-dNLMS with

three combination rules as a function of β ¥ σ2
min. (a) σ2

vk
as in Fig. 16. (b)

σ2
vk
�0.4 for k�1, � � � ,V . 75

19 Simulation results obtained with 1.1σ2
max ¤ β ¤ 3.1σ2

max and µζ adjusted

by (3.37) for each case. (a) NMSD curves, (b) Number of sampled nodes per

iteration, and (c) NMSE curves. 76

20 Simulation results obtained with 7σ2
max¤β¤20σ2

max and µζ adjusted by (3.37)

for each case. (a) NMSD curves, (b) Number of sampled nodes per iteration,

and (c) NMSE curves. 77

21 Comparison between the ASC-dNLMS, ACW-S and EA-dNLMS algorithms.

The parameters adopted are shown in Table 4. (a) NMSD curves. (b) Number

of broadcasts and (c) multiplications per iteration. 78

22 Simulation results in a nonstationary environment following Model (3.39). (a)

Steady-state NMSD, (b) Number of nodes sampled per iteration, and (c) Steady-

state NMSE. 80

23 Simulation results in a nonstationary environment following Model (3.39) with

the algorithms listed in Table 4. (a) Steady-state NMSD, and (b) Broadcasts per

iteration. 82

24 Comparison between dNLMS and AS-dNLMS (β � 80.49, µζ � 2.5 � 10�5).

(a) and (b): SRRE in the training and testing periods, respectively. (c) and (d):

Multiplications per iteration during training and testing, respectively. 83

25 Comparison between the temperature measured at two stations and the esti-

mates provided by AS-dNLMS for them. 84

26 Daily average temperature measured by 100 weather stations on 06/21/2002

(�F). Circled nodes use rµk � 1, whereas the others use rµk � 0.1. Each edge is

a communication link. The arrows point to the stations whose data are used in

Fig. 13. 84

27 Example of an adaptive diffusion network and its inputs. The neighborhood of

node 1 is highlighted in red. 85

28 Comparison between dNLMS with Vs nodes randomly sampled per iteration

and AS-dNLMS (β� 3.8σ2
max � 1.9, µζ � 0.0045). (a) NMSD along the itera-

tions, (b) number of nodes sampled, and (c) multiplications per iteration. . . . 86

29 Comparison between dNLMS with Vs nodes randomly sampled per iteration

and AS-dNLMS (β � 3.8σ2
max � 19, µζ � 0.0045) in Scenario 2 described in

Sec. 3.2.6, in which one of the nodes is much noisier than the others. (a) NMSD

curves, and (b) number of nodes sampled per iteration. 87

30 Comparison between dNLMS with Vs nodes randomly sampled per iteration,

AS-dNLMS and DTAS-dNLMS in Scenario 2 described in Sec. 3.2.6, in which

one of the nodes is much noisier than the others. (a) NMSD curves, and (b)

number of nodes sampled per iteration. 93

31 Histograms for X obtained from 100 realizations with 2 � 105 iterations each.

Measurements taken in node 1 of the network depicted in Fig. 27. (a) Scenario

1 described in Sec. 3.2.6. (b) M � 10, noise variance σ2
vk

and step sizes rµk

as depicted in Fig. 34. (c) M � 50, noise variance σ2
vk

and step sizes rµk as

depicted in Fig. 34 but divided by 10. (d) M � 10, with a colored input signal

and a different network, noise power, and step size profiles in comparison with

Scenario 1. 97

32 Values fit from the experimental data for (a) a1, (b) a2, and (c) a3 for each

filter length 10 ¤ M ¤ 100 considering Model (3.58) and the Nonlinear Least

Squares method. 99

33 Comparison between the values obtained for χ using (3.60) with a1, a2 and a3

as depicted in Fig 32 and those yielded by the Approximation (3.62). 100

34 (a) Noise variance σ2
vk

, and (b) normalized step size rµk for k � 1, � � � , V con-

sidered in the simulations. 106

35 Comparison between dNLMS with Vs nodes randomly sampled per iteration,

AS-dNLMS (β � 1.9, µζ � 0.0045), DTAS-dNLMS (γ � 9), and DTRAS-

dNLMS (γ� 11, χ� 1.298). For DTAS-dNLMS and DTRAS-dNLMS, µζkpnq
was set using (3.50) with ∆n� 7000. (a) NMSD curves, (b) number of nodes

sampled and (c) multiplications per iteration. 107

36 Theoretical results yielded by (3.55) and average number of nodes sampled by

DTAS-dNLMS and DTRAS-dNLMS (χ�1.298) as a function of γ ¥ 1. . . . 108

37 Comparison between dNLMS with Vs nodes randomly sampled per iteration,

AS-dNLMS (β � 19 � 3.8σ2
max, µζ � 0.0045, and β � 3.5 � 0.7σ2

max,

µζ�0.0025), DTAS-dNLMS (γ�9, ∆n�7000), and DTRAS-dNLMS (γ�11,

χ�1.298, ∆n�7000) in a scenario where σ2
max is increased by tenfold in com-

parison with Fig. 34(b). (a) NMSD curves, and (b) number of nodes sampled

per iteration. 109

38 Comparison between dNLMS with Vs nodes randomly sampled per iteration,

AS-dNLMS (β � 1.9, µζ � 0.0045), DTAS-dNLMS (γ � 9, ∆n � 7000), and

DTRAS-dNLMS (γ � 11, ∆n � 7000, and different values for χ) in a nonsta-

tionary environment following Model (3.39). (a) steady-state NMSD, and (b)

average number of nodes sampled per iteration. 110

39 Comparison between dNLMS with Vs nodes randomly sampled per iteration,

AS-dNLMS (β � 1.9, µζ � 0.0045), DTAS-dNLMS (γ � 9, ∆n � 7000), and

DTRAS-dNLMS (γ � 11, χ � 1.298, ∆n � 7000) in a scenario with random-

walk tracking as in (3.39) with TrrQs�10�4. (a) NMSD curves, and (b) number

of nodes sampled per iteration. 111

40 Simulation results obtained in a nonstationary environment following

Model (3.39) with DTRAS-dNLMS (γ � 11, ∆n � 7000 and different values

for χ). (a) Steady-state NMSD, and (b) Number of nodes sampled per iteration. 112

41 Comparison between dAPA with Vs nodes randomly sampled per iteration, AS-

dAPA (β � 2, µζ � 0.0098), DTAS-dAPA (γ � 9.5), and DTRAS-dAPA

(γ � 9.5, χ � 1.2328). For DTAS-dAPA and DTRAS-dAPA, µζkpnq was set

using (3.50) with ∆n�1000 and ∆n�500, respectively. (a) NMSD curves, (b)

number of nodes sampled and (c) multiplications per iteration. 115

42 (a) Network topology, with the connections between node #1 and its neighbors

highlighted, and (b) σ2
vk

used in the experiments. 117

43 Simulation results obtained in the toy example scenario. (a) NMSD curves, (b)

number of uncensored nodes, and (c) multiplications per iteration. 119

44 Simulation results obtained for nonlinear channel identification. (a) NMSE

curves, (b) number of uncensored nodes, and (c) multiplications per iteration.

For better visualization, we applied a moving-average filter with 64 coefficients

to the curves. 120

45 (a) The network considered in the simulations, in which the nodes are grouped

into four distinct clusters, numbered as C1 to C4. (b) Noise power σ2
vk

and

adaptation step µk for k � 1, � � � ,V . 121

46 Comparison between the multitask dNLMS algorithm with Vs nodes sampled

randomly per iteration (Vs P t7, 14, 21, 28u), the multitask AS-dNLMS algo-

rithm (β � 0,09 and µζ � 0,055), and single-task dNLMS algorithm with all

nodes sampled. (a) NMSD curves, (b) number of nodes sampled, and (c) num-

ber of multiplications per iteration. 123

47 Results obtained with the multitask AS-dNLMS algorithm (β � 0,09 e µζ �
0,055) considering the network of Fig. 16(a) as a whole, and each cluster indi-

vidually. (a) NMSD curves, (b) Number of nodes sampled per iteration in the

network as a whole, and (c) in each cluster. 124

48 A network arranged according to the K8 topology. 139

49 (a) Network topology, and (b) noise variance profile considered in the simulations.144

50 The sub-figures in the top row present a comparison between the simulation

results and the model of Eq. (4.39), whereas the ones in the bottom row show a

comparison with the model of Eq. (4.54). The simulation results were obtained

considering the Scenario 1 of Table 8 in sub-figures (a) and (b), Scenario 2 in

(c) and (d), and Scenario 3 in (e) and (f). 145

51 Comparison between the simulation results and the model of Eq. (4.47) for

pζ Pt1, 0.5, 0.1u in Scenario 4. 146

52 (a) ρpΓq as a function of pζ , and (b) percentage of realizations in which the

dLMS diverged with µ � 0.1 and M � 100 for pζ P r0.01, 1s with different

combination policies. 148

53 Steady-state NMSD for pζ Pr0.01, 1s in: (a) Scenario 1, (b) Scenario 2, and (c)

Scenario 3. 149

54 (a) Network topology, and (b) noise variance profile considered in the simulations.152

55 Comparison between the theoretical models and the simulation results with

γ�25 and ∆n�100. (a) NMSD curves, and (b) sampling probability along the

iterations. 153

56 Comparison between the theoretical models and the simulation results with

γ� 25 and ∆n� 1000. (a) NMSD curves, and (b) sampling probability along

the iterations. 154

LIST OF TABLES

1 Summary of the some rules for the selection of the combination weights most

widely adopted in the literature. 26

2 Comparison between the dNLMS, RFF-dKNLMS, dGNLMS, multitask

dNLMS, and noncooperative NLMS algorithms in terms of the performance

on the testing set and computational cost. 55

3 Comparison between the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS

algorithms in terms of the performance the testing set and computational cost. 57

4 Parameters used in the simulations of Fig. 21 79

5 Computational cost comparison between dNLMS, AS-dNLMS and DTRAS-

dNLMS with ACW: number of operations per iteration for each node k. 101

6 Comparison between the parameters of DTRAS-dNLMS and AS-dNLMS. . . 104

7 Estimated number of multiplications per iteration at each sampled node k. . . . 143

8 List of scenarios considered in the simulations. 144

9 Average number of multiplications per iteration in the network for pζ P
t0.1, 0.5, 1u with M�10 and M�100. 146

10 Summary of the main contributions of each chapter. 157

LIST OF SYMBOLS

Notation. We use lowercase normal font letters to denote scalars, boldface lowercase letters

for vectors, boldface uppercase letters for matrices, and calligraphic fonts for sets. To

simplify the arguments, we assume real data throughout this work. Next, we provide a

list of the symbols used in this work.

General Symbols

p�qT transposition operator

p�q� complex conjugate

Et�u mathematical expectation°
sum

} � } Euclidean norm

| � | cardinality if the argument is a set, or absolute value if the argument is a scalar

IN N � N identity matrix

0N N � 1 vector whose entries are all equal to 0

1N N � 1 vector whose entries are all equal to 1

0N�M N � M matrix whose entries are all equal to 0

1N�M N � M matrix whose entries are all equal to 1

rXsi j pi, jq-th entry of the matrix X

b Kronecker product, or number of multiplications per iteration

` number of sums per iteration

d Hadamard product

XXY intersection between the sets X and Y

XzY difference between the sets X and Y

min minimum of a finite set or compact function

max maximum of a finite set or compact function

∆ difference or variation

arg min arguments of the minima

sgmp�q sigmoid function

expp�q exponential function

erfp�q error function

erf�1p�q inverse error function

erfcp�q complementary error function

colt�u column vector formed by the stacking of the arguments in their respective order

diagt�u diagonal matrix formed by the aggregation of the arguments in their respective

order

vect�u column vector formed by the stacking of the columns of a matrix argument

on top of each other in their respective order

∇ gradient

λmaxp�q maximum absolute value of the eigenvalues of a matrix

λip�q i-th greatest eigenvalue of a matrix

ρp�q spectral radius of a matrix

px estimate of the true value of the variable x

Prp�q probability of an event

p probability of success of a Bernoulli random variable

fXpxq pdf of a random variable

FXpxq cdf of a random variable

gXpxq Gaussian pdf

GXpxq Gaussian cdf

r�s ceiling function

t�u floor function

Distributed signal processing

n time instant

V number of nodes in an adaptive diffusion network

e estimation error

d desired signal

v additive noise

u input signal

u input regressor vector

µ adaptation step

M number of taps of the algorithm

wo coefficient vector of the unknown system in single-task scenarios

J cost function

ψ local estimate of wo produced by the diffusion algorithms

w combined estimate of wo produced by the diffusion algorithms

Nk neighborhood of a given node k

cik combination weight assigned by node k to the estimate received from neighbor i

bik combination weight assigned by node k to the gradient received from neighbor i

Ru autocorrelation matrix of the input signal u

rw difference between the combined estimate w and the true coefficient vector to be

estimated

rψ difference between the combined estimate ψ and the true coefficient vector to be

estimated

ν forgetting factor

σ2
v variance of the additive noise

pσ2
ik estimate at node k of variance of the additive noise at node i

ζ binary variable that determines the sampling and/or the censoring of each node

wo
k coefficient vector of the unknown system at node k in multitask scenarios

Cpkq cluster to which the node k belongs

Ci i-th cluster in the network

wo
Ci

coefficient vector of the unknown system at the nodes of cluster Ci in clustered

multitask scenarios

η regularization parameter of clustered multitask adaptive diffusion networks

sρki combination weights for adjusting the regularization strength between two nodes

i and k in a clustered multitask scenario

eik estimation error obtained with the desired signal and input regressor vector of

node i, using the combined estimate of node k

φop�q nonlinear transformation of the input vector u

κp�,�q Mercer kernel

h Gaussian kernel bandwidth

D dictionary of a kernel-based method

D number of elements in a dictionary

κ vector comprised of the kernel values computed between the input vector u and

the elements of the dictionary D

ω vector of random frequencies in RFF methods

θ random phase in RFF methods

z mapped input vector of RFF methods

A adjacency matrix of a graph

H linear shift-invariant graph filter

h output of a linear shift-invariant graph filter

x input vector of adaptive diffusion networks for GSP

δr regularization factor to avoid division by zero when normalizing a step size

rµ normalized step size

δc regularization factor to avoid division by zero in the ACW algorithm

β parameter used to control the penalization of the sampling of the nodes in the

AS-dNLMS algorithm

sζ auxiliary variable used in the derivation of the AS-dNLMS algorithm

α auxiliary variable used in the adaptation of ζpnq

α� greatest value that α can assume

ϕp�q sigmoid function that establishes the relationship between the variables sζ and α

ϕ1p�q derivative of ϕ with respect to α

ε last measurement of e that we have access to

µζ step size used in the adaptation of α

µζ step size used in the adaptation of α

σ2
max maximum noise variance in the network

σ2
min minimum noise variance in the network

βr ratio between β and σ2
max

η̆ number of iterations during each duty cycle of the sampling mechanism in which

the node is sampled

sη number of iterations during each duty cycle of the sampling mechanism in which

the node is not sampled

Vs number of nodes sampled in the network

Vt number of transmitting nodes in the network

ϕ10 ϕ1 evaluated at α � 0

ϕ1
α�

ϕ1 evaluated at α � α�

∆n parameter of the sampling algorithms, used to control when the nodes cease to be

sampled

q random column vector used to model the changes in the optimal system in a

random-walk scenario

Q autocovariance matrix of q

γ parameter used to control the number of sampled nodes in the DTAS-dNLMS,

DTRAS-dNLMS, and DTASC-RFF-dKNLMS algorithms

pσ2
N

estimate of the average noise power in the neighborhood of a node

pσ2
f fast estimate of the noise power calculated by the algorithm of [265]

pσ2
m medium-speed estimate of the noise power calculated by the algorithm of [265]

pσ2
s slow estimate of the noise power calculated by the algorithm of [265]

pσ2
ι intermediate estimate of the noise power calculated by the algorithm of [265]

pσ2
v final estimate of the noise power calculated by the algorithm of [265]

χ sensitivity threshold of the reset mechanism of DTRAS-dNLMS

U input matrix of the diffusion Affine Projection Algorithm

d desired vector of the diffusion Affine Projection Algorithm

e estimation error vector of the diffusion Affine Projection Algorithm

ĕ estimation error of the RFF-dKNLMS algorithm

ε̆ last measurement of ĕ that we have access to

Hpzq transfer function of a discrete-time linear time-invariant system

z�1 unit delay operator

σ2
u variance of the input signal

C matrix formed from the aggregation of the combination weights cik

Rv diagonal matrix whose i-th element is equal to the noise variance at node i

χLMS steady-state MSD of a single LMS filter

χnc steady-state NMSD of a noncooperative dLMS network

KV network topology in which there is a link between every pair of nodes

χKV steady-state NMSD of a dLMS network arranged according to a KV topology

sσ2
v average noise power in the network

ns.s. predicted iteration at which the DTRAS-dNLMS algorithm achieves the steady

state in terms of the NMSE

nswitch predicted iteration at which the sampling probability of DTRAS-dNLMS switches

from one to its steady-state value

TABLE OF CONTENTS

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 3

1.3 Justification . 3

1.4 Contributions . 4

1.5 Dissertation Structure . 7

2 Literature review 8

2.1 Brief History of Adaptive Diffusion Networks 8

2.1.1 Technological Background: The Emergence of Wireless Sensor Networks 8

2.1.2 How to Distribute the Processing? . 11

2.1.3 Diffusion strategies consolidate and are extended 13

2.1.4 Other Advances Span Correlated Tools 15

2.2 Adaptive Diffusion Networks . 18

2.2.1 The Selection of the Combination Weights and the Steady-State Perfor-

mance . 25

2.2.2 Simulations – Exploring the Theoretical Results 30

2.2.3 Restricting Communication Policies 32

2.2.3.1 Packet Size Reducing Techniques 33

2.2.3.2 Link Selection Policies . 35

2.2.3.3 Censoring Strategies . 35

2.2.4 Multitask Adaptive Diffusion Networks 36

2.2.5 Kernel Adaptive Diffusion Networks 41

2.2.6 Graph Signal Processing and Adaptive Diffusion Networks 45

2.2.6.1 Preliminaries to Adaptive Diffusion over Graphs 46

2.2.6.2 Diffusion Algorithms for Graph Signal Processing 49

2.2.7 Application Example: Temperature Prediction 51

2.2.7.1 Temporal Prediction with Fully Observed Nodes 53

2.2.7.2 Prediction at Unobserved Nodes 55

2.3 Conclusions . 58

3 Proposed algorithms 60

3.1 The Adaptive Sampling Algorithm . 61

3.1.1 The Adaptive Sampling Algorithm as a Censoring Strategy 65

3.1.2 Theoretical Analysis . 65

3.1.3 The parameter β and its effects on the algorithm 66

3.1.4 The expected number of sampled nodes 68

3.1.5 Choosing the step size µζ . 70

3.1.6 Simulation Results . 71

3.1.6.1 Comparison with Random Sampling 72

3.1.6.2 Validation of the Theoretical Analysis 73

3.1.6.3 Application as a Censoring Technique 77

3.1.6.4 Random-Walk Tracking . 79

3.1.6.5 Application in Graph Adaptive Filtering 81

3.2 Modifications for the AS Algorithm . 84

3.2.1 Dynamic Tuning of the Parameters . 87

3.2.2 Selection of the parameter γ . 93

3.2.3 Resetting the Sampling of the Nodes 95

3.2.4 Computational Complexity . 100

3.2.5 Overview of the Parameters of DTRAS-dNLMS 103

3.2.6 Simulation Results . 105

3.2.6.1 Scenario 1 – Base Scenario 105

3.2.6.2 Scenario 2 – Network with a Noisy Node 108

3.2.6.3 Scenario 3 – Random-Walk Tracking 109

3.2.6.4 Scenario 4 – Colored Input and diffusion Affine Projection

Algorithm . 113

3.3 Adaptive Sampling and Censoring for Kernel-Based Diffusion Networks 115

3.3.1 Simulation results . 117

3.3.1.1 Toy Example . 117

3.3.1.2 Nonlinear Channel Identification 118

3.4 Adaptive Sampling for Multitask Diffusion Networks 119

3.4.1 Simulation Results . 121

3.5 Conclusions . 124

4 Performance analysis: the impacts of sampling 126

4.1 The Effects of Random Sampling . 127

4.1.1 The noncooperative Case . 135

4.1.2 An Approximate Model for the Cooperative Strategies 137

4.1.3 Computational Cost Reduction . 142

4.1.4 Simulation Results . 143

4.1.4.1 Transient Performance . 144

4.1.4.2 Effects of Sampling on the Stability 146

4.1.4.3 Steady-State Performance 148

4.2 A Simplified Model for the NMSD of DTRAS-dLMS 148

4.2.1 Simulations . 151

4.3 Conclusions . 153

5 Conclusions 155

References 160

Appendix A -- Estimation of the Duty Cycle of the Sampling in the AS-dNLMS Algo-

rithm 180

Appendix B -- Estimation of the Duty Cycle of the Sampling in the DTAS-dNLMS and

DTRAS-dNLMS Algorithms 182

Appendix C -- Obtaining χ from pχ 184

Appendix D -- Obtaining the recursion for ξkkpnq 186

Appendix E -- On the matrix Γ 189

Appendix F -- On the upper bound for the NMSD for a given pζ 190

Appendix G -- Network performance with a KV topology 194

1

1 INTRODUCTION

In this chapter, we seek to motivate and contextualize the present work, to present its main

contributions, and to explain how it is organized. In Sec. 1.1, we provide the motivation for this

dissertation. In Secs. 1.2 and 1.3, respectively, we state the goals and the justification for the

current work. Lastly, in Secs. 1.4 and 1.5 we present the main contributions of our work and

the structure of this dissertation.

1.1 Motivation

Over the past two decades, adaptive diffusion networks have consolidated themselves as

an interesting tool for distributed signal processing [1–6]. These networks consist of a set of

connected agents or nodes, capable of collecting data, performing calculations locally and com-

municating with other nearby agents, called neighbors. The objective of the network as a whole

is to estimate a vector of parameters of interest. For this, each node calculates its own local

estimate in the so-called adaptation step. Then, in the combination step, neighboring nodes

cooperate to reach a combined estimate of the vector of interest. The order in which these steps

are performed leads to two possible schemes: “adapt-then-combine” (ATC) and “combine-then-

adapt” (CTA) strategies. With these two steps, the idea is to estimate the parameters of interest

without having a central processing unit [1–6].

Compared to centralized approaches, which require a central unit to receive and process

data from the entire network, this type of solution offers better scalability, autonomy and flex-

ibility [1–6]. Moreover, they also present an improved robustness in comparison with other

distributed approaches, such as the incremental [7–10] and consensus [11–17] strategies. Con-

sequently, adaptive diffusion networks are considered effective solutions in various applications,

such as target localization and tracking [1], spectral sensing in mobile networks [1, 18], med-

ical applications [19], among others. Moreover, due to their popularity, they have branched

out into many research topics, such as multitask networks [20–31], nonlinear adaptive net-

works [32–40], among others. Moreover, the field of graph signal processing (GSP) has often

been inspired by these techniques, since it deals with applications that are usually distributed in

nature [41–43, 47, 48]. As a result, many graph adaptive filtering algorithms can be seen as an

Introduction 2

extension of adaptive diffusion networks to domains where space, as well as time, plays a role

in the development of the signals of interest. It is worth noting that, in this work, we are pri-

marily concerned with adaptive diffusion networks designed for distributed linear and nonlinear

adaptive filtering, both in the traditional sense and for GSP. In recent years, the term “adaptive

networks” has sometimes been employed in a wider sense to refer to networked strategies for,

e.g., optimization [49, 50] and social learning [51–53]. However, these topics are out of the

scope of the current work.

In the implementation of solutions for distributed signal processing, it is oftentimes desir-

able to reduce the amount of data measured, processed, and transmitted throughout the network.

For example, when dealing with wireless sensor networks (WSNs), energy consumption is often

the most critical constraint, especially if devices that run on batteries are employed. Since the

communication between the nodes can be particularly draining in this regard, several techniques

were proposed over the years to reduce the energy consumption associated with the exchange

of information [54–82]. Among these, there is a group of solutions known as censoring tech-

niques. They seek to cut the transmission from certain nodes to any of their neighbors [72–82],

hence allowing censored nodes to turn their transmitters off. The search for efficient mecha-

nisms that reduce the energy consumption associated with the communication between nodes

while preserving the performance of adaptive diffusion networks is a topic that continues to

inspire the distributed signal processing community to this day [60–62, 78, 79, 81–84].

Furthermore, in certain situations, the cost of measuring and processing the data available

at each node at each iteration can be prohibitively high. In these cases, it is necessary to employ

sampling techniques [42–46], which can significantly reduce the computational and memory

cost associated with learning.

For the reasons explained above, sampling and censoring techniques are often necessary

for the feasibility of adaptive diffusion networks. However, as one might expect, they can also

have a negative effect on the network performance [42, 43, 72–82]. Thus, in this work, our aim

is to derive sampling and censoring techniques that negatively impact the performance as little

as possible. Moreover, we seek to analyze the impact of sampling, so as to understand in detail

its effects on the network performance.

Introduction 3

1.2 Objectives

The main objectives of this work are as follows.

1. To carry out a literature review on adaptive diffusion networks, in order to understand the

different solutions that have been proposed in the area;

2. to propose adaptive sampling and censoring mechanisms, in order to obtain efficient al-

gorithms for adaptive diffusion networks in terms of computational cost and energy con-

sumption;

3. to test the proposed algorithms, considering different types of scenarios and practical

applications, when feasible;

4. to perform a theoretical analysis of the performance of the proposed algorithms and to

understand the impact of the sampling of the nodes on the performance.

1.3 Justification

With the deployment of 5G communication networks [85], the implementation of Internet

of Things (IoT) has been facilitated in the past few years, a trend that is expected to continue

in the near future [86, 87]. Furthermore, investigations on 6G communication networks have

begun [88–92], and there is an expectation that they may come to fruition in the second half

of this decade or in the early 2030’s [89]. In addition to these development, there has been

an increase in the usage of WSNs in practical applications. For instance, wireless body area

networks (WBANs) [93, 94] have become appealing solutions in, e.g., healthcare and security

applications [95, 96]. Moreover, WSNs have also been employed in agriculture [97], speech,

video and image enhancement, spectrum sensing, power system state estimation, among oth-

ers [98].

As a results of these advances, we may expect to see an increased applicability of adap-

tive diffusion networks in the near future [99, 100]. In this context, computational and energy

efficiency will be crucial for the success of these solutions. However, many of the existing

censoring and sampling techniques, although praiseworthy and interesting in their own right,

usually affect the network performance in a noticeable manner [42, 43, 72–82].

Introduction 4

Hence, obtaining a technique that leads to energy and computational cost savings while

preserving performance is a relevant issue and a matter of practical interest. This would make

it possible to implement adaptive diffusion networks without sacrificing the characteristics that

make them so attractive.

1.4 Contributions

Based on the results presented in this dissertation, we have published four journal papers

[JP-1, JP-2, JP-3, JP-4], two international conference papers [IC-1 and IC-2], and five Brazilian

national conference papers [NC-1, NC-2, NC-3, NC-4 and NC-5]. It is worth mentioning that

the paper [IC-1] was ranked in the top 3% of the papers presented at the 2023 edition of the In-

ternational Conference on Acoustics, Speech, and Signal Processing (ICASSP), and received a

certificate for it. Moreover, we have also submitted another paper [SP] to the IEEE Transactions

on Signal Processing, which is currently under review.

[JP-1] D. G. Tiglea, R. Candido, and M. T. M. Silva, “A low-cost algorithm for adaptive

sampling and censoring in diffusion networks,” IEEE Transactions on Signal Processing,

vol. 69, pp. 58–72, Jan. 2021. Available: <https://ieeexplore.ieee.org/abstract/documen

t/9257199?casa_token=E9aAA4dv8wAAAAAA:VJpn52pGlAKte8seaLZbU1FDqBlw

NqYuZSLPCPJNUY_OznSQBPzlClpzCD7-Mx4DrtTYA_BaHg>

[JP-2] D. G. Tiglea, R. Candido, and M. T. M. Silva, “An adaptive algorithm for sam-

pling over diffusion networks with dynamic parameter tuning and change detection mech-

anisms,” Digital Signal Processing, vol. 127, pp. 103587, Jul. 2022. Available:

<https://www.sciencedirect.com/science/article/pii/S1051200422002044?casa_tok

en=SkoETIl9rx8AAAAA:WIN9u9HxnjKaqjFq37XxidLTUasQG8fxkXP70N_HfDav9c

ALaHWjpFb2bZ0Hu7-iyzdsMmIn2g>

[JP-3] D. G. Tiglea, R. Candido, and M. T. M. Silva, “A variable step size adaptive al-

gorithm with simple parameter selection,” IEEE Signal Processing Letters, vol. 29, pp.

1774–1778, Aug. 2022. Available: <https://ieeexplore.ieee.org/abstract/document/9847

065?casa_token=w1LHgphtsZ0AAAAA:RcVf0FvnI6GSssXDWpcdPE-kjuYl5R8CJttI

PHy_-G6JD7jv0vYnV-XdKUL_M8HHTvezda2PiA>

[JP-4] D. G. Tiglea, R. Candido, and M. T. M. Silva, “Adaptive Diffusion Networks: An

https://ieeexplore.ieee.org/abstract/document/9257199?casa_token=E9aAA4dv8wAAAAAA:VJpn52pGlAKte8seaLZbU1FDqBlwNqYuZSLPCPJNUY_OznSQBPzlClpzCD7-Mx4DrtTYA_BaHg
https://ieeexplore.ieee.org/abstract/document/9257199?casa_token=E9aAA4dv8wAAAAAA:VJpn52pGlAKte8seaLZbU1FDqBlwNqYuZSLPCPJNUY_OznSQBPzlClpzCD7-Mx4DrtTYA_BaHg
https://ieeexplore.ieee.org/abstract/document/9257199?casa_token=E9aAA4dv8wAAAAAA:VJpn52pGlAKte8seaLZbU1FDqBlwNqYuZSLPCPJNUY_OznSQBPzlClpzCD7-Mx4DrtTYA_BaHg
https://www.sciencedirect.com/science/article/pii/S1051200422002044?casa_token=SkoETIl9rx8AAAAA:WIN9u9HxnjKaqjFq37XxidLTUasQG8fxkXP70N_HfDav9cALaHWjpFb2bZ0Hu7-iyzdsMmIn2g
https://www.sciencedirect.com/science/article/pii/S1051200422002044?casa_token=SkoETIl9rx8AAAAA:WIN9u9HxnjKaqjFq37XxidLTUasQG8fxkXP70N_HfDav9cALaHWjpFb2bZ0Hu7-iyzdsMmIn2g
https://www.sciencedirect.com/science/article/pii/S1051200422002044?casa_token=SkoETIl9rx8AAAAA:WIN9u9HxnjKaqjFq37XxidLTUasQG8fxkXP70N_HfDav9cALaHWjpFb2bZ0Hu7-iyzdsMmIn2g
https://ieeexplore.ieee.org/abstract/document/9847065?casa_token=w1LHgphtsZ0AAAAA:RcVf0FvnI6GSssXDWpcdPE-kjuYl5R8CJttIPHy_-G6JD7jv0vYnV-XdKUL_M8HHTvezda2PiA
https://ieeexplore.ieee.org/abstract/document/9847065?casa_token=w1LHgphtsZ0AAAAA:RcVf0FvnI6GSssXDWpcdPE-kjuYl5R8CJttIPHy_-G6JD7jv0vYnV-XdKUL_M8HHTvezda2PiA
https://ieeexplore.ieee.org/abstract/document/9847065?casa_token=w1LHgphtsZ0AAAAA:RcVf0FvnI6GSssXDWpcdPE-kjuYl5R8CJttIPHy_-G6JD7jv0vYnV-XdKUL_M8HHTvezda2PiA

Introduction 5

Overview,”Signal Processing, vol. 223, p. 109570, Oct. 2024. Available online since

June 2024 on: <https://www.sciencedirect.com/science/article/pii/S016516842400189

0?casa_token=u4B3BmSChwQAAAAA:R91SOTlDokLZJ_4Pr9rvQBlqtYdwl63IW8

NwZkFtXLnhxZ9AdokLqe7pPIJ2h1uQGjs1jeqRlw>

[IC-1] D. G. Tiglea, R. Candido, L. A. Azpicueta-Ruiz, and M. T. M. Silva, “Reducing

the communication and computational cost of random Fourier features kernel LMS in

diffusion networks,” in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP), 2023, pp. 1–5. Available: <https://ieeexplore.ieee.org/abst

ract/document/10095416?casa_token=2CjvtrQKqawAAAAA:6YYgCmHOF7nXUkFU

csAhXRLH3qZonSgYvxQWPgYnq5JUxb3WwSi1DkSRw5Zc2bnoYI0jWd28dQ>

[IC-2] D. G. Tiglea, R. Candido, and M. T. M. Silva, “Can Adaptive Diffusion Networks

Do Better with Less Data?” Accepted for publication in Proc. 19th International Sympo-

sium on Wireless Communication Systems. To appear.

[NC-1] D. G. Tiglea, R. Candido, and M. T. M. Silva, “Adaptive sampling for diffusion

networks with online parameter adjustment,” (in Portuguese), in Anais do XXXIX Simpó-

sio Brasileiro de Telecomunicações e Processamento de Sinais, 2021, pp. 1–5. Available:

<https://biblioteca.sbrt.org.br/articles/2839>

[NC-2] A. A. Bueno, D. G. Tiglea, R. Candido, and M. T. M. Silva, “A kernel algo-

rithm based on Gram-Schmidt orthogonalization for adaptive diffusion networks,” (in

Portuguese) in Anais do XXXIX Simpósio Brasileiro de Telecomunicações e Processa-

mento de Sinais, 2021, p. 1–5. Available: <https://biblioteca.sbrt.org.br/articles/2897>

[NC-3] L. Gamballi, D. G. Tiglea, R. Candido, and M. T. M. Silva, “Distributed train-

ing of neural networks for geometric figures classification,” (in Portuguese) in Anais do

XL Simpósio Brasileiro de Telecomunicações e Processamento de Sinais, 2022, pp.1–3.

Available: <https://biblioteca.sbrt.org.br/articles/3599>

[NC-4] L. Gamballi, D. G. Tiglea, R. Candido, and M. T. M. Silva, “Distributed MLP

networks for cardiac arrhythmia classification,” (in Portuguese) in Anais do XL Brasileiro

de Telecomunicações e Processamento de Sinais, 2022, pp.1–5. Available: <https://bibl

ioteca.sbrt.org.br/articles/3600>

https://www.sciencedirect.com/science/article/pii/S0165168424001890?casa_token=u4B3BmSChwQAAAAA:R91SOTlDokLZJ_4Pr9rvQBlqtYdwl63IW8NwZkFtXLnhxZ9AdokLqe7pPIJ2h1uQGjs1jeqRlw
https://www.sciencedirect.com/science/article/pii/S0165168424001890?casa_token=u4B3BmSChwQAAAAA:R91SOTlDokLZJ_4Pr9rvQBlqtYdwl63IW8NwZkFtXLnhxZ9AdokLqe7pPIJ2h1uQGjs1jeqRlw
https://www.sciencedirect.com/science/article/pii/S0165168424001890?casa_token=u4B3BmSChwQAAAAA:R91SOTlDokLZJ_4Pr9rvQBlqtYdwl63IW8NwZkFtXLnhxZ9AdokLqe7pPIJ2h1uQGjs1jeqRlw
https://ieeexplore.ieee.org/abstract/document/10095416?casa_token=2CjvtrQKqawAAAAA:6YYgCmHOF7nXUkFUcsAhXRLH3qZonSgYvxQWPgYnq5JUxb3WwSi1DkSRw5Zc2bnoYI0jWd28dQ
https://ieeexplore.ieee.org/abstract/document/10095416?casa_token=2CjvtrQKqawAAAAA:6YYgCmHOF7nXUkFUcsAhXRLH3qZonSgYvxQWPgYnq5JUxb3WwSi1DkSRw5Zc2bnoYI0jWd28dQ
https://ieeexplore.ieee.org/abstract/document/10095416?casa_token=2CjvtrQKqawAAAAA:6YYgCmHOF7nXUkFUcsAhXRLH3qZonSgYvxQWPgYnq5JUxb3WwSi1DkSRw5Zc2bnoYI0jWd28dQ
https://biblioteca.sbrt.org.br/articles/2839
https://biblioteca.sbrt.org.br/articles/2897
https://biblioteca.sbrt.org.br/articles/3599
https://biblioteca.sbrt.org.br/articles/3600
https://biblioteca.sbrt.org.br/articles/3600

Introduction 6

[NC-5] D. G. Tiglea, R. Candido, and M. T. M. Silva, “A sampling algorithm for multitask

adaptive diffusion networks,” (in Portuguese), in Anais do XLI Brasileiro de Telecomuni-

cações e Processamento de Sinais, 2023, pp.1–5. Available: <https://biblioteca.sbrt.org.

br/articles/4466>

[SP] D. G. Tiglea, R. Candido, and M. T. M. Silva, “On the Impact of Random Node

Sampling on Adaptive Diffusion Networks.” Submitted to the IEEE Transactions on

Signal Processing on 12th March 2024.

The main contributions of this work are listed next.

1. Extensive literature review.

In this work, we carry out a literature review that analyzes the evolution of adaptive dif-

fusion networks since their inception in the mid 2000’s, and covers many of the solutions

that have branched out from these techniques, such as kernel-based and multitask adap-

tive diffusion networks, as well as adaptive diffusion networks for GSP. We also examine

the technological developments that led to the emergence of adaptive diffusion networks

and to the prolonged interest in them. This review is presented in Chapter 2.

2. Adaptive Sampling and Censoring Algorithms.

We present adaptive algorithms for the sampling and censoring of diffusion networks,

which aim to reduce the computational cost and energy consumption of these solutions

without negatively affecting their performance. These algorithms are presented in Chap-

ter 3, where we also analyze the number of nodes sampled per iteration based on the

selection of the parameters of the algorithms.

3. Theoretical Analysis of the Effects of Sampling on Network Performance.

We also analyze the effects of sampling on the network performance, which is done in

Chapter 4. In comparison with existing works on this topic, we adopt a different approach,

which facilitates the qualitative interpretation of some of the main results obtained. As a

result, we draw some insights that, to the best of our knowledge, are novel in the literature.

We also observe a good match between the theoretical analysis presented and simulation

results.

4. A Variable Step Size Adaptive Filtering Algorithm.

Lastly, a contribution of this work not directly related to diffusion networks was the

https://biblioteca.sbrt.org.br/articles/4466
https://biblioteca.sbrt.org.br/articles/4466

Introduction 7

derivation of a variable step size (VSS) adaptive filtering algorithm, which was proposed

in the [JP-3] paper mentioned previously. This algorithm was heavily based on the adap-

tive sampling and censoring mechanisms of the [JP-1] and [JP-2] papers, though with

a different goal. Its aim is to control the step size of an adaptive filter along the iter-

ations such that the resulting algorithm presents an improved steady-state performance

in comparison with the solution with a fixed step size. Simulation results showed that

it can outperform other VSS algorithms, or attain a similar performance but with less

parameters, whose selection is comparatively simple.

1.5 Dissertation Structure

This work is structured into five chapters and seven appendices. In Chapter 2, we provide

an extensive literature review on adaptive diffusion networks, from their inception to the latest

advancements and open research problems.

In Chapter 3, we present the various algorithms proposed for the reduction of the com-

putational cost and number of transmissions in steady state. Moreover, we analyze how the

parameters of these algorithms influence the expected number of sampled (or censored) nodes,

and show simulation results obtained with them.

In Chapter 4, we analyze the impact of node sampling on the transient and steady-state

performance of the algorithms. We begin by investigating the case in which the nodes are

sampled randomly, and then extend the analysis to the algorithms presented in Chapter 3.

Finally, in Chapter 5, we present the main conclusions of our work, as well as suggestions

for future research.

8

2 LITERATURE REVIEW

In this chapter, we provide a literature review on adaptive diffusion networks and introduce

many of the algorithms and core concepts that are relevant to Chapters 3–5.

This chapter is organized as follows. In Sec. 2.1, we examine the historical development of

adaptive diffusion networks in the literature. In Sec. 2.2, we present mathematical and pseudo-

code descriptions of several solutions that have been proposed over the years, and discuss them

in detail. Furthermore, we also show some theoretical results found in the literature as well

as simulations to illustrate the behavior of these techniques with synthetic and real-world data.

Lastly, in Sec. 2.3 we present a summary of the main conclusions of this chapter.

2.1 Brief History of Adaptive Diffusion Networks

In this section, we present an overview of the timeline of adaptive diffusion networks, as

well as correlated research areas and technological advances. For ease of reading, we have

divided it into the following subsections. In Sec. 2.1.1, we explore the context that led to the

inception of adaptive diffusion networks, which are then addressed in Sec. 2.1.2, along with

other strategies for distributed signal processing. In Sec. 2.1.3, we examine the consolidation

of these tools in the literature and some of the research topics that were spanned by it in the

following years after its emergence. Finally, in Sec. 2.1.4, we address other innovations that

happened in parallel with the consolidation of adaptive diffusion networks, and the birth of

other research fields that drew inspiration from them at some point.

2.1.1 Technological Background: The Emergence of Wireless Sensor Networks

The late 1990’s and early 2000’s were marked by rapid progress in the fields of elec-

tronics and wireless communications. Advances in commercial integrated circuit fabrication

and in very large-scale integration (VLSI) technologies enabled the combination of wireless

transceivers, processors, and sensors on a single chip and amplified the usage of computing

and communication devices in commercial applications [101, 102]. There were also remark-

able breakthroughs in wireless communications technologies. Just to put things in perspective,

in 1998, the Bluetooth technology was launched as an open standard for wireless communi-

Literature review 9

cations [102]. Another project, initiated in 1990 by the IEEE, would lead to the release of a

wireless networking standard in 1997: the IEEE 802.11 [103]. This, in its turn, would become

the basis for wireless local access areas (WLANs), and give rise to a family of wireless network

protocols that received the brand name of Wi-Fi™ in 1999 [104]. In 2001, the first commercial

3G mobile service was launched in Japan [105].

Such advances would lead to the development of low-cost, low-power micro-sensors with

embedded processors and radios [106–109]. Thus, these devices were capable of sensing and

processing data, as well as communicating untethered over short distances [19,110]. This made

them promising mainly for three reasons:

1. Their low cost facilitated the deployment of numerous sensors over an area in order to

monitor a signal of interest, which is particularly beneficial when the exact location of

the source of such signal is not known beforehand. In this case, the placement of many

sensors can lead to improved signal-to-noise ratios (SNR) [110].

2. Their capability of communicating wirelessly enabled their use in areas where wired net-

working was impractical.

3. Their low power consumption allowed them to run on small energy sources, dismissing

the need for a continuous connection to the energy infrastructure (e.g., the power grid).

These features enabled the use of such micro-sensors in remote regions and made them suitable

for environmental monitoring, precision agriculture, smart homes, military applications, among

many other applications [19, 110].

Thus, although energy consumption and production costs were still too high to make them

feasible for large-scale applications in the short term [111], expectations arose that WSNs would

emerge in the following years or decades and revolutionize our relations with complex sys-

tems [110]. Indeed, over the 2000’s, some of the initial shortcomings were addressed. For

instance, although Bluetooth and WLAN are not specifically suitable for low-power networks,

other standardization attempts would arise in order to meet the needs of WSNs, such as Zig-

Bee [112], WirelessHART [113], and SP100.11a [114]. Moreover, the 6LoWPAN standard

would be proposed in order to make WSNs compatible with the internet [115].

Among the technical challenges posed by WSNs, energy consumption was the most de-

manding. This was mainly due to their reliance on small power sources and on wireless com-

Literature review 10

munications. Besides presenting short range, the minimum output power required to transmit a

signal over a distance d is proportional to dn, where 2 ¤ n 4 [19]. For low-lying antennae

and near-ground channels, as is the case in most sensor networks, the exponent n is close to 4

due to ground reflections [19, 109, 110].

As a result, distributed signal processing techniques were soon perceived to be more ap-

propriate than centralized approaches for WSNs [7, 9, 116, 117]. In a distributed setting, each

sensor node only communicates with its immediate neighbors. On the other hand, in the cen-

tralized framework, every node must send its data to a central processing unit, sometimes called

a fusion center. However, due to the energy constraints, it is desirable to process the data as

much as possible within the network, in order to limit the amount of bits transmitted over long

distances [110]. Another disadvantage associated with this approach resides in the fact that

it inserts a critical point of failure in the setting, namely, the fusion center. Furthermore, the

central unit must be capable of dealing with large amounts of data, meaning that it requires

more sophisticated processors and communication modules. Lastly, the short range of the radio

components in the sensors limits the scalability of the network in the centralized setting.

Furthermore, there was a concern that the mass production of micro-sensors and their large-

scale usage in future applications would create an impracticable demand on cable installation

and network bandwidth [109]. Thus, by processing as much data as possible locally, the finan-

cial, computational, and management burden on communication systems and networks could

be significantly alleviated.

The quickly-developing nature of this topic sparked the interest of the academic commu-

nity. In 2000, the IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP) had a session entitled “Signal Processing and Protocols for Wireless Sensors”. It was

the first edition of the conference to dedicate an entire session to this topic. In the following

year, there were three sessions dedicated to wireless networks, communications, and systems

in ICASSP. That same year, a workshop entitled Collaborative Signal Processing was held in

Palo Alto, California. This would later be renamed as the IEEE/ACM International Conference

on Information Processing in Sensor Networks, a symposium that has been held every year

since then. In 2002, the Association for Computing Machinery held its 1st ACM International

Workshop on Wireless Sensor Networks and Applications. In 2004, the European Association

for Signal Processing (EURASIP) launched an open-access journal entitled Eurasip Journal

on Wireless Communications and Networking, which places an emphasis on signal processing

Literature review 11

techniques for these technologies [118]. It is interesting to note that, around the same time, the

interest of the scientific community in complex networks began to rise for a number of factors.

Firstly, the study of complex systems in general was aided by the increasing availability of pow-

erful computers. In particular, this facilitated computations involving networks with millions

of nodes. Moreover, the popularization of the internet also played a role, by enabling the ex-

change of databases among researchers. In fact, the internet itself was an example of a complex

network, and was the subject of a handful of studies [119–121].

The prominence that the aforementioned conferences gave to the topic of wireless sensor

networks is an indication of the interest that it sparked among the engineering and computer

science communities. This enthusiasm would not fade in the following years – rather, it would

skyrocket. As depicted in Fig. 1, between 2002 and 2005 the number of academic publications

with the words “wireless sensor networks” in their title escalated from a few tens to more than a

thousand, including conference and journal papers, editorials, books and book chapters, among

others [122]. Furthermore, attention on the topic continued to grow steadily throughout the

2000’s, and it maintained the widespread interest of the scientific community during the 2010’s.

1990 1995 2000 2005 2010 2015 2020

Year

0

1000

2000

3000

4000

5000

6000

7000

8000

N
u

m
b

er
of

N
ew

P
u

b
li

ca
ti

on
s

p
er

Y
ea

r

Figure 1: Number of publications with the words “wireless sensor networks” in their title from
1991 through 2022 [122].

2.1.2 How to Distribute the Processing?

Up until the mid 2000’s, wireless sensor networks were oftentimes considered as a tool

for directly estimating a certain signal of interest. Thus, the main tasks of WSNs were typi-

cally to filter the measurement noise out using, e.g., linear filtering, and to estimate a parameter

of interest utilizing the maximum likelihood method, for instance. The results correspond-

ing to different spatial locations were then averaged [12, 13, 16, 123, 124]. In the second half

Literature review 12

of the decade, adaptive sensor networks with distributed processing were proposed [1–6,9,10].

These solutions consisted in the extension of well-established adaptive filtering algorithms, such

as least-mean-squares (LMS) and recursive least-squares (RLS) algorithms [125, 126], to dis-

tributed problems over sensor networks. With this fusion of ideas, WSNs could be endowed

with the ability to solve optimization problems in an adaptive manner, which enabled them

to follow changes in the environment, improved their overall flexibility, and broadened their

scope of applications, including, e.g., the study of biological and social networks, system iden-

tification problems, distributed spectrum sensing in cognitive radio networks, environmental

monitoring, among others [1, 22, 23, 33, 127].

In parallel, another question was the subject of much scrutiny throughout the 2000’s: how

exactly to carry out the processing in a distributed manner. More specifically, researchers sought

to determine how to organize the communication between nodes and how to incorporate their

cooperation in the processing of the data in an efficient manner, ensuring satisfactory perfor-

mance as well as low power consumption and computational cost. Some of the earliest ap-

proaches to data fusion in sensor networks were the so-called flooding techniques, such as

the ones used in conventional ad hoc networks. In its purest form, flooding works as fol-

lows: each node keeps a table where it stores all its known data. At every time instant, each

node then broadcasts this table to its neighbors. In a stationary environment, this means that

eventually every node will be able to act as a fusion center and estimate the parameters of in-

terest [12]. Naturally, this procedure demands high storage and communication capabilities

and generates a large overhead [16]. More efficient versions of flooding were proposed over

the years [128–131], but the potential for increased node density in WSNs and the technical

limitations of each individual sensor made this technique unappealing in the field.

In the mid 2000’s, two approaches for communication and cooperation between nodes be-

gan to attract attention in the context of wireless sensor networks: the consensus [11–17] and

incremental [8–10] strategies. Both approaches predate the emergence of WSNs, hailing from

the fields of statistics [132, 133] and optimization theory [8], respectively. However, as will

be seen in Sec. 2.2, they present some shortcomings that hindered their potential for applica-

tion in the specific context of WSNs. The incremental strategy is not robust to link and node

failures, since the breakdown of a single node or link halts the entire learning process due to

the disruption of the information chain. Moreover, it requires that the nodes be arranged in a

Hamiltonian cycle, which is, in general, an NP-hard problem [134]. In contrast, in consensus

Literature review 13

techniques, the nodes are allowed to communicate with each other according to a predefined

topology. As a result, they may cooperate with multiple peers, which eliminates some of the

issues associated with the incremental strategy. However, they also present some drawbacks.

Initially, they required the existence of two time-scales: one for the processing of the data, and

the other for reaching a consensus between the nodes at each iteration of the adaptation prob-

lem [16, 135]. Furthermore, the step sizes in traditional consensus techniques diminish over

time. It was noted that both of these traits could be problematic when dealing with online appli-

cations with streaming data. As a result, adjustments were proposed to the consensus schemes

in order to alleviate some of these challenges, but some discrepancies remained [136, 137]. A

more direct technique for adaptation over networks was proposed earlier leading to the diffusion

strategies [4–7, 138]. Later, it was shown that the diffusion strategies provided better stability

than their consensus counterparts for adaptation with in-network processing [139]. As a re-

sult, diffusion strategies remained the predominant technique for the use in adaptive networks,

although incremental and consensus strategies continued to be considered over the following

years [140–145]. For this reason, in this work, we focus mainly on diffusion techniques. An

excellent, in-depth comparison of incremental, consensus, and diffusion strategies can be seen

in [3].

Thus, by endowing the networks with the ability to adapt to the signals of interest at hand,

and by adopting diffusion strategies to disseminate information throughout the network, the

backbones of adaptive diffusion networks were laid out [4–7,138], and they began to popularize.

2.1.3 Diffusion strategies consolidate and are extended

Diffusion strategies soon became the most widely used protocol in adaptive sensor net-

works [1–6]. From this point on, much of the research done on adaptive sensor networks

focused on them – either expanding their methods to other fields of the distributed signal pro-

cessing area, or attempting to address some of their limitations. For example, despite their

advantages over centralized approaches and other distributed schemes, diffusion networks may

require a high number of communications. For this reason, over the 2010s decade, several tech-

niques were proposed to reduce the energy consumption associated with the communication

processes. Some aimed to reduce the amount of information sent in each transmission [54–62],

whereas others shut links off according to selective communication policies [63–65, 67–71].

Last but not least, there is a group of solutions known as censoring techniques. They seek to cut

Literature review 14

the transmission from certain nodes to any of their neighbors [72–82], hence allowing censored

nodes to turn their transmitters off. This saves energy and reduces the amount of information

used in the processing [74, 75].

Meanwhile, other works sought to investigate the impact of some forms of uncertainty on

the behavior of adaptive diffusion networks, which may be inevitable in practical implementa-

tions. These uncertainties included changes in the network topology during the operation of the

adaptive algorithms [63, 65], random link failures, random data arrival times, and agents turn-

ing on and off randomly [146–148]. Since these effects are asynchronous in nature due to their

randomness, networks where these occurrences can be observed were named as asynchronous

networks in the literature [1, 3, 146–148].

Furthermore, from the mid 2010’s onward, extensions of adaptive diffusion networks began

to be proposed. For instance, the topic of multitask networks received considerable attention

from 2014 onward [20–31]. These networks can be seen as a generalization of the solutions

that had been previously studied, which, in the multitask literature, are named as single-task

networks for distinction. In contrast with single-task solutions, the multitask approach considers

a network of nodes that do not share the same exact objective, but rather have overlapping (albeit

distinct) estimation interests [23]. Hence, there are multiple parameter vectors to be inferred

simultaneously and in a collaborative manner [22]. This situation is frequently observed in

distributed temperature estimation problems where the parameters that determine the evolution

of temperature over time vary in space [22]. Other examples of applications include target

tracking problems in which there are multiple targets to be tracked simultaneously, and spectrum

sensing over cognitive radio networks, for instance [22, 23].

Around the same period, diffusion networks with nonlinear processing began to be pro-

posed. In particular, solutions based on methods became popular in the diffusion networks

literature [32–36]. Some of the first solutions of this kind can be viewed as an extension of

kernel adaptive filters [149–151] to the context of diffusion networks [32–34]. Kernel adaptive

filters map the input signal to a vector space of higher dimension (typically through a nonlin-

ear mapping function), where a linear adaptive filter is employed. Thus, nonlinear filtering can

be achieved by the use of linear techniques on the mapped signals. Moreover, by making use

of the kernel trick [149, 151], kernel adaptive filters typically do not calculate the mapping of

the inputs explicitly, which saves computational power. Evidently, the utility of these solutions

stems from the fact that nonlinear functions are often better models for physical phenomena

Literature review 15

than linear ones. This also holds in many applications involving sensor networks. One possible

example is that of environmental monitoring, where a network of sensors is deployed to observe

an oftentimes nonlinear diffusion field [152]. Thus, kernel-based adaptive networks seek to ad-

dress the needs of applications where the signal processing must be simultaneously nonlinear

and carried out in a distributed manner [32–36].

The aforementioned research topics are not isolated from each other. For example, there

have been proposals of multitask kernel networks [153] and multitask asynchronous net-

works [154] in the literature. Finally, one cannot review the mid 2010’s in the adaptive diffusion

networks literature and not mention one of the main milestones achieved by the area around this

time. In 2015, the first large-scale journal dedicated specifically to the subject was launched: the

IEEE Transactions on Signal and Information Processing over Networks [155], which covers

topics such as distributed algorithms for filtering, detection, estimation, adaptation and learning,

model selection, data fusion, diffusion or evolution of information over networks, applications

of distributed signal processing, among others.

2.1.4 Other Advances Span Correlated Tools

Evidently, while the theory and many solutions of adaptive diffusion networks were being

developed, technological and scientific advances in other areas continued to unfold. During this

period, smartphones stormed the mobile phone market and the number of mobile users across

the globe skyrocketed [156], social media were developed and rapidly grew [157], big data and

data mining applications became commonplace [158,159], and the technologies that enable 5G

communication networks were continuously developed [85], facilitating the implementation of

the internet of things (IoT) in many applications [86, 87]. Moreover, in this period, the usage

of WSNs in practical applications was heavily explored. Examples include, e.g., wireless body

area networks (WBANs) [93, 94], which rose as appealing solutions in, e.g., healthcare and

security applications [95]. Among these, one could mention for instance the wireless electroen-

cephalography (EEG) sensor networks (WESNs), which were proposed for neuromonitoring

applications [96]. Furthermore, WSNs were also employed in agriculture [97], speech, video

and image enhancement, spectrum sensing, power system state estimation, among many other

applications (see, e.g., [98] and the references therein).

Due to the inherent connectivity between the elements that comprise these technologies,

Literature review 16

they share an interesting trait: they can be well represented by graphs. For example, in the

context of social networks, each user can be represented by a node, and the existence of an

edge connecting two nodes can be used to indicate that they are friends on that platform [160].

Analogously, each end user in a communication network can be represented by a node, and an

edge linking two users could indicate that they are geographically close to one another, and,

therefore, the power of the signal received by them must be similar [161].

As a result, a field of research emerged and quickly attracted widespread attention in the

signal processing community: the field of graph signal processing [41, 42, 47, 48, 160–167].

Broadly speaking, GSP techniques seek to explore the relationships between elements of a net-

worked system and from (potentially partial) observations collected by them to extract useful

information. In some cases, the goal is to reconstruct a certain signal defined over the graph

(also known as graph signal in the literature) [41,42,161], in others, it is to infer the underlying

graph topology from the resulting graph signal [163–165], and in others, it is even to identify

the system that dictates the dynamics of a signal defined over a spatially distributed set of sen-

sors [47, 48]. The field of GSP has grown to become a vast research area, with many variations

and nuances. Since in this work our focus lies on adaptive diffusion networks, we restrict our

review to the topics of GSP that have a clear interface with those networks.

For example, the solutions aimed at system identification for graph signals usually assume

that there is a graph shift operator [160] that influences the behavior of a signal of reference over

time. Hence, both the topology of the network and the temporal factor play a major role in how

the reference signal unfolds at each node. For this reason, this approach has enjoyed success in

meteorology applications [47]. Furthermore, these solutions also took heavy inspiration from

adaptive diffusion networks. In fact, they explicitly sought to develop diffusion versions of

classical adaptive filtering algorithms for use in GSP [47, 48]. Consequently, these solutions

bear striking similarities to many previous diffusion adaptive algorithms, despite the obvious

differences that arise from the GSP context. The use of adaptive diffusion strategies in the GSP

field represents yet another reason why these strategies are as relevant today as they have ever

been. In fact, they have become commonplace in papers of the area [39, 41, 42, 47, 48]. This is

only one of the factors that makes them such an interesting subject.

More recently, some strategies have been proposed for the distributed training of neural

networks [168–171]. The reasoning behind this concept is that, even when the training of neu-

ral networks is done offline, it may be advantageous to carry it out in a distributed manner if

Literature review 17

the scale of the problem is too large or if there are privacy concerns involved. In the former

case, hardware and software limitations can make it infeasible for one single device to handle

massive amounts of data. At the same time, the growing availability of devices offers an op-

portunity for distributing the learning task among many agents. In the latter case, sending a

great deal of raw sensitive information to a single processing unit may be undesirable due to

security concerns. Examples include, e.g., data related to personal behaviors or medical condi-

tions [169,172]. Yet, we would still like to train the network using all the data available in these

cases. Furthermore, it has been shown that diffusion strategies can escape from saddle points

in non-convex optimization problems [173, 174]. Since neural networks often struggle with the

existence of local minima in their respective loss functions, this is another reason why the topic

has a great potential to be explored in future research.

These are some of the primary concerns of the field of Federated Learning [172,175–179],

a promising and relatively young research area – its name was coined in a 2016 paper [176] –,

which emerged in the wake of the same technological developments previously mentioned, i.e.,

the increasing ubiquity of smart devices and the auspicious promise of IoT. In the past few years,

it has attracted a growing interest in the machine learning and signal processing communities.

In Fig. 2, we depict a timeline with some of the main developments in wireless communication

technology, network applications, and some milestones for the adaptive diffusion networks and

related fields.

Release of the
Bluetooth

technology [102]

Release of Wi-
Fi [103, 104]

Release of the
IEEE

Transactions on
Signal and
Information

Processing Over
Networks [155]

The diffusion LMS
algorithm is

proposed [138],
marking the first

appearence of
adaptive diffusion

networks in the
literature

Foundation of
some of the first

social media
websites, such as

MySpace,
Facebook and

Twitter

First
commercial 3G
networks [105]

Deployment
of the first-

release Long
Term

Evolution
standard of

4G networks

Publication of
some

early papers
on Graph

Signal
Processing,

e.g., [160,162]

First commercial
deployments of

5G networks

Release of the
EURASIP
Journal on

Wireless
Communications

and
Networking [118]

For the first time,
there are more

devices connected
to the internet than

people; this was
later labeled the

birth of the Internet
of Things [86]

The
expression
Federated
Learning is
coined [176]

Figure 2: A timeline with several of the main events related to wireless communication tech-
nology and network applications, as well as some milestones of the adaptive diffusion network
and graph signal processing fields.

Literature review 18

Overall, many research topics remain open in the area of distributed learning. Many pos-

sible applications are becoming more viable, and the growing potential of the correlated fields

is deemed promising. Efficient techniques for reducing the communication costs in adaptive

diffusion networks and for sampling over diffusion GSP solutions continue to inspire the search

for novel solutions, as well as the extension of these networks to more complex and challenging

scenarios. For this reason, it is only fair we devote more time and space to their understanding.

2.2 Adaptive Diffusion Networks

This section is organized as follows. We begin by reviewing the single-task adaptive diffu-

sion networks for linear adaptive filtering. In Sec. 2.2.1, we present several rules for the selec-

tion of the combination weights – an important set of parameters of adaptive diffusion networks

that will be explained in more detail next. Furthermore, important theoretical results found

in the literature are also presented to provide some insights into the performance of adaptive

diffusion networks. In Sec. 2.2.2, we show some simulation results with synthetic data to illus-

trate the behavior of adaptive diffusion networks based on the discussion presented thus far. In

Sec. 2.2.3, we provide an overview of techniques for restricting the number of communication

processes among the nodes of a network, which is important for their feasibility in practical ap-

plications. In Sec. 2.2.4, we review multitask adaptive diffusion networks, whereas in Sec. 2.2.5

we study kernel-based adaptive diffusion networks. In Sec. 2.2.6, we discuss adaptive diffusion

networks that incorporate aspects from the GSP framework. Finally, in Sec. 2.2.7 we present

simulation results with real-world data to illustrate the potential as well as the challenges of

adaptive diffusion networks in a more practical scenario.

Let us consider a collection of V labeled nodes or agents. As illustrated in Fig. 3, in most

adaptive diffusion network applications we consider that each node k, k � 1, � � � , V , has access

at each time instant n to an input signal ukpnq and to a desired signal dkpnq, modeled as [1–5]

dkpnq � uT
k pnqwo � vkpnq, (2.1)

where wo and ukpnq are M-length column vectors that represent respectively an unknown system

and the input vector at node k. In particular, ukpnq often represents a regressor vector formed by

the last M samples of the input signal ukpnq, i.e., ukpnq � rukpnq ukpn� 1q � � � ukpn�M� 1qsT,

although this is not necessarily the case in every application [1–3]. Furthermore, vkpnq is the

Literature review 19

measurement noise at node k, which is assumed to be white with variance σ2
vk

, and independent

of the other variables. Moreover, given a certain node k, we assume that the values of vkpnq
along the iterations are independent and identically distributed (i.i.d.).

Figure 3: A collection of nodes with their respective desired signals d and input signals u.

The goal of the agents is to obtain an estimate w � rw0 � � � wM�1sT of wo. To this end, it is

customary to introduce a cost function J such that [2]

wo � arg min
w

Jpwq. (2.2)

For this reason, the coefficient vector wo is oftentimes referred to as the “optimal system” in

the literature. One of the most widely adopted cost functions is the mean-squared error (MSE).

In the case of single-agent learning, this cost function is given by Jpwq≜Etrdpnq�uTpnqws2u,
where Et�u denotes mathematical expectation and we have dropped the index k of the variables

due to the existence of only one agent. The MSE is used as a cost function in the derivation

of many classical adaptive filtering algorithms, such as those of the LMS and RLS types, for

example [125, 126]. Since we are interested in working with the multiple agents that form

the network, we introduce a local cost function Jkpwq for each node k, which is then given

by [2, 125]

Jkpwq≜Etrdkpnq�uT
k pnqws2u. (2.3)

The first idea that may come to mind in face of (2.3) is to minimize Jkpwq at each node k

by implementing a stochastic gradient descent algorithm in each agent using only the locally

available information. Following this approach, if we denote the gradient of Jk with respect to

Literature review 20

w by [126]

∇wJkpwq ≜ BJkpwq
Bw

�
�BJkpwq

Bw0
� � � BJkpwq

BwM�1

�T

, (2.4)

and its approximate value evaluated at node k by p∇wJkrwkpn�1qs, we get, for k � 1, � � � ,V , [2]

wkpnq � wkpn � 1q � µk
p∇wJkrwkpn � 1qs, (2.5)

where µk ¡ 0 is a step size and wkpnq the coefficient vector at node k. The expression forp∇wJkrwkpn � 1qs depends on the approximations made in the stochastic descent algorithm. For

example, following an LMS approach, (2.5) could be recast as [2, 125]

wkpnq � wkpn � 1q�µkekpnqukpnq, (2.6)

where

ekpnq � dkpnq � uT
k pnqwkpn�1q (2.7)

is the estimation error.

We should notice that in (2.5) we are not assuming any form of communication between

the different nodes. In fact, each node is acting as an individual adaptive filter, and they are not

working together as a network. For this reason, this approach is referred to as the noncoopera-

tive setup in the literature [1–5]. Although this solution can be effective in many situations, if

the nodes have the ability to communicate with one another, not doing so can be seen as a waste

of potential. After all, it is expected that the sharing of data between the nodes should improve

their performances, since this means that more information is being used in the update process.

Hence, we now seek to analyze configurations in which the nodes cooperate. To do so, we

describe the objective of the network as a whole by the optimization problem [1–5]

min
w

Jglobalpwq�min
w

V̧

k�1

Jkpwq. (2.8)

Let us now assume that the nodes can communicate with one another through a given topol-

ogy. For any node k, the subset of nodes it can communicate with (including node k itself) is

called its neighborhood, which is denoted by Nk. Furthermore, the nodes that it can communi-

cate with are called its neighbors. An example is depicted in Fig. 4. It is important to note that

a common assumption in the literature is that the network is strongly connected, i.e., given any

pair of nodes k and i, there is a path from node k to node i and vice-versa [1–3].

Literature review 21

Figure 4: A network of nodes with their respective desired signals d and input signals u and a
predefined topology. In particular, the neighborhood of node k is highlighted.

In this scenario, if we employ a stochastic gradient approach to solve (2.8), the cooperation

between the nodes can be enforced by adopting [1–3]

$''&''%
ψkpnq � wkpn � 1q � µk

p∇wJkrwkpn � 1qs
wkpnq �

¸
iPNk

cikψipnq,
(2.9a)

(2.9b)

where tciku are convex combination weights satisfying the following set of conditions:

$''''&''''%
cik�0 if i < Nk¸
iPNk

cik�1

cik¥0, @i,k.

(2.10a)

(2.10b)

(2.10c)

Evidently, (2.10a) incorporates the constraints related to the network topology. On the other

hand, (2.10b) is used to ensure that the combined estimates wkpnq are unbiased estimators of wo.

Eqs. (2.9a) and (2.9b) are known as the adaptation and combination steps, respectively of

adaptive diffusion networks. The order of (2.9a) and (2.9b) characterize a configuration that is

known as adapt-then-combine (ATC) in the literature [1–6]. One could also switch their order:

in this case, the adaptation step precedes the combination one, leading to the combine-then-

adapt (CTA) configuration, given by

$'&'%
wkpn � 1q �

¸
iPNk

cikψipn � 1q

ψkpnq � wkpn � 1q � µk
p∇wJkrwkpn � 1qs.

(2.11a)

(2.11b)

Literature review 22

It is worth mentioning that the ATC protocol is the one most commonly adopted in the

literature [54, 56, 60, 63, 65, 67–69, 72–75]. For example, the ATC diffusion LMS (dLMS)

algorithm is given by [1–5]

$'&'%
ψkpnq�wkpn � 1q�µkekpnqukpnq
wkpnq �

¸
iPNk

cikψipnq.
(2.12a)

(2.12b)

For convenience, we also provide a pseudo-code representation of the ATC dLMS as Algo-

rithm 1 next.

Algorithm 1 The ATC dLMS Algorithm of Eq. (2.12).
1: % Initialization - for each node k � 1, � � � ,V, select a step size µk and combination weights

cik satisfying (2.10) for i � 1, � � � ,V, and set ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: % Adaptation Step
4: for k � 1, � � � ,V do
5: Update ukpnq
6: % Calculating the estimation error:
7: ekpnq Ð dkpnq � uT

k pnqwkpn � 1q
8: % Adapting the local estimate ψkpnq:
9: ψkpnq Ð wkpn � 1q � µkekpnqukpnq

10: end for
11: % The nodes transmit their local estimates ψ to their neighbors
12: % Combination Step
13: for k � 1, � � � ,V do
14: % Forming the combined estimate wkpnq:
15: wkpnq Ð 0M

16: for i P Nk do
17: wkpnq Ð wkpnq � cikψipnq
18: end for
19: end for
20: end for

Besides the dLMS algorithm, diffusion versions of other adaptive algorithms were proposed

in the literature, such as diffusion RLS [6,180–182], diffusion Normalized LMS (dNLMS) [63,

183,184], the diffusion Affine Projection Algorithm (dAPA) [185,186], among others [64,142].

Eqs. (2.11) and (2.9) are the basis for diffusion adaptive networks, and form the groundwork

for many diffusion solutions that were proposed over the following years. They allow us to attain

the good performance of centralized solutions in a fully distributed way, without many of their

limitations. The difference between the diffusion strategies and the noncooperative approach

described by (2.5) lies in the existence of the combination step, which allows the knowledge

Literature review 23

gained by a node to disseminate throughout the whole network, enabling a better performance.

It is worth noting, nonetheless, that the potentially high number of communication processes

between the nodes can pose a challenge in terms of bandwidth requirements and especially

energy consumption – which will be addressed in Sec. 2.2.3.

There is a generalized form of the diffusion strategies of (2.9) and (2.11) that is worth

mentioning. In addition to the exchange of local estimates ψi prior to the combination step,

we could also allow each node to share its approximate gradient p∇wJirwipn�1qs before the

adaptation step. Then, each node k can perform a combination of these approximate gradients

in the update of ψkpnq. Following the ATC configuration, this leads to [1]

$'''&'''%
ψkpnq�wkpn�1q�µk

¸
iPNk

bik
p∇wJirwkpn � 1qs

wkpnq �
¸
iPNk

cikψipnq,

(2.13a)

(2.13b)

where bik are combination weights satisfying (2.10). Evidently, an analogous version of (2.13)

can be obtained for CTA. These schemes are sometimes referred to as diffusion strategies with

enlarged cooperation [1, 3]. It should be noted that (2.13) implies that the nodes communi-

cate twice per iteration: first, before (2.13a) is executed, each node i must share its local data

tdipnq,uipnqu with its neighbors to enable the calculation of p∇wJirwkpn � 1qs. After (2.13a) is

carried out, they must then share their local estimates ψ before (2.13b) is run. Since this can be

very costly from an energetic point of view, the diffusion strategies of the forms (2.9) and (2.11)

are more common in the literature; see e.g. [54, 56, 60, 63, 65, 67–69, 72–75].

It can be shown that the stability of the standard diffusion LMS algorithm described

by (2.12) is ensured in the mean sense if each step size µk satisfies [2]

0 µk 2
λmax

�
Ruk

� , (2.14)

where λmaxp�q denotes the maximum eigenvalue, and Ruk ≜ EtukpnquT
k pnqu is the autocorrelation

matrix of the input signal at node k. There is a clear connection between (2.14) and the stability

condition for a single LMS adaptive filter (see, e.g., [125, 126]). In fact, adaptive diffusion net-

works inherit many of the traits of the adaptive filters that inspired them. Typically, the greater

the step sizes µk, the faster the convergence rate of the network in the transient phase. After a

while, the performance of the network stabilizes and a steady state is achieved. In general, the

Literature review 24

greater the step sizes, the worse the steady-state performance [1–3]. This will become clear in

Sec. 2.2.3.2, when we introduce some performance indicators and present theoretical predic-

tions for them based on the step sizes, filter length M, and combination weights. Moreover, due

to their adaptive nature, the algorithms of Eqs. (2.9) and (2.11) are able to track changes in the

environment. In this regard, it is interesting to notice that this is only possible if the step sizes

do not diminish indefinitely over time – which was a trait of the first consensus strategies that

proved detrimental to their usage in adaptive networks.

As is known since the inception of the first adaptive filtering algorithms [125,126], adapta-

tion is a powerful feature for online learning. The ability to track changes in the environment,

along with the fact that we do not need to have prior knowledge on the statistics of the signals

involved, is one of the many features that made the extension of adaptive signal processing

techniques to WSNs so appealing.

Besides the standard diffusion strategies shown so far, modified versions of these schemes

continued to be proposed over the years with different purposes. Next, we mention a few of

these modified diffusion protocols. For instance, a group of adaptive algorithms for diffusion

networks was proposed in [187]. These algorithms sought to improve the robustness of the

networks in a scenario where nodes can fail and the data collected are very noisy. To this

end, each node projects its combined estimate onto a hyperslab or a halfspace, and then uses

the latest q projections in the adaptation. By adopting cost functions common in the robust

statistics field, such as a modified version of the Huber cost [188], the combined estimates can be

projected on halfspaces that simultaneously reduce the MSE and mitigate the effect of outliers

in the data, which may be present due to malfunctioning nodes or noisy measurements. Other

robust diffusion algorithms based on the Huber cost function were also proposed in [189, 190].

Furthermore, several robust diffusion techniques have also been proposed to deal with errors-

in-variable (EIV) models based on the total least-squares approach [191]. EIV models can be

used to represent, e.g., situations in which the input signal is subject to noise, as well as the

desired signal. Representative examples include, e.g., the solutions proposed in [192–196]. The

interested reader can find a review focused primarily on robust diffusion solutions in [197].

In addition to the distributed estimation algorithms that have been discussed so far,

diffusion-based detection solutions have also been proposed [198–202]. In these cases, the goal

of each agent in the network is to provide a decision about the state of a system, which can vary

over time. It was shown in [199] that, by adopting a similar strategy to the diffusion schemes for

Literature review 25

estimation, one can achieve the same performance of a centralized stochastic-gradient approach

in terms of detection error exponents. Thus, despite their peculiarities, these solutions consist

in i) updating the estimates about the current state of the system locally at each node, and ii)

enabling the agents to exchange and combine their estimates [199–202].

Furthermore, one could mention the sparse diffusion solutions [182,203–206], which aim to

take advantage of the inherent sparsity of many signals and system models, i.e., the presence of

only a small number of nonzero entries. When the optimal system wo is sparse, these solutions

present a faster convergence rate and can outperform the standard diffusion solutions of (2.11)

and (2.9).

Lastly, it is worth noting that, in the solutions examined thus far, we consider that each node

k has access to the unprocessed signals dkpnq and ukpnq. However, other solutions have been

recently proposed in which certain features are first extracted from the available data, and each

node has access directly to the information from these features, rather than to the unprocessed

data. Thus, if we aggregated the information from the features into a feature vector, each node

would only have access to a certain block of entries in that vector. This approach can be adopted

in scenarios in which there are privacy concerns, for example, or in which the data are already

collected in a distributed manner, as is the case in spatial filters and sensor array processing.

Some of the original ideas regarding this approach were proposed in [207], although not in a

distributed setting. Examples of solutions that adopt this feature-based framework considering

a distributed approach include, e.g., [208–210]. In particular, it is worth noting that in [208] a

diffusion-based approach is adopted to address this scenario in which the features are distributed

among the nodes, in a similar manner to Eq. (2.9).

2.2.1 The Selection of the Combination Weights and the Steady-State Performance

There are several possible rules for the selection of tciku, which can play a significant role

in the behavior of diffusion adaptive networks. Among the most widely adopted strategies

found in the literature are the Uniform or Averaging [211], Laplacian [12], Metropolis [12,212,

213], Maximum-Degree [12] and Relative Degree [6] rules. For ease of reference, they are

summarized as rules 1–5 in Table 1.

Although it is not the goal of this work to provide an in-depth theoretical analysis of each

solution that we will review, it may be interesting to compare the performances of the noncoop-

Literature review 26

Table 1: Summary of the some rules for the selection of the combination weights most widely
adopted in the literature.

Name Equations

1) Uniform or Average [211] cik �

$'&'%
1
|Nk| , if i P Nk

0, otherwise

2) Metropolis [12, 212, 213] cik �

$'''&'''%
1

maxt|Nk|,|Ni|u , if i P Nkztku
1 �°iPNk

cik, if i � k
0, otherwise

3) Relative-Degree [6] cik �

$'&'%
|Nl|°

iPNk
|Ni| , if i P Nk

0, otherwise

4) Laplacian [12] cik �

$'''''&'''''%

1
maxi�1,��� ,V |Ni| , if i P Nkztku

1 � |Nk| � 1
maxi�1,��� ,V |Ni| , if i � k

0, otherwise

5) Maximum-Degree [14] cik �

$''''&''''%
1
V
, if i P Nkztku

1 � |Nk| � 1
V

, if i � k

0, otherwise

6) Hastings [214] cik �

$''''&''''%
σ2

vk

maxt|Nk|σ2
vk
,|Ni|σ2

vi
u , if i P Nkztku

0, if i < Nk

1 �°iPNk
cik, if i � k

7) Relative Variance [215–
217]

cik �

$'&'%
pσ2

vi
q�1°

iPNk
pσ2

vi
q�1
, if i P Nk

0, otherwise
8) Adaptive Combination
Weights (ACW) [215]

pσ2
ikpnq � p1�νkACWqpσ2

ikpn � 1q�νkACW∥ψipnq�wkpn � 1q∥2

cikpnq �

$'&'%
rpσ2

ikpnqs�1°
iPNk

rpσ2
ikpnqs�1

, if i P Nk

0, otherwise

erative and diffusion approaches. Thus, we will present some of the main results of the analysis

on these solutions without extensively deriving them for now. In Chapter 4, we shall analyze

the performance of the ATC dLMS algorithm in more detail. For simplicity, we will focus on

implementations of the LMS type in the form of (2.6). Furthermore, we limit our attention

to a performance indicator commonly adopted in the adaptive network literature, the network

Literature review 27

mean-square deviation (NMSD), given by [1]

NMSDpnq � 1
V

V̧

k�1

E
!∥∥∥rwkpnq

∥∥∥2) , (2.15)

where we have introduced the weight-error vector

rwkpnq ≜ wo � wkpnq. (2.16)

Since the noncooperative case (2.5) corresponds to a situation in which there are V adaptive

filters running separately, the NMSD defined by (2.15) will be equal to the average of the mean-

square deviations (MSDs) of each individual filter. This is reasonable, since they act as isolated

agents. For sufficiently small step sizes µ, it can be shown that the MSD of a single LMS

adaptive filter is given by [125, 126]

MSDkp8q � µkM
2
σ2

vk
, (2.17)

where MSDkpnq ≜ Et}rwkpnq}2u. For simplicity, let us now assume that the step sizes µk are

the same for every node k, i.e., µ1 � � � � � µV � µ, since this will make the comparison with

the other strategies easier to understand. In this case, summing the right-hand side of (2.17) for

k � 1, � � � ,V leads to [1–3]

NMSDncoopp8q � µM
2

�
1
V

V̧

k�1

σ2
vk

�
. (2.18)

In contrast, assuming that the input signals have the same positive definite autocorrelation

matrix Ruk at every node k, i.e., Ruk � Ru ¡ 0 for k � 1, � � � ,V , it can be shown that, when the

diffusion LMS algorithm is implemented with Uniform or Metropolis combination weights, its

steady-state NMSD can be well approximated by [1, 3]

NMSDunif.
diff. p8q � NMSDmetr.

diff. p8q�
µM
2V

�
1
V

V̧

k�1

σ2
vk

�
. (2.19)

We remark that the difference between Eqs. (2.18) and (2.19) lies in the presence of a

factor of V in the denominator of the fraction outside the parentheses in (2.19), which is absent

in (2.18). Hence, in comparison with the noncooperative scheme, the NMSD is reduced by

a factor of 1
V . Furthermore, if cik � cki, for any k and i, it can be shown that the steady-

state NMSD of the diffusion strategies is similar to that of the centralized and incremental

Literature review 28

approaches [1, 3, 214].

As can be seen from Table 1, the aforementioned rules use information from the network

topology to determine the combination weights. As evidenced by (2.19), this can already lead

to a significant improvement in performance in comparison with the noncooperative scheme.

However, the network topology is evidently not the only factor that influences the performance

of the diffusion algorithms. If we incorporate more information into the tciku, we should be

able to assign greater weights to the nodes that are somehow expected to perform better. For

example, it is intuitive that we should privilege nodes that are subject to lower noise powers in

the combination step, since they are expected to present the more refined local estimates ψ. For

this reason, some policies that incorporate information from the noise profile across the network

were proposed. One possible example is the Hastings rule [1, 3, 214]. Assuming that the noise

variances σ2
v1
, � � � , σ2

vV
are not all equal, i.e., at least one σ2

vk
is different from the others, the

Hastings weights can be obtained by seeking to minimize the Network Excess MSE (NEMSE),

which is given by [1, 3, 214]

NEMSE � lim
nÑ8

1
V
�

V̧

k�1

Etrekpnq � vkpnqs2u. (2.20)

Incorporating the constraints of (2.10), this leads to an optimization problem that can be solved

using a procedure proposed by Hastings [213, 218], thus yielding Rule 6) of Table 1 [214]. It

is easy to see from the table that the Hastings rule assigns greater weights to the least noisy

neighbors, which is in accordance with our expectations. If all the nodes are subject to the same

noise power, i.e., σ2
vk
� σ2

v for k � 1, � � � ,V , the Hastings weights coincide with the Metropolis

ones.

It can be shown that, if the Hastings weights are used, the diffusion LMS generally outper-

forms the same strategy with Uniform or Metropolis weights, i.e., [1, 3, 214]

NMSDHastings
diff. p8q NMSDunif.

diff. p8q NMSDncoopp8q. (2.21)

One important aspect of the Hastings rule is that it requires the a priori knowledge of

the noise variances across all nodes, i.e., σ2
v1
, � � � , σ2

vV
. However, this information may not

always be known beforehand. For this reason, several adaptive combination weights (ACW)

algorithms were proposed for the selection of the combination weights in an adaptive manner,

while seeking to incorporate information from the noise profile in the network. Some early

Literature review 29

examples of this strategy were proposed in [219] and [215].

For instance, the algorithm of [215], which was later analyzed in more detail in [216], seeks

to minimize TrpCTRvCq subject to (2.10), where Trp�q denotes the trace of a matrix, C is a V�V

matrix aggregating the combination weights, such that rCsik � cik, and Rv is a diagonal matrix

whose entries are equal toσ2
v1

, � � � ,σ2
vV

. Hence, it incorporates information from the noise power

profile directly into the combination weights, similarly to the Hastings rule. It can be shown

that the solution to this optimization problem leads to Rule 7) of Table 1 [215, 216], which is

named as relative variance rule in the literature [215–217]. In order to eliminate the need for

a priori knowledge of the noise powers, in the algorithm of [215], each node k estimates the

noise power at the neighboring nodes i P Nk as

pσ2
ikpnq�p1�νkACWqpσ2

ikpn � 1q�νkACW∥ψipnq�wkpn � 1q∥2, (2.22)

where 0 νkACW 1 for k � 1, � � � ,V [215] is a parameter to aid in the estimation of the

noise variance. Oftentimes, νkACW � 0.2 is adopted in the literature [72, 215, 217]. Then, the

combination weight cikpnq is given by

cikpnq �

$'''&'''%
rpσ2

ikpnqs�1°
iPNk

rpσ2
ikpnqs�1

, if i P Nk

0, otherwise

. (2.23)

These equations are summarized as Rule 8) in Tab. 1.

The improvement in NMSD brought by the adoption of this adaptive algorithm for the

selection of the combination weights comes at the expense of a slower convergence rate in

comparison with static combination rules [217, 220]. Furthermore, it has been noted that if

the nodes use different step sizes µk, the algorithm of [215] can privilege the slower nodes

in the combination step [221], and that the performance of the algorithm may be affected by

the initial values assigned to each pσ2
ik [222]. Nonetheless, due to its relative simplicity and the

improvement in steady-state performance that it produces, the algorithm of [215] is widely used

in the literature [67, 72, 74, 214, 216, 220, 222, 223].

Many other techniques were proposed over the years for the adaptive selection of the com-

bination weights. As previously mentioned, in [223], the tciku are updated at every iteration

following the APA algorithm or a LS method in order to minimize instantaneous approxima-

tions of the MSE at node k and time instant n. In [217] and [220], adaptive algorithms were

Literature review 30

proposed to take advantage of the improvement in steady-state NMSD due to the adaptive com-

bination weights while seeking to mitigate the deterioration in the convergence rate that arises

from its adoption. For this purpose, they implemented switching mechanisms that adapt the

combination weights in steady state, but lead to the adoption of static rules in the transient.

In [222], an algorithm for the selection of the combination weights was proposed to minimize

the steady-state NMSD based on the consensus propagation technique, which is typically used

for averaging results across a network of agents [224], and was shown capable of outperform-

ing the algorithm of [215]. In [225], an algorithm for the selection of the tciku that takes the

communication channel distortion into consideration was proposed. These are only a few of

the solutions that can be found in the literature, and although it is out of the scope of this work

to provide an exhaustive list, the reader is encouraged to consult, e.g., [221, 226–228] and the

references therein.

2.2.2 Simulations – Exploring the Theoretical Results

In this subsection, we provide some simulation results to illustrate the main arguments

made so far. We consider the network of Fig. 5, which has V � 20 nodes, and was generated

randomly according to the Erdös-Renyi model [47]. The average neighborhood size throughout

the network is 1
V

°V
k�1 |Nk| � 4.7. Furthermore, we consider distributed implementations of the

LMS algorithm.

The simulation results were obtained over an average of 100 independent realizations in

a system identification setup. We set the length of both the filter and the optimal system wo

to M � 64. Moreover, the coefficients of wo are generated randomly following a Uniform

distribution in the range r�1,1s, and later normalized so that wo has unit norm. We consider

a white Gaussian distribution for ukpnq with zero mean and unit variance. Lastly, we consider

a white Gaussian distribution for vkpnq with zero mean and a different noise variance σ2
vk

for

k � 1, � � � ,V , drawn from a Uniform distribution in the range r10�3,10�2s. As a performance

indicator, we use the NMSD given by (2.15).

In order to validate (2.18), (2.19), and (2.21), in Fig. 6, we present the steady-state NMSD

(in dB) obtained in the simulations considering the noncooperative LMS strategy of (2.5) and

the ATC dLMS of (2.9), respectively. For the latter, we consider the Metropolis rule, as well as

the ACW algorithm shown in Table 1. In all cases, we employ the same step size µk � µ for

Literature review 31

Figure 5: Network used in the simulations of Sec. 2.2.2. The neighborhood of node 1 is high-
lighted in red.

every node k, k � 1, � � � , 20. Moreover, as a benchmark, we also consider a centralized solution

in which a single unit employs the data from all of the nodes to adapt its model, given by

wpnq � wpn � 1q � µ � 1
V

V̧

k�1

rdkpnq � uT
k pnqwpn � 1qsukpnq.

The results are presented for different values of µ in the range r10�4, 10�2s. We considered

a stationary environment and 120 � 103 iterations per realization. The results presented were

obtained by calculating the average NMSD during the last 24 �103 iterations of each realization,

after the algorithms have converged. In addition to the simulation results, we also show the

theoretical steady-state NMSD levels obtained from (2.18) and (2.19), which are presented in

dashed lines.

We can observe from Fig. 6 that, for every value of µ, the noncooperative strategy is outper-

formed by the cooperative schemes, as expected. Furthermore, the simulation results match well

with Eqs. (2.18) and (2.19), especially for lower values of µ. This is reasonable, since (2.18)

and (2.19) were obtained under the assumption of small step sizes. As µ increases, the simula-

tion results for the noncooperative and diffusion strategies deteriorate progressively in compar-

ison with the theoretical predictions. Finally, we remark that the diffusion strategy with ACW

clearly outperforms all other techniques for µ ¡ 7 � 10�4. This is in accordance with (2.21), if

we take into account the fact that ACW aims at implementing the Hastings weights of Rule 7)

of Table 1 without prior knowledge of the noise variance in the network. For lower values of µ,

the difference in performance entailed by the adoption of ACW is marginal.

From Fig. 6, we can see that the adoption of small step sizes leads to lower steady-state

Literature review 32

10−4 10−3 10−2

µ

−50

−45

−40

−35

−30

−25

−20

−15

N
M

S
D

(∞
)

10−4 10−3 10−2

µ

−50

−45

−40

−35

−30

−25

−20

−15

N
M

S
D

(∞
)

Non-coop.

Centralized

Diff. (Metropolis)

Diff. (ACW [215])

Theoretical Non-coop. (2.18)

Theoretical Diffusion Uniform (2.19)

Figure 6: Steady-state NMSD (in dB) versus step size µ for various strategies, as well as the
theoretical results from (2.18) and (2.19).

levels of NMSD. On the other hand, this also slows down the convergence rate. To illustrate

this, in Fig. 7 we show the NMSD along the iterations obtained with the same techniques used

in the simulations of Fig. 6, considering two values for the step sizes: µ � 10�3 in Fig. 7(a)

and µ � 10�2 in Fig. 7(b). We consider 50 � 103 iterations in each realization and, to simulate

an abrupt change in the environment, in the middle of each experiment we flip the vector wo.

From Figs. 7(a) and (b) we can also see that the diffusion strategy with ACW presents a slightly

slower convergence rate in comparison with the same technique with Metropolis weights. Nev-

ertheless, with a step size of µ � 10�2, the diffusion algorithm with ACW achieves a noticeably

lower level of steady-state NMSD in comparison with the case in which Metropolis weights are

employed, as can be seen from Fig. 7(b).

2.2.3 Restricting Communication Policies

From the previous discussion, we observe from Eqs. (2.18), (2.19) and (2.21) that the ex-

change of information between the nodes can reduce the steady-state NMSD by a factor of 1
V or

more. Unfortunately, allowing the permanent cooperation between the nodes can be challenging

in practice. This is because energy consumption is usually the most critical constraint in WSNs,

and the communication between different agents is frequently the most energy-demanding task

associated with the learning process. Furthermore, a high number of communication processes

between the nodes demands the allocation of sufficient bandwidth for the exchange of infor-

Literature review 33

0 10 20 30 40 50

Iterations (×103)

−40

−30

−20

−10

0

10

N
M

S
D

(d
B

)

(a) µ = 10−3

Non-coop. Centralized Diff. (Metropolis) Diff. (ACW [215])

0 10 20 30 40 50

Iterations (×103)

(b) µ = 10−2

Figure 7: NMSD along the iteration obtained with various strategies, considering two different
step sizes.

mation between them. For this reason, several solutions were proposed in the literature over

the years to seek a compromise between the energy consumption and the benefits of coopera-

tion to the performance. They allow the nodes to communicate with one another, but attempt

to restrict the communication processes across the network in diffusion strategies. Although

there is not an “official” distinction in the literature between these solutions, we classify them

in three general categories: the packet size reducing techniques, the link selection policies, and

the censoring strategies, which we review in detail in the following subsections. The goal of

this section is not to provide an exhaustive review of every solution proposed in the literature

for restricting communication policies, but rather to showcase some of the main ideas behind

them, and to illustrate some of the most prominent characteristics that are common to most of

these solutions.

2.2.3.1 Packet Size Reducing Techniques

The packet size reducing schemes aim to reduce the amount of information sent in each

transmission by the nodes. Thus, by reducing the length of the messages, they enable a reduction

in energy consumption and bandwidth usage, since the energy associated with the transmission

of a package often scales linearly with its size in wireless communications [229,230]. Examples

of this strategy include, e.g., [54–62].

For instance, in [54], the authors propose to select L M entries of the local estimates ψ for

transmission at every iteration. For this purpose, they introduce an M�M entry-selection matrix

Literature review 34

Skpnq in each node k, k�1, � � � ,V . The matrix Skpnq is diagonal, and its elements are equal to 1

or 0. If rSkpnqsm,m � 1, the node k will send the m-th entry of ψkpnq to its neighbors. Otherwise,

rψkpnqsm will not be sent, and is replaced by the corresponding entry of the local estimate of the

receiving node. Thus, following an ATC strategy, (2.9b) is replaced with [54]

wkpnq�ckkψkpnq�
¸

iPNkztku
ciktSipnqψipnq�rIM�Sipnqsψkpnqu. (2.24)

In principle, each node should inform which entries it is sending to its neighbors. However,

two methods for the selection of the matrices Skpnq are suggested in [54] that eliminate the

need for this additional overhead. One of them consists in a stochastic approach in which the

nodes use pseudorandom number generators (PRNGs) for the entry selection process, and share

their PRNG seeds with their neighbors once, before the adaptation begins. The other approach

consists in selecting the entries sequentially in a round-robin manner over the time instants n.

Thus, the entries are placed in M groups of size L such that each entry is present in L groups,

which are then ordered in a predetermined sequence. These groupings and their sequence are

the same across all nodes, which allows them to identify which entries they are receiving [54].

As one could expect, this reduction in data exchange leads to a deterioration in steady-state

performance in comparison with the standard diffusion procedure. The lower the value of L

in comparison with M, the higher the steady-state NMSD becomes. Thus, there is a trade-off

between energy savings and performance. This trait is not specific to the algorithm of [54],

but rather common to most restrictive communication policies. The goal of these procedures

is to limit the amount of information transmitted across the network while maintaining the

performance of the standard diffusion schemes as much as possible.

Furthermore, many of the solutions that fit into this category seek to somehow compress the

local estimates before transmitting them [57, 58, 60–62]. For example, in [61, 62], the authors

consider an adapt-compress-then-combine protocol. In this solution, the compression stems

from the usage of a quantized version of the local estimate. This quantized estimate is initialized

in an arbitrary manner at n � 0, and then updated along the iterations with the usage of a

certain compression operator. The choice of this operator is up to the filter designer, with

possible solutions such as, e.g., [231, 232]. Moreover, the compression operator is applied

to the difference between the current compressed estimate and the local uncompressed one

produced by the adaptation step. Then, the output of the compression operator is scaled by a

Literature review 35

factor between zero and one, and added to the previous compressed estimate.

2.2.3.2 Link Selection Policies

As their name suggests, link selection policies seek to turn certain communication links on

or off, according to predefined criteria, in order to reduce the traffic of information throughout

the network [63–71]. For this, (2.9b) is replaced by

wkpnq�
¸

iPNkpnq
cikpnqψipnq, (2.25)

in which the neighborhood Nkpnq varies along the iterations due to the possible deactivation of

the links. In this case, the combination weights also change from one time instant to another,

since (2.10a)–(2.10c) need to hold at every iteration.

The possibility of deactivating communication links was first analyzed in [63], where net-

works with time-varying topologies were considered. In that work, the availability of the com-

munication links between two neighboring nodes i and k is modeled as Bernoulli random vari-

able with a success probability pik � pki. Although the main goal of [63] was to analyze the

behavior of the network with link failures occurring at random, this idea was later widely em-

ployed as a benchmark for comparing the performance of link selection policies. For example,

building upon this concept, a mechanism was proposed in [65] for controlling the probability of

success of each link in an adaptive manner. In this solution, each node k assigns a probability

pmin ¤ p jkpnq ¤ pmax to each link associated with the nodes j P Nkpnqztku, where pmin and

pmax must be selected by the filter designer. It is worth noting that pkkpnq � 1 for every n. The

probabilities p jkpnq are updated based on the performance gain associated with it and on the

resource constraints of the network, such as the amount of energy available at each node.

2.2.3.3 Censoring Strategies

Censoring strategies aim to prevent certain nodes from transmitting their local estimates

to any of their neighbors, enabling them to temporarily turn their transmitters off and, con-

sequently, save energy [72–81]. Usually, it is assumed that the node k still receives the

data from its uncensored neighbors even when it does not send its own local estimate to

them [72, 73, 78, 80, 81]. However, stricter versions in which the nodes cut their communi-

cations completely when they are censored have also been proposed [73].

Literature review 36

Generically, some of these techniques can also be described by (2.25) with the additional

restriction that c jkpnq � 0 for every node j P Nkpnqztku if node k is censored at iteration n [72,

78]. Another approach consists in assuming that the nodes can store the past local estimates

from their neighbors [73, 81]. In this case, (2.50b) can be interpreted as

wkpnq�
¸
iPNk

cikζ ipnqψipnq � r1 � ζ ipnqssψipnq, (2.26)

where ζipnq � 0 if node i is censored at iteration n and ζipnq � 1 otherwise, and sψipnq is the last

estimate received from node i.

One example of this technique was proposed in [73], which uses game theory, as well

as information about the energy level at each node and performance indicators to determine

whether each node should be censored or not. In their turn, the techniques proposed in [81, 82,

84] will be examined in detail in Chapter 3.

2.2.4 Multitask Adaptive Diffusion Networks

In Sec. 2.2, it was assumed that every node in the network has the common objective of es-

timating the same parameter vector wo, as described by (2.1). However, an interesting problem

arises when different nodes try to estimate different parameters. Applications of this type are

usually referred to as multitask estimation problems in the literature, in opposition to the single-

task scenario modeled by (2.1). Multitask models can be useful for representing situations in

which groups of agents have distinct but correlated objectives, or for modeling regional varia-

tions in the system to be identified. This diversity in the optimal system can play an important

role in, e.g., meteorological applications, where the temperature can be governed by different

dynamics at different geographic points [22, 25]. Hence, to reflect this, we recast (2.1) as

dkpnq � uT
k pnqwo

k � vkpnq. (2.27)

Eq. (2.1) can be seen as a special case of (2.27) in which wo
1 � � � � � wo

V � wo. This corre-

sponds to an extreme case in which the parameter vector is the same for all nodes. The other

extreme occurs when wo
k is different for each node k. In many applications of multitask net-

works, an in-between case is considered, in which there are groups or clusters of nodes whose

parameter vectors share a certain degree of similarity. In some works, networks that fall into

the latter category are referred to as clustered multitask networks, and the expression “multitask

Literature review 37

networks” is reserved for the case where wo
k is different for each node k [20,26,30]. For the sake

of generality, in this work we apply the term “multitask networks” to any network in which the

optimal system is not the same for all nodes, and explicitly differentiate between the clustered

and non-clustered scenarios when the context requires.

It can be shown that if the single-task diffusion LMS algorithm with static combination

weights is used in a multitask environment, it produces biased estimates of the optimal param-

eter vectors wo
k at each node k [22]. If the vectors wo

k are similar across the network, this bias is

small in magnitude and may be acceptable in many applications. However, as the spatial vari-

ations between the wo
k increase in magnitude, the bias introduced by the diffusion can cause a

visible deterioration in performance. In fact, depending on the local discrepancies in the optimal

system, the noncooperative approach may outperform the diffusion strategies [22]. Intuitively,

this is because each node can estimate its own parameter vector much better than its neighbors

in this scenario, and the cooperation between nodes does not disseminate any useful information

for the learning task of each individual node. For this reason, several different approaches were

proposed for the development of efficient diffusion networks for multitask problems in different

scenarios [20–29].

In [20], the diffusion LMS algorithm for multitask networks is derived. It is assumed that

the network is divided into Q clusters C1, � � � ,CQ, and that each cluster Ci has the same optimal

system wo
Ci

, i.e., wo
k � wo

Ci
for every node k P Ci. Furthermore, if the clusters Ci and C j are

connected, i.e., there is a link connecting a node belonging to the cluster Ci to another node

that belongs to the cluster C j, it is assumed that their optimal systems are similar in some way.

Clusters that are connected to each other are also called neighbors, analogously to the notion of

neighborhood between nodes. The diffusion LMS algorithm for multitask networks is obtained

by adding a regularization term to the cost function (2.3) to enforce the similarity between

neighboring clusters. Using the squared Euclidean distance as a regularizer, this results in the

following cost function [20]:

Jmult.
globalpwCi , � � � ,wCQq�

V̧

k�1

Etrdkpnq�uT
k pnqwCpkqs2u�η

V̧

k�1

¸
iPNkzCpkq

sρki

∥∥∥wCpkq�wCpiq
∥∥∥2 , (2.28)

where Cpkq denotes the cluster to which node k belongs. An example is shown in Fig. 8, in

which, for instance, Cpiq � C1 and Cpkq � C2. Furthermore,NkzCpkq is the set of the neighbors

of node k that do not belong to the cluster Cpkq, η ¡ 0 is a regularization parameter, and the

Literature review 38

tsρkiu are non-negative weights that adjust the regularization strength for each pair of nodes k

and i. In [20], convex weights tsρkiu are adopted.

Figure 8: Example of a clustered network structure.

The cost function (2.28) promotes a stronger degree of similarity between the estimates

of clusters that have many connections to each other, since in these cases the cardinalities of

the sets NkzCpkq are large. Furthermore, it enforces symmetric regularization, i.e., two neigh-

boring clusters Ci and C j promote the same level of similarity between their estimates due to

the summation over the V nodes of the regularization term and to the symmetry of the term∥∥∥wCpkq � wCpiq
∥∥∥2 with respect to the vectors wCpkq and wCpiq. Since it may be desirable to allow

asymmetric regularization terms, (2.28) was modified in [20] and formulated as a sum of Nash

equilibrium problems, one for each cluster Ci. By slightly relaxing the cost function to enable

its minimization at each node using only the data available locally, and by applying a steepest-

descent approach to the estimation of the equilibrium points of these problems and adopting

stochastic approximations of the LMS type, the diffusion LMS for clustered multitask networks

in an ATC configuration is given by [20]

$'''''&'''''%
ψkpnq�wkpn�1q�µk

$&% ¸
iPNkXCpkq

bikeikpnquipnq�η
¸

iPNkzCpkq
sρkirwipn�1q�wkpn�1qs

,.-
wkpnq �

¸
iPNkXCpkq

cikψipnq,

(2.29a)

(2.29b)

where we have introduced

eikpnq ≜ dipnq�uT
i pnqwkpn�1q (2.30)

for compactness of notation.

Analyzing (2.29a), we can see that if η � 0 is chosen, that is equivalent to running the

standard ATC dLMS within each cluster Ci, without exchange of information between different

clusters. Furthermore, the algorithm for the single-task scenario can be seen as a special case

Literature review 39

of (2.29) in which Nk X Cpkq � Nk and NkzCpkq � H for k � 1, � � � ,V . Finally, the non-

clustered multitask case can be analyzed by making Nk X Cpkq � tku and NkzCpkq � Nkztku
for k � 1, � � � ,V [20]. A pseudo-code description of the multitask version of the ATC dLMS

for clustered networks is provided next in Algorithm 2.

Algorithm 2 The ATC dLMS Algorithm of Eq. (2.29) for Clustered Multitask Networks.

1: % Initialization - For each node k � 1, � � � ,V, determine the cluster Cpkq to which it
belongs, select a step size µk as well as the parameter η and the weights sρki, bik, and cik for
i � 1, � � � ,V, and set ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: for k � 1, � � � ,V do
4: Update ukpnq
5: end for
6: % The nodes transmit their local signals u and d and their combined estimates w to

their neighbors
7: % Adaptation Step
8: for k � 1, � � � ,V do
9: % Adapting the local estimate ψkpnq:

10: ψkpnqÐwkpn � 1q
11: for i P Nk X Cpkq do
12: ψkpnqÐψkpnq � µkbikrdipnq�uT

i pnqwkpn�1qsuipnq
13: end for
14: for i P NkzCpkq do
15: ψkpnqÐψkpnq � µkηsρkirwipn�1q�wkpn�1qs
16: end for
17: end for
18: % The nodes transmit their local estimates ψ to their neighbors
19: % Combination Step
20: for k � 1, � � � ,V do
21: % Forming the combined estimate wkpnq:
22: wkpnq Ð 0M

23: for i P Nk X Cpkq do
24: wkpnq Ð wkpnq � cikψipnq
25: end for
26: end for
27: end for

A different approach was adopted in [22] where it was assumed that there is no prior knowl-

edge about the clusters in the network. Hence, an unsupervised algorithm for the adaptive clus-

tering of diffusion networks was proposed. The concept behind this solution is to only promote

the cooperation between each node k and its neighbors i P Nk with parameter vectors wo
i suf-

ficiently similar to its own wo
k . Since there is no a priori knowledge of the optimal systems

wo
i , i P Nk, an approximation is obtained by adjusting the combination weights tciku based on

the norm of the difference between their local estimates ψ. This is achieved by solving at each

Literature review 40

node k

ck � arg min
ckPRV�1

V̧

i�1

c2
ik

∥∥∥∥xwo
k � ψipnq

∥∥∥∥2
subject to cik ¥ 0, 1T

Vck � 1, cik � 0 if i < Nk,

(2.31)

where xwo
k is an estimate of wo

k and ck is defined as

ck ≜ rc1k � � � cVksT. (2.32)

In particular, the algorithm proposed in [21] uses

xwo
kpnq � ψkpnq � µk

p∇wJkrψkpnqs � ψkpnq � µkgkpnq, (2.33)

with

gkpnq � rdkpnq � uT
k pnqψkpnqsukpnq. (2.34)

Thus, one possible solution for (2.31) is given by

cikpnq �

$''''''''&''''''''%

�∥∥∥∥xwo
kpnq�ψipnq

∥∥∥∥2
�1

¸
iPNk

�∥∥∥∥xwo
kpnq�ψipnq

∥∥∥∥2
�1 , if iPNk,

0, otherwise,

(2.35)

with xwo
kpnq given by (2.33). Incorporating (2.35) into (2.12) yields the ATC diffusion LMS with

Adaptive Clustering for multitask problems. It is interesting to notice that there is a certain

similarity between (2.35) and the ACW algorithm of Rule 8) in Table 1, despite the differences

in context that motivate each solution.

As previously mentioned, multiple solutions were proposed for multitask estimation prob-

lems over diffusion networks. In [21], an ATC diffusion LMS algorithm was obtained for the

case where the optimal systems wo
k can be described by the sum of a common component and

a node-specific one for k � 1, � � � ,V under some restrictions so as to ensure a unique optimal

solution to the estimation problem. In [23], it is assumed that there are parameters that are of

global interest to all nodes in the network, others that are of interest to a subset of nodes, and

others that are of local interest to specific nodes, and a diffusion algorithm of the LMS type

is derived for this problem. In [24], the authors propose a diffusion strategy that promotes the

sparsity of the vector difference wCi � wC j of neighboring clusters Ci and C j. Attempting to

Literature review 41

cover all of these solutions in detail in this work would not be reasonable, as it would expand

an already wide scope. An excellent review paper focused specifically on multitask adaptive

diffusion networks can be found in [233].

2.2.5 Kernel Adaptive Diffusion Networks

In Secs. 2.2–2.2.4, we have discussed adaptive solutions aimed at solving linear estimation

problems, as it is apparent from the modeling of the desired signal in (2.1) and (2.27). However,

it is not unusual to encounter problems that are nonlinear in nature. To deal with this, kernel-

based adaptive diffusion networks have been proposed in the literature and attracted significant

attention [32–36]. In comparison with (2.1), the kernel framework for adaptive diffusion net-

works considers a modified model for the desired signal dkpnq, given by [32, 35, 234]

dkpnq � φo
�
ukpnq

�� vkpnq, (2.36)

where φop�q typically denotes a nonlinear transformation of the input vector ukpnq. For simplic-

ity, we restrict our review to the single-task scenario, but an analogous model can be obtained

for the multitask one if we consider different mapping functions for different nodes [234].

Kernel-based adaptive diffusion networks are largely based on kernel adaptive filters, which

over the years became established tools for nonlinear signal processing [149–151]. The idea be-

hind these techniques is to apply a nonlinear transformation φ : RM Ñ F to the input vectors,

where F is usually a higher-dimensional space, named feature space. Then, linear signal pro-

cessing techniques are applied to the vectors mapped in F [149–151, 235]. This way, we can

perform filtering tasks that are nonlinear in RM while only employing linear procedures in the

feature space.

Once a nonlinear mapping function φp�q is adopted, the Mercer kernel κ : RM � RM Ñ R
associated with it, given any two input vectors u P RM and u1 P RM, is defined as the inner

product [235]

κpu,u1q � φTpuqφpu1q. (2.37)

Depending on how the mapping function φp�q is defined, we may be able to calculate κpu,u1q
without explicitly knowing φp�q. This is known as the kernel trick, which is a cornerstone

of many kernel-based methods, such as kernel adaptive filters and support vector machines

(SVMs) [149–151, 235, 236]. One of the most widely adopted kernels is the Gaussian kernel,

Literature review 42

given by

κpu,u1q � exp

���
∥∥∥u � u1

∥∥∥2
2h2

�
, (2.38)

where h is the Gaussian kernel bandwidth [149–151, 235, 236]. It is worth mentioning that the

feature space F associated with the Gaussian kernel is an infinite-dimensional space. Other

examples of commonly used kernels include sigmoidal, homogeneous and non-homogeneous

polynomial kernels, among many others [149, 235].

In their original forms, the computational costs of these algorithms increase linearly with

every iteration, which makes their implementation infeasible [149–151]. To deal with this, the

concept of dictionaries was introduced in the kernel literature. The idea is to use only a limited

set of data in the processing, which restricts the computational cost. Evidently, this leads to

a deterioration in performance in comparison with the case where the dictionary grows larger

at every iteration, but it is crucial to enable the use of these algorithms in practice. Several

techniques have been proposed over the years for the selection of the dictionaries, aiming to

limit the growth of the computational cost while maintaining performance as much as possi-

ble [149–151].

We then seek to estimate the desired signal by obtaining an approximation φk for φor�s
in (2.36) in a distributed manner in each node k. Considering a global cost function of the

form (2.8), with [32]

Jkpφkq � E
!∣∣∣dkpnq � φk

�
ukpnq

�∣∣∣2) , (2.39)

and applying the stochastic gradient descent, many different algorithms can be obtained. For

example, in [32], following an LMS approach and adopting an ATC diffusion strategy with en-

larged cooperation, and assuming that there is a dictionary D � t uD1 , � � � , uDDu of cardinality

D common to all nodes in the network, the Functional ATC diffusion Kernel LMS algorithm is

obtained as [234]$''''&''''%
ψkpnq � wkpn � 1q � µk

¸
iPNk

bik

�
dipnq � wT

k pn � 1qκipnq
�
κipnq

wkpnq�
¸
iPNk

cikψipnq,

(2.40a)

(2.40b)

where

κkpnq �
�
κ
�
ukpnq,uD1

� � � � κ �ukpnq,uDD

��T
(2.41)

Literature review 43

is a vector comprised of the kernel values computed between the current input vector ukpnq and

the elements of the dictionary D [234].

Multikernel solutions have also been proposed for diffusion-based adaptive learning [35,

237, 238]. As their name suggests, these techniques employ more than one kernel simultane-

ously in the learning task. The idea is that by using two or more kernels, we may be able to grasp

nuances in the desired signal due to, e.g., the existence of high and low frequency components

in the nonlinear function. A version of this technique was employed in [35] for environmental

monitoring.

The fact that the dictionary D is shared among all nodes has some implications on the

practical implementations of kernel adaptive diffusion networks. The simplest way to ensure all

nodes have the same dictionary would be to define its elements and inform them to all nodes

before the learning process begins [234]. Nonetheless, a general-case rule for the selection

of this dictionary remains an open research topic. Furthermore, this approach can cause a

degradation in performance, especially if the scenario changes in such a way that the predefined

dictionary ceases to be representative of the streaming data. To circumvent these issues, one

might allow a time-varying dictionary using criteria such as the ones presented in [149–151].

However, in this case the necessity of sharing the dictionary with every node in the network

in an online and distributed manner poses a challenge for diffusion strategies [37]. A hybrid

solution, in which each node has access to both a shared and fixed dictionary and to a local

and time-varying one was proposed in [239]. The idea is that the shared dictionary should

provide the nodes with a rough estimate of the nonlinear function over the whole network,

whereas the local part could allow them to detect particularities of the signals in its vicinity.

Despite this, the handling of the dictionary in diffusion strategies is still regarded as an open

research topic [37, 234]. In order to circumvent these difficulties, Random Fourier Features

(RFF) approaches have been proposed for kernel-based adaptive diffusion networks [37–40].

In RFF solutions, instead of using the kernel trick, we apply an RFF map z : RM Ñ RD,

with D ¡ M, to the regressor vector ukpnq based on Bochner’s Theorem [37,240]. This theorem

ensures that, if the kernel is shift-invariant and positive definite, i.e., κpu,u1q depends exclusively

on u � u1, and κpu,u1q ¡ 0 for any u and u1, the Fourier transform ppωq of the kernel is a

probability density function such that [37, 240]

κpu�u1q �
»

ppωqe jωTpu�u1qdω, (2.42)

Literature review 44

where we have written κpu,u1q as κpu � u1q for compactness [37]. We should notice that the

Gaussian kernel given by (2.38) is shift-invariant and positive definite.

Since ppωq and κpu�u1q are real, the integral (2.42) converges when the complex exponen-

tials are replaced by cosines. Hence, the real-valued mapping zω,θrus �
?

2 cospωTu � θq also

satisfies (2.42) if ω is drawn from ppωq and θ is uniformly distributed in the range r0, 2πs [37].

Thus, κpu � u1q can be computed as κpu � u1q � Etzω,θruszω,θru1su. To reduce the variance of

this estimate, a sample average of D randomly chosen zω,br�s is used, i.e.,

κpu,u1q � 1
D

Ḑ

i�1

zωi,θiruszωi,θiru1s. (2.43)

Thus, the vector ukpnq can be mapped to the following D-dimensional RFF vector [37, 38]:

zkpnq �
c

2
D

������
cosrωT

1 ukpnq � θ1s
...

cosrωT
Dukpnq � θDs

������ , (2.44)

For the Gaussian kernel,ωi, i � 1, � � � ,D are drawn from the multivariate Gaussian distribution

with zero mean and covariance matrix ID{h2 [37, 240].

Since the RFF space has a finite dimension D, we can estimate dkpnq at node k by directly

using a similar strategy to that of the linear ATC dLMS of (2.9). Thus, the ATC RFF-dKLMS

consists in two steps given by [37, 38]

$'&'%
ψkpnq�wkpn � 1q�µkrdkpnq�zT

k pnqwkpn � 1qszkpnq
wkpnq�

¸
iPNk

cikψipnq.
(2.45a)

(2.45b)

A pseudo-code description of ATC RFF-dKLMS is presented for convenience as Algorithm 3.

The idea behind the RFF approach is that the features are selected randomly according to

the aforementioned distributions. This only needs to be done once, before the beginning of the

learning task. Subsequently, the selected features are informed to the nodes. Due to Bochner’s

Theorem, as long as ω and b are drawn from the appropriate distributions, this approach avoids

the issue of how to select the elements of the dictionary D of the non-RFF kernel solutions. As

one might expect, the more features are used, the better the performance of the RFF diffusion

algorithms tends to be [37–40]. On the other hand, the computational cost also increases as

more features are used.

Literature review 45

Algorithm 3 The ATC RFF-dLMS Algorithm of Eq. (2.45).

1: % Initialization - draw D scalars θ1, � � � , θD from a Uniform distribution in the range r0, 2πs
and D vectors ω1, � � � ,ωD from a multivariate Gaussian distribution with zero mean and
covariance matrix ID{h2. These parameters shall be common to every node in the net-
work. Then, for each node k � 1, � � � ,V, select a step size µk and combination weights cik

satisfying (2.10) for i � 1, � � � ,V, and set ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: % Adaptation Step
4: for k � 1, � � � ,V do
5: Update ukpnq
6: % Mapping ukpnq to the RFF vector zkpnq:

7: zkpnq Ð
c

2
D

��� cosrωT
1 ukpnq � θ1s
...

cosrωT
Dukpnq � θDs

���
8: % Adapting the local estimate ψkpnq:
9: ψkpnq Ð wkpn � 1q�µkrdkpnq�zT

k pnqwkpn � 1qszkpnq
10: end for
11: % The nodes transmit their local estimates ψ to their neighbors
12: % Combination Step
13: for k � 1, � � � ,V do
14: % Forming the combined estimate wkpnq:
15: wkpnq Ð 0M

16: for i P Nk do
17: wkpnq Ð wkpnq � cikψipnq
18: end for
19: end for
20: end for

2.2.6 Graph Signal Processing and Adaptive Diffusion Networks

So far, we have been assuming that the signals at a certain node do not influence the desired

signal at the remainder of the network in any way. For instance, even if nodes k and ℓ are

neighbors, ukpnq only influences dkpnq, and uℓpnq will affect dℓpnq, in its turn. This becomes

clear when we analyze Eqs. (2.1), (2.27), and (2.36). However, there may be situations in

which the signals measured at a node do have an impact on its neighborhood. Broadly speaking,

the goal of Graph Signal Processing (GSP) is exactly to model scenarios in which there is an

underlying relationship between the data distributed over a certain domain (such as space). For

this reason, as we will see next, extensions of GSP have also been applied to adaptive diffusion

networks, in order to address problems in which the signals are spatially related to one another.

Before going forward, it is important to remark that GSP has become a broad field, with

many ramifications. Extensions of several classical ideas of the signal processing field to the

Literature review 46

graph framework have been proposed in the literature, such as the graph Fourier transform,

graph signal convolution, graph filters, among many others [41, 160–167]. Rather than pro-

viding a comprehensive overview of GSP, we focus on how it can be used in conjunction with

adaptive diffusion networks to model certain situations that cannot be easily represented using

the theory of Secs. 2.2–2.2.5. For a much broader view of the GSP field, we suggest that the

reader refers to, e.g., [162, 163, 167, 241] and their references. With this in mind, we begin our

exposition on diffusion solutions for GSP in the following manner. Firstly, in Sec. 2.2.6.1, we

provide some preliminary concepts that are fundamental for the understanding of the adaptive

diffusion networks for GSP, which are reviewed in Sec. 2.2.6.2.

2.2.6.1 Preliminaries to Adaptive Diffusion over Graphs

Graphs are structures commonly used to represent interactions between objects of interest,

consisting of a set of points, called nodes, and a set of lines connecting certain pairs of points,

called edges [242]. Typically, nodes in a graph represent objects and/or agents, edges describe

relationships between objects or agents, and weights represent the strength of the relation [242,

243]. Moreover, weights can be assigned to each edge, to represent the “strength” of the link

between any pair of nodes. Finally, a graph is said to be directed if there is an orientation

associated with each edge, i.e., from node i to node j or vice-versa, and if the weights associated

with one direction are different from those associated with the other [243].

The adaptive networks presented in Section 2.2 can be considered examples of graphs.

This is not a coincidence. Graphs are mathematical abstractions capable of representing a wide

variety of real-world situations [243]. A relevant property of graphs is that they admit matrix

representations, which makes them computationally manipulable [243]. One of the ways to

represent them in this way is through the adjacency matrix of the graph. For a simple graph

with V nodes, the adjacency matrix A is a V�V matrix whose element rAsi j is equal to the value

of the weight associated with the edge connecting the nodes i and j. It is interesting to note that

the adjacency matrix of an undirected graph is symmetric with respect to its main diagonal.

The field of GSP is based upon the assumption that, at each node k and iteration n, there is a

value of interest, whose meaning may vary from one application to the other. For example, these

values can represent the temperature measured at a certain location, the power spectral density

of a radio signal that a device receives from a certain source, the affinity of a social network

Literature review 47

user for certain types of content, and so on. The collection of these values of interest can be

understood as a signal defined over a graph, or graph signal for brevity [162]. Thus, given a

graph G with V nodes labeled k� 1, 2, � � � , V and adjacency matrix A, a signal defined over

G is represented by a vector of the form upnq � ru1pnq u2pnq � � � uVpnqs, where each element

ukpnq is indexed by a node k [160].

Based on this definition, the concept of filters for graph signals, or graph filters for short,

was proposed in [160]. For this, an analogy is drawn between the adjacency matrix and the

unit delay operator in discrete time signal processing. To illustrate this idea, let us consider a

periodic sequence with V elements u1, u2, � � � , uV . This sequence could be represented by

a graph in which each sample uk is associated with the corresponding node k, and there is a

directed edge from node k to its successor, node k � 1 (unless k � V , in which case there is an

edge connecting it to node 1). This concept is depicted in Fig. 9.

Figure 9: A discrete periodic time sequence represented as a graph.

Assigning unit weights to the edges of the graph of Fig. 9, its adjacency matrix is given

by [160]

A �

������������

0 0 � � � 0 1

1 0 � � � 0 0

0 1 � � � 0 0
...
...
...
...
...

0 0 � � � 1 0

������������
.

Collecting the samples of the sequence into a vector u � ru1 u2 � � � uVs, we observe that by

left-multiplying u by A, we obtain the vector su � Au � ruV u1 � � � u2s. Taking into account

that u is a vector representation of a periodic discrete time sequence of finite length, su can be

understood as a version of u delayed by one time unit. Thus, the adjacency matrix fulfills a role

similar to the time delay operator in discrete time signal processing. Although this analogy is

based specifically on the graph of Fig. 9, this notion is generalized for any adjacency matrix

A in the GSP framework. In the general case, it can be understood that the multiplication of a

graph signal u by A represents a spatial shift along the graph. For this reason, the adjacency

Literature review 48

matrix is considered a graph-shift operator. Over time, the usage of other matrices as graph

shift operators was proposed in the literature, such as the Laplacian matrix [47, 48]. Although

the analogy with discrete-time signal processing is less clear in this case, it allows for different

forms of modeling the effects of the graph on the evolution of the signals defined over it. For the

sake of generality, we denote the graph shift operator by A, but we assume that it can represent

any suitable choice for this operator, not just the adjacency matrix.

Thus, we can define a linear shift-invariant graph filter as a system given by [160]

H ≜
M�1̧

m�0

wo
mAm, (2.46)

where M is the filter length and two
muM�1

m�0 denotes its coefficients. Hence, if a graph signal upnq
is processed by this system, its output hpnq can be described as [160]

hpnq �
M�1̧

m�0

wo
mAmupnq, (2.47)

as illustrated in Fig. 10.

PSfrag upnq

hpnq

wo
0 wo

1 wo
M´2 wo

M´1

A A

Aupnq

p q

AM´1upnqAM´2upnq
¨ ¨ ¨

Figure 10: Schematic representation of a linear shift-invariant graph filter whose output is given
by (2.47). The output of each block with the matrix A, having the vector upnq as its input, is given
by the left-multiplication of upnq by A, i.e., by the vector Aupnq.

We should notice that there is a clear analogy to the tapped delay line commonly found in

discrete-time filters [125]. This motivated the proposal of adaptive filters for GSP [47,48] based

on this concept, which will be explained in Sec. 2.2.6.2

Literature review 49

2.2.6.2 Diffusion Algorithms for Graph Signal Processing

Let us consider a graph with a predefined topology and V nodes labeled 1, � � � , k, � � � , V .

Each node k has access at each time instant n to an input signal ukpnq and to a desired signal

dkpnq, modeled as [39, 47, 48, 244, 245]

dkpnq � xT
k pnqwo � vkpnq, (2.48)

where vkpnq is the measurement noise at node k, wo is the optimal system, and the input xkpnq
is given by [39, 47, 48, 244, 245]

xkpnq �
�
rupnqsk rAupn � 1qsk � � � rAM�1upn � M � 1qsk

�T
. (2.49)

Eq. (2.49) can be interpreted as follows. The vector upnq represents the “raw” information

available at each node of the network at the iteration n, whereas xkpnq models the spreading of

that information throughout the graph, which is the result of both a temporal and spatial shift,

or “delay.”

In light of (2.49), it may be interesting to compare (2.48) with (2.1). In the model of

Eq. (2.1), only the input signal ukpnq influences dkpnq, whereas in the model of Eq. (2.48), dkpnq
is influenced by ukpnq, by uipnq for i P Nk, by the input signal at the two-hop neighbors of node

k, and so on. Hence, unlike (2.1), the model of (2.48) can be used to represent situations in

which the desired signal at a node is affected by what happens around it, and, therefore, on the

measurements collected by its neighbors. In other words, the defining difference between the

“classical” model and the GSP framework lies in the role of the spatial aspect of the problem.

In the former, the topology of the network does not influence the dynamics of the desired signal.

We see from (2.1) that dkpnq depends only on the signal ukpnq and on the measurement noise

vkpnq, and is independent of uipnq for all i�1, � � � ,V, i,k. In this case, the information does not

propagate from one node to another. In the context of GSP, we see from (2.48) and (2.49) that

if the nodes i and k are immediate neighbors, dkpnq depends on uipn�1q, since the information

from one node spreads to its neighbors over time. Moreover, if nodes j and k are two-hop

neighbors (i.e., it is possible to travel from node j to node k in two hops), dkpnq also depends on

u jpn�2q, and so on. Hence, the topology of the network plays a major role in how the desired

signal dkpnq unfolds at each node k. In its turn, the optimal system wo models how exactly

the graph topology and time lag affect the spreading of information in (2.48). This makes the

Literature review 50

graph-based framework well suited for distributed problems where both time and space must be

taken into consideration, as in meteorological applications [47, 48, 81].

Furthermore, comparing (2.48) and (2.49) with (2.47), we can see that the model presented

in this section modifies the original concept of graph filter by incorporating a time lag. In this

case, rather than spreading instantaneously throughout the network as in (2.47), the information

takes time to arrive at other nodes, with distant locations being influenced later than closer ones.

Apart from these differences between the GSP problem from the original distributed sig-

nal processing framework, the derivation of the dLMS algorithm for GSP in [47] follows an

analogous path to what was done in Sec. 2.2. Replacing ukpnq with xkpnq in (2.3) and consid-

ering (2.48), the adoption of an approach of the LMS type to the minimization of (2.8) with an

ATC configuration leads to [47, 48, 244, 245]

$'&'%
ψkpnq�wkpn � 1q�µkrdkpnq�xT

k pnqwkpn � 1qsxkpnq
wkpnq�

¸
iPNk

cikψipnq.
(2.50a)

(2.50b)

Eqs. (2.50a) and (2.50b) form the basis for the ATC dLMS algorithm for GSP. For ease of refer-

ence, we shall refer to the algorithm of (2.50) as the diffusion Graph LMS (dGLMS) algorithm,

whose pseudo-code description is presented in Algorithm 4. Comparing (2.50) with (2.12), we

see that there is a clear analogy between these solutions, with the main difference residing on

the meaning of their inputs. Furthermore, it is important to notice that the neighborhood Nk of

node k in (2.50b) refers to the communication network of the diffusion algorithm, which does

not necessarily coincide with the graph represented by A. For example, we may allow nodes

to communicate with farther agents, whose effects on their signals are negligible. The inverse

may also happen, with nodes being unable to communicate with other agents that do affect their

dynamics.

Finally, it is worth mentioning that multitask [233, 244] and kernel-based [39, 246, 247]

versions of graph diffusion algorithms have also been proposed in the literature. They apply

analogous lines of reasoning to those expounded in Secs. 2.2.4 and 2.2.5 to diffusion graph

adaptive filters such as (2.50). For instance, in [39], a Graph Diffusion KLMS filter with a pre-

selected dictionary is proposed, as well as an RFF Graph diffusion KLMS algorithm. In this

latter case, the algorithm is similar to the one described by (2.45), with the difference that the

mapped vector zk is calculated using xk instead of uk in (2.44), with xk given by (2.49) [39].

Literature review 51

Algorithm 4 The ATC dGLMS Algorithm of Eq. (2.50).
1: % Initialization - for each node k � 1, � � � ,V, select a step size µk and combination weights

cik satisfying (2.10) for i � 1, � � � ,V, and set ψkp0q Ð 0M and wkp0q Ð 0M

2: for n � 1, 2, � � � do
3: % Adaptation Step
4: for k � 1, � � � ,V do
5: Update ukpnq
6: % Calculating the vector xk:
7: xkpnq Ð

�rupnqsk rAupn � 1qsk � � � rAM�1upn � M � 1qsk
�T
.

8: % Adapting the local estimate ψkpnq:
9: ψkpnq Ð wkpn � 1q � µkrdkpnq�xT

k pnqwkpn � 1qsxkpnq
10: end for
11: % The nodes transmit their local estimates ψ to their neighbors
12: % Combination Step
13: for k � 1, � � � ,V do
14: % Forming the combined estimate wkpnq:
15: wkpnq Ð 0M

16: for i P Nk do
17: wkpnq Ð wkpnq � cikψipnq
18: end for
19: end for
20: end for

Besides the dLMS of (2.12), other types of diffusion algorithms can also be extended to

the system identification problem in GSP. For example, in [48], building from (2.50), an LMS-

Newton type of diffusion algorithm was proposed to improve the convergence rate of the solu-

tion.

2.2.7 Application Example: Temperature Prediction

In this section, we consider a temperature dataset of daily average measurements (in �F)

from 12/25/2001 to 12/21/2012 at V � 100 weather stations across Brazil [248]. We consider

that each station corresponds to a node of a network. To determine the communication links,

we applied the following procedure. Firstly, we represent the network as a directed weighted

graph in which each node k is connected to the six nearest stations. Denoting this set by NAk ,

each element rAsk j of the adjacency matrix A is given by [47]

rAsk j�

$'''''&'''''%

expp�g2
k jq¸

ℓPNAk

expp�g2
ℓkq
¸

iPNA j

expp�g2
jiq
, if j P NAk

0, otherwise

, (2.51)

Literature review 52

where gk j is the geodesical distance between nodes k and j. Thus, we consider that nodes k and

j can communicate if k P NA j and j P NAk simultaneously. The resulting network is depicted

in Fig. 11a, along with the temperature measured in each station on 06/21/2002.

40

45

50

55

60

65

70

75

80

85

(a) (b) (c)

Figure 11: Network used in the simulations of Secs. 2.2.7.1 and 2.2.7.2. Edges represent
communication links. The nodes that are circled in black use a normalized step size rµk � 1,
whereas the others use rµk � 0.1 in (2.53). (a) Daily average temperature measured by 100
weather stations on 06/21/2002 (�F). The arrow points to the station whose data are used in
Fig. 13. (b) Clusters adopted for the multitask algorithms in Secs. 2.2.7.1 and 2.2.7.2. (c)
Scenario studied in Sec. 2.2.7.2. Blue nodes are unobserved, whereas the red ones are observed.
Edges represent communication links. The arrow points to the station whose data are used in
Fig. 15. This figure was created using the GSPBOX toolkit [249].

We divided our dataset into training and testing sets. The former consists of Ntr. � 3650

measurements from 12/25/2001 to 12/22/2011, which were periodically replicated to form a

number of training epochs, depending on the experiment. The testing set consists of the mea-

surements from 12/23/2011 to 12/21/2012. In both periods, we consider that dkpnq � ukpn�1q,
where ukpnq denotes the temperature measurement at node k and time instant n. Hence, the sim-

ulation scenario could be interpreted as follows. At the dawn of each day, the algorithms predict

the average temperature for that date at all the nodes using the last measurements available and

the combined estimate calculated at the end of the previous day. At the end of the day, after

the average temperature for that certain date has been calculated, the algorithms compute their

estimation errors and perform their adaptation and combination steps to update their parameters

ψk and wk.

In both the training and testing periods, we conduct the adaptation of the algorithms as

usual. The idea behind the division of the data in these sets is to enable us to test the algorithms

using data different from the ones employed in the training, and also to examine the steady-

state performance along 365 days. As a performance indicator, we adopt the squared relative

Literature review 53

reconstruction error (SSRE), given by [47]

SRRE � 1
V

V̧

k�1

�
ukpn�1q�uT

k pnqwkpnq
�2

u2
kpn � 1q . (2.52)

We consider two types of application. In Sec. 2.2.7.1, we study the behavior of the tech-

niques studied in Secs. 2.2–2.2.6 in a scenario in which the temperature is measured daily at

every node. On the other hand, in Sec. 2.2.7.2, we consider that some of the nodes are not capa-

ble of measuring the temperature. Thus, the data remain unobserved at these nodes throughout

the training and testing sets. This model could be used to, e.g., predict the temperature in a

region where there are no weather stations. To cope with the lack of information at these nodes,

we consider different diffusion techniques that utilize the GSP framework.

2.2.7.1 Temporal Prediction with Fully Observed Nodes

In this scenario, we use the dNLMS, RFF-dKNLMS, multitask dNLMS, and the diffusion

Graph NLMS (dGNLMS) algorithms to predict the current temperature at every station, as-

suming that we have access to a few past measurements at every node. We opted to use the

normalized version of each algorithm due to the fact that the input signal is not white in this

scenario, which could hinder the performance otherwise [125, 126]. Hence, each node k uses

µkpnq � rµk

δr �
∥∥∥ykpnq

∥∥∥2 , (2.53)

where δr ¡ 0 is a small regularization factor, and ykpnq � ukpnq for the single-task and multi-

task dNLMS algorithms, ykpnq � zkpnq for RFF-dKNLMS, and ykpnq � xkpnq for the dGNLMS

algorithm. We adopted rµk � 0.1 for half of the nodes, and rµk � 1 for the other half. This is

depicted in Fig. 11, in which the nodes that use rµk � 1 are circled in black, whereas the ones

that use rµk � 0.1 are not. For every node, we set δr � 10�5. Furthermore, instead of directly

using ukpnq as the input signal for each node k, we divided by the highest temperature measured

registered during the training period, so as to ensure that |ukpnq| ¤ 1 for every k, k � 1, � � � ,V .

Later, the outputs of the algorithms were re-scaled. In every case, we adopted the ATC config-

uration, and the ACW algorithm of Table 1 for the selection of the combination weights cikpnq,
with νkACW � 0.2. To avoid potential problems due to a division by zero in the ACW algorithm,

we also added a regularization factor δc to pσ2
ikpnq before calculating its reciprocal in (2.23).

In this experiment, we set δc � δr � 10�5. We also set M � 5 for every solution. For the

Literature review 54

RFF-dKNLMS algorithm, we used the Gaussian kernel with D � 20. Increasing D further

did not improve the performance significantly, while raising the computational cost noticeably.

Furthermore, the value of h2 � 0.1 was selected because it led to the best steady-state perfor-

mance. For the multitask case, we considered the approach of [20] with η � 0 and bik � 1 if

i � k and bik � 0 otherwise. Hence, the nodes do not exchange information during the adapta-

tion step, only in the combination step, and nodes from different clusters do not communicate

with each other. In order to determine the clusters, we calculated the Wiener solution for each

node and ran the k-means algorithm. Then, a few manual adjustments were made to ensure that

nodes belonging to the same clusters are indeed neighbors. The resulting clusters are depicted

in Fig. 11b. For the dGNLMS algorithm, we considered the adjacency matrix given by (2.51) as

the graph shift operator. This matrix was normalized by its greatest absolute eigenvalue, which

is a common practice in the literature [47, 48]. Finally, for comparison, we also included the

noncooperative NLMS approach in the simulations. In the training period, we consider a total

of 40 epochs.

In Fig. 12 we show the SRRE curves yielded by the solutions in the training period. For

the sake of visualization, these curves were filtered by a moving-average filter with 2048 co-

efficients. In Table 2, we present the average SRRE obtained with each solution during the

testing period, as well as the approximate number of multiplications required per iteration by

each solution. From Fig. 12 and Table 2, we can see that the noncooperative NLMS achieves

a higher level of SRRE in steady state in comparison with all of the other solutions. The

dNLMS, dGNLMS, and multitask dNLMS algorithms achieved similar performances, whereas

the RFF-dKNLMS algorithm slightly outperforms them in steady-state and in the testing pe-

riod. Nonetheless, it is worth noting that this improvement comes at the expense of a greater

computational cost, as is evident from Table 2. Furthermore, the usage of information from

neighboring nodes in the dGNLMS algorithm did not improve the performance in this par-

ticular scenario. Analyzing the behavior of the single-task and multitask dNLMS algorithms,

we can see that, in this case, the communication solely within each cluster was sufficient to

achieve the same performance in comparison with the case in which each node was allowed to

exchange information with all of its neighbors. In other words, the multitask dNLMS algorithm

achieved a similar performance in comparison with the single-task dNLMS while presenting

lower communication and computational burdens, as shown in Table 2.

Lastly, in order to enable a direct comparison in terms of degrees Fahrenheit, in Fig. 13, we

Literature review 55

20 40 60 80 100 120 140

Iterations (×103)

−24

−23

−22

−21

−20

−19

S
R

R
E

(d
B

)

NLMS (Non-Coop.)
dNLMS (ACW)

RFF-dKNLMS
dGNLMS

Multitask dNLMS

Figure 12: SRRE curves along the iterations for the training dataset obtained with the dNLMS,
RFF-dKNLMS, dGNLMS, multitask dNLMS, and noncooperative NLMS algorithms.

Table 2: Comparison between the dNLMS, RFF-dKNLMS, dGNLMS, multitask dNLMS, and
noncooperative NLMS algorithms in terms of the performance on the testing set and computa-
tional cost.

Solutions
Average SRRE in the Approximate number of

testing set (dB) multiplications per iteration (�103)
NLMS (noncooperative) �20.6910 3.99

dNLMS (2.12) �22.8933 7.90
Multitask dNLMS (2.29) �22.8338 6.48

RFF-dKNLMS (2.45) �23.5502 39.54
dGNLMS (2.50) �22.8725 14.10

illustrate the behavior of the solutions by showing the estimates provided by each of them for the

temperature at a single node, which is indicated by an arrow in Fig. 11a, in the testing set. The

actual temperature, i.e. the desired signal, is also shown. We can see that the noncooperative

approach produces a noisier estimate in comparison with the other solutions, which match the

desired signal reasonably well.

2.2.7.2 Prediction at Unobserved Nodes

In this subsection, we consider that there are 75 observed nodes, which can measure their

data daily, and 25 unobserved nodes, which are not capable of performing that measurement

at all. This is depicted in Fig. 11c, in which observed nodes are shown in red, and unobserved

ones are depicted in blue. This situation could be used to model a scenario in which we would

like to estimate the temperature in a region in which there is no weather station, based on the

measurements from the surrounding region.

In order to predict the temperature at unobserved nodes, we must rely on the information at

their neighbors. To this end, we employ the dGNLMS algorithm, similarly to what was done in

Literature review 56

0 100 200 300

Iterations

70

75

80

85

T
em

p
er

a
tu

re
(◦

F
)

300 320 340 360

Iterations

76

80

84

88

0 50 100 150 200 250 300 350

70

80

90

T
em

p
er

a
tu

re
(◦

F
)

Real Data

NLMS (Non-Coop.)

dNLMS (ACW)

RFF-dKNLMS

dGNLMS

Multitask dNLMS

Figure 13: Comparison between the temperature measured at the station indicated by an arrow
in Fig. 11 and the estimates provided by the dNLMS, RFF-dKNLMS, dGNLMS, multitask
dNLMS, and noncooperative NLMS algorithms.

Sec. 2.2.7.1, as well as GSP-based versions of the multitask and kernel solutions of Secs. 2.2.4

and 2.2.5, respectively.

To cope with the unavailability of the information at the unobserved nodes, the vector xkpnq
of (2.49) is slightly modified to [244]

x1kpnq �
�rASupnqsk � � � rAMSupn � M � 1qsk

�T
, (2.54)

where S is a diagonal matrix such that rSskk � 1 if node k is observed and rSskk � 0 otherwise.

We employ a normalized version of the RFF kernel solution of [246], resulting in the RFF-

dGKNLMS algorithm. For the multitask approach, we consider the solution of (2.29) with the

same clusters that were used in the simulations of Sec. 2.2.7.1. In comparison with the original

solutions of (2.29) and (2.45), the main differences between the algorithms employed in this

section and the ones studied previously lie in the usage of the vector given by (2.54) instead

of the regressor vector ukpnq in the adaptation step, and in the adoption of a normalized step

size as in (2.53). It is worth noting that an unsupervised clustering algorithm for multitask

diffusion solutions was proposed in [244]. Based on this method, several multitask algorithms

were proposed in the aforementioned paper specifically for diffusion adaptive graph filtering.

Due to space limitations, and since in this case we can group the nodes in clusters based on the

knowledge of the Wiener solution, we have opted to restrict our analysis to the modified version

of (2.29). Nonetheless, we encourage the reader interested in distributed GSP to consult [244]

for the multitask solutions with unsupervised clustering.

Similarly to what was done in Sec. 2.2.7.1, we adopt a length of M � 5 for ukpnq. We also

Literature review 57

use normalized step size rµk � 1 for half of the nodes, whereas the other half employs rµk � 0.1,

as shown in Fig. 11b. Furthermore, we consider an ATC configuration and seek to obtain the

best performance possible with each solution. To this end, we have adopted ACW to select the

weights of the dGNLMS and multitask dGNLMS algorithms. For the latter, we adopted η � 0

and bik � cki for every k, k � 1, � � � , 100 and i, i � 1, � � � , 100. Adopting η , 0 with weightssρik did not affect the performance significantly. For the RFF-dGKNLMS algorithm, we adopted

h2 � 10 and D � 20. Increasing D further did not improve the results noticeably. Finally,

specifically for the RFF-dGKNLMS algorithm we adopted Metropolis weights, since the adop-

tion of ACW did not improve the performance significantly, while increasing a computational

cost that was already comparatively high. We also tested multitask versions of RFF-dGKNLMS

following different configurations for the weights bik, cik, sρik and different values for η, but did

not observe any significant improvement in comparison with the single-task RFF-dGKNLMS

algorithm. For this reason, these results are not depicted in the following figures and tables.

We consider 20 epochs in the training set, and evaluate the performance of each solution by

applying the SRRE given by (2.52) to the unobserved nodes only. The resulting SRRE curves

are presented in Fig. 14. For the sake of visualization, these curves were filtered by a moving-

average filter with 1024 coefficients. In Table 3, we present the average SRRE measured at

the unobserved nodes in the testing period, as well as the number of multiplications required

by each solution. Analyzing Fig. 14, we can see that the multitask dGNLMS outperforms the

single-task dGNLMS algorithm, but both are outperformed by the RFF-GKNLMS solution.

The same holds in the testing set, as evidenced in Table 3. On the other hand, we can see from

the same table that the computational cost of RFF-dGKNLMS is considerably greater than that

of the other solutions. It is interesting to notice that the multitask dGNLMS outperforms the

single-task version while presenting only a slightly higher computational burden.

Table 3: Comparison between the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS algo-
rithms in terms of the performance the testing set and computational cost.

Solutions
Average SRRE in the Approximate number of

testing set (dB) multiplications per iteration (�103)
dGNLMS �20.2872 17.17

Multitask dGNLMS (2.29) �23.8701 20.14
RFF-dGKNLMS (2.45) �26.2089 299.47

Finally, similarly to what was done in Fig. 13, in Fig. 15, we show the estimates provided by

the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS algorithms for the temperature at the

Literature review 58

0 20 40 60 80 100

Iterations (×103)

−26

−24

−22

−20

−18

−16

S
R

R
E

(d
B

)

dGNLMS Multitask dGNLMS RFF-dGKNLMS

Figure 14: SRRE curves for the unobserved nodes along the iterations for the training dataset
obtained with the dGNLMS, multitask dGNLMS, and RFF-dGKNLMS algorithms.

unobserved node indicated by an arrow in Fig. 11b in the testing set. We also show the actual

temperature measured at that station. We can see that the estimates match the actual temperature

signal reasonably accurately. This is especially true for the RFF-dGKNLMS algorithm, which

supports the results of Fig. 14 and Table 3.

0 100 200 300

Iterations

70

75

80

85

T
em

p
er

at
u

re
(◦

F
)

300 320 340 360

Iterations

70.0

72.5

75.0

77.5

80.0

82.5

85.0

0 50 100 150 200 250 300 350

70

80

90

T
em

p
er

at
u

re
(◦

F
)

Real Data

dGNLMS

RFF-dGKNLMS

Multitask dGNLMS

Figure 15: Comparison between the temperature measured at the station indicated by an ar-
row in Fig. 11b and the estimates provided by the dGNLMS, multitask dGNLMS, and RFF-
dGKNLMS algorithms.

2.3 Conclusions

Starting with the technological developments that motivated the emergence of adaptive dif-

fusion networks, we have presented the progress that has occurred in the area throughout the

past fifteen years or so. Some theoretical results were presented in order to provide some in-

sights into their behavior. On the other hand, a few considerations were presented regarding the

feasibility of these solutions in practical applications. In particular, significant attention was de-

voted to the necessity of restricting the amount of communication between nodes, even if at the

expense of some deterioration in performance, due to energy constraints. We have also looked

Literature review 59

at advances that have been proposed in the literature and developed into mature research topics

in their own right, such as the multitask and kernel-based diffusion networks. Furthermore,

diffusion-based adaptive algorithms for Graph Signal Processing were also addressed, and the

similarities and differences in comparison with the more conventional diffusion solutions were

highlighted. In each case, we have highlighted what type of problems each of these solutions is

intended for. Finally, simulations carried out with real-world data exemplify the opportunities

and challenges that can arise from the usage of adaptive diffusion networks in practice.

Despite the maturity of adaptive diffusion networks as a research field, there are still many

open questions and challenges in the area. As mentioned in Sec. 2.2.3, the search for restrictive

communication policies that impact network performance as little as possible continues to spark

research and publications in the area, such as, e.g., [61, 62, 82–84]. The research efforts in this

area will likely continue as long as energy remains a significant constraint for battery-operated

WSNs. Moreover, the computational cost of the solutions continues to be an object of concern

in many scenarios. This aspect is applicable to adaptive diffusion networks as a whole, due to

the potentially low computational power of each node in IoT applications [81, 99, 100, 250].

For kernel-based adaptive networks, this is an especially pressing issue, due to the high com-

putational burden associated with these tools, as can be seen from Tables 2 and 3. The re-

duction of the computational cost of kernel methods has been a topic of intense research in

general [251–253], as well as estimating the number of RFFs required for satisfactory perfor-

mance [254]. In the GSP field, the idea of sampling the nodes – i.e., measuring the data only

at a subset of nodes and seeking to estimate the behavior of the network as a whole from the

acquired information – has also been a topic of constant research [255–257]. This is important

because the computational cost of GSP solutions increases with the number of nodes, and may

become prohibitively high if the network is too large [41, 42].

In an effort to address these concerns, in Chapter 3, we present several solutions for the

adaptive sampling and censoring of diffusion networks, which seek to reduce the computational

cost and energy consumption with as little negative impacts on algorithm performance as pos-

sible.

60

3 PROPOSED ALGORITHMS

In this chapter, we present algorithms for the sampling and censoring of adaptive diffu-

sion networks. Moreover, theoretical analyses are presented in order to estimate the expected

number of sampled or censored nodes per iteration, and simulation results are shown to illus-

trate the behavior of each proposed solution. These results indicate the good performance of

the algorithms in comparison with other techniques found in the literature in a wide range of

scenarios.

As mentioned in Chapter 1, the goal of sampling is to reduce the amount of data measured

and processed by the nodes. As we shall explain in this chapter, if we say that a node is “not

sampled,” this means that it is exempt from measuring its desired signal and from adding the

correction term in the adaptation step of diffusion algorithms. This enables a reduction in the

computational cost and can lead to a slight decrease in the power consumption, since the energy

required to sense the desired signal is saved. On the other hand, the goal of censoring is to

restrict the number of broadcasts performed by the nodes, as explained in Sec. 2.2.3.3. Censored

nodes do not transmit their local estimates to their neighbors in diffusion algorithms, allowing

them to save a significant amount of energy. The techniques proposed throughout this chapter

enable each node in the network to decide whether it should be sampled and or not, and then

act accordingly. For the censoring techniques, an analogous line of thought holds.

This chapter is organized as follows. The first solution, named as “Adaptive-Sampling”

(AS) algorithm, is presented in Sec. 3.1, along with the “Adaptive-Sampling-and-Censoring”

technique. These techniques were proposed in [81], although preliminary versions had appeared

in [258–260]. In Sec. 3.2, two modified versions of the AS algorithm are presented, which

seek to address its main weaknesses. These modifications were proposed in [82]. In Secs. 3.3

and 3.4, we show how the algorithms of the previous sections can be applied to the RFF adaptive

diffusion networks of Sec. 2.2.5, as was done in [84], and to the multitask networks of Sec. 2.2.4,

as in [261], respectively. Finally, Sec. 3.5 closes the chapter with the main conclusions from the

previous sections.

Proposed algorithms 61

3.1 The Adaptive Sampling Algorithm

To facilitate the selection of the step size, we consider henceforth a normalized ver-

sion of the ATC dLMS algorithm of Eqs. (2.12), with µk replaced by µkpnq given by (2.53).

tdkpnq, ukpnqu. Mathematically, the modifications that the AS-dNLMS algorithm applies to

the original dNLMS can be described as follows. We begin by introducing a binary variable

ζkpnq P t0,1u in (2.12a) as

ψkpn � 1q � wkpnq � ζkpnqµkpnqukpnqekpnq. (3.1)

If ζkpnq�1, dkpnq is sampled, ekpnq is computed as in (2.7) and (3.1) coincides with (2.12a). In

contrast, if ζkpnq�0, dkpnq is not sampled, uT
k pnqwkpnq, ekpnq and µkpnq are not computed, and

ψkpn�1q�wkpnq. The input signal ukpnq is always sampled, even if ζkpnq � 0, since otherwise

it would be impossible to adequately update the regressor vector ukpnq at future iterations due

to the missing data. We remark that the adaptive sampling mechanism can be straightforwardly

extended to the GSP-based version of the diffusion algorithms by replacing ukpnq by xkpnq
given by (2.49) or (2.54) in (3.1). In this case, the vector xkpnq does not need to be computed if

ζkpnq � 0, but we still sample the input signal ukpnq, as in the non-GSP approach.

Since ζkpnq is a binary variable, directly adapting it might be somewhat difficult. For this

reason, we introduce an auxiliary continuous variable sζkpnqPr0,1s, such that

ζkpnq �

$'&'%1, if sζkpnq ¥ 0.5,

0, otherwise
. (3.2)

We then minimize

Jζ,kpnq �
�sζkpnq� βζkpnq��1�sζkpnq�¸

iPNk

cikpnqe2
i pnq, (3.3)

with respect to sζkpnq, where β ¡ 0 is a parameter introduced to control how much the sampling

of the nodes is penalized. When the error is high in magnitude or when node k is not being

sampled (ζk � 0), Jζ,kpnq is minimized by making sζkpnq closer to one, leading to the sampling

of node k. This ensures that the algorithm keeps sampling the nodes while the error is high and

resumes the sampling of idle nodes at some point, enabling it to detect changes in the environ-

ment. In contrast, when node k is being sampled (ζk�1) and the error is small in magnitude in

comparison to β, Jζ,kpnq is minimized by making sζkpnq closer to zero, which leads the algorithm

Proposed algorithms 62

to stop sampling node k. This desirable behavior depends on a proper choice for β, which is

addressed in Section 3.1.2.

Inspired by convex combination of adaptive filters (see [262, 263] and their references),

rather than directly adjusting sζkpnq, we introduce yet another auxiliary variable αkpnq, which

will be directly updated in its stead. The variables sζkpnq and αkpnq are related to one another

via [263] sζkpnq � ϕrαkpnqs ≜ sgmrαkpnqs � sgmr�α�s
sgmrα�s � sgmr�α�s , (3.4)

where sgmrxs�p1�e�xq�1 is a sigmoidal function and α� is the maximum value αk can assume.

The function ϕr�s of (3.4) is a scaled and shifted version of sgmr�s. It was proposed in [263] to

prevent the adaptation process from stopping if αkpnq becomes too large or too negative. We

should notice that ϕrα�s � 1, ϕr0s � 0.5, and ϕr�α�s � 0. In the literature, α� � 4 is usually

adopted [263]. For compactness, henceforth we shall write ϕrαkpnqs simply as ϕkpnq.

By taking the derivative of (3.3) with respect to αkpnq, we obtain the following stochastic

gradient descent rule:

αkpn�1q�αkpnq � µζϕ1kpnq
��¸

iPNk

cikpnqe2
i pnq�βζkpnq

�� , (3.5)

where µζ ¡ 0 is a step size and

ϕ1kpnq≜
dsζkpnq
dαkpnq �

sgmrαkpnqst1�sgmrαkpnqsu
sgmrα�s�sgmr�α�s . (3.6)

It is interesting to notice that although we used sζkpnq in the derivation of the algorithm, it

does not have to be calculated explicitly, since it does not arise in (3.9). Instead, only ζkpnq and
dsζkpnq
dαkpnq appear. The latter can be stored in a look-up table, and the former is related to αkpnq by

ζkpnq �

$'&'%1, if αkpnq ¥ 0,

0, otherwise
, (3.7)

as can be seen from (3.2) and (3.4). To ensure the sampling of the nodes in the transient phase,

the idea is to initialize the sampling algorithm with αkp0q � α� for k � 1, � � � ,V .

We remark that we do not take the partial derivative of ζkpnq with respect to αkpnq into

Proposed algorithms 63

account in the derivation of (3.5). Otherwise, we would obtain

αkpn�1q�αkpnq � µζ

$&%ϕ1kpnq
��¸

iPNk

cikpnqe2
i pnq�βζkpnq

��� β
2
δrαkpnqs

,.- . (3.8)

This is due to the fact that
Bζkpnq
Bαkpnq � δrαkpnqs,

as can be seen from (3.7), where δr�s denotes the Dirac delta function, and sζkpnq � 1
2

if αkpnq �
0. Therefore, if we did incorporate the term�β

2
δrαkpnqs into the algorithm, its effect would be to

set αkpn�1q � �α� whenever αkpnq � 0, due to the imposed constraint that αkpnq P r�α�, α�s.
However, we should notice that during a normal execution of the algorithm with αkp0q � α�,

the probability of obtaining exactly αkpnq � 0 at any iteration is zero. In other words, under

normal conditions, this term is equal to zero with probability one. For this reason, we have

opted to neglect it in (3.5).

Equation (3.5) cannot be used for sampling since it requires the errors to be computed to

decide if the nodes should be sampled or not, which is contradictory. To address this issue, we

replace eipnq in (3.5) by its latest measurement we have access to, which is denoted by εipnq.
When the node is sampled, εipnq�eipnq. Otherwise, it is kept fixed, i.e., εipnq � εipn � 1q. We

thus obtain

αkpn�1q�αkpnq � µζϕ1kpnq
��¸

iPNk

cikpnqε2
i pnq�βζkpnq

�� . (3.9)

Equation (3.9) is the foundation of the adaptive sampling mechanism. In conjunction

with (3.1), it leads to an adaptive-sampling version of the dNLMS algorithm, named as adaptive-

sampling diffusion NLMS (AS-dNLMS). It is summarized as Algorithm 5. Since (3.9) depends

only on the estimation error at each sampled node, the proposed sampling technique can be

extended to any adaptive diffusion algorithm.

The proposed mechanism reduces the number of sampled nodes in steady state, decreasing

the computational cost. If β is chosen appropriately, this reduction does not occur in the transient

and the adaptive-sampling version of the algorithm maintains the same convergence rate as that

of the original with no sampling mechanism. This comes at the expense of a slight increase

of the cost during the transient, since the sampling algorithm requires the computation of an

additional update equation per node per iteration. Furthermore, we should mention that when

Proposed algorithms 64

Algorithm 5 The ATC AS-dNLMS Algorithm.

1: % Initialization - for each node k � 1, � � � ,V, select a step size rµk, a regularization factor
δr, and combination weights cik satisfying (2.10) for i � 1, � � � ,V, and set ψkp0q Ð 0M,
wkp0q Ð 0M, αkp0qÐα�, ζkp0qÐ1, and εkpnqÐ0

2: for n � 1, 2, � � � do
3: % Adaptation Step
4: for k � 1, � � � ,V do
5: if αkpnq ¥ 0 then
6: ζkpnq Ð 1
7: else
8: ζkpnq Ð 0
9: end if

10: if ζkpnq � 1 then
11: Update ukpnq
12: % Calculating the estimation error:
13: ekpnq Ð dkpnq � uT

k pnqwkpn � 1q
14: % Updating εk:
15: εkpnq Ð ekpnq
16: % Calculating the normalized step size µkpnq:
17: µkpnq Ð rµk

δr�}ukpnq}2

18: % Adapting the local estimate ψkpnq:
19: ψkpnq Ð wkpn � 1q � µkpnqekpnqukpnq
20: else
21: ψkpnq Ð wkpn � 1q
22: end if
23: end for
24: % The nodes ψ and ε to their neighbors
25: % Combination Step
26: for k � 1, � � � ,V do
27: % Forming the combined estimate wkpnq and updating αk:
28: wkpnq Ð 0M

29: αkpn � 1q Ð αkpnq
30: for i P Nk do
31: wkpnq Ð wkpnq � cikψipnq
32: αkpn � 1q Ð αkpnq � µζϕ1kpnqrcikε

2
i pnq � βζkpnqs

33: end for
34: end for
35: end for

the node i is sampled, it is required to transmit ε2
i pnq � e2

i pnq to its neighbors. Nonetheless, this

information can be sent bundled with the local estimates ψi so as to not increase the number of

transmissions.

Finally, we remark that the Algorithm 5 can be implemented in conjunction with any rule

for the selection of combination weights. If an adaptive scheme for such selection is employed,

cik should be replaced by cikpnq, and the update equations of the combination weights should

Proposed algorithms 65

also be included in Algorithm 5. Particularly, if the ACW method of Table 1 is considered

in conjunction with AS-dNLMS and the sampling of node k ceased for a long period of time,

the sampling mechanism could potentially harm the update of the combination weights. This

occurs since in this case pσkk could tend toward zero in (2.23) due to ζk being equal to zero

in (3.1). To avoid this, for j� k, we replace ψ jpn � 1q in (2.23) by sψkpn � 1q ≜ ζkpnqψkpn �
1q � r1 � ζkpnqssψkpnq.

3.1.1 The Adaptive Sampling Algorithm as a Censoring Strategy

With a very simple modification, the proposed adaptive sampling mechanism can also be

used as a censoring strategy. This alternate version of AS-dNLMS is obtained by not updating

ψk at all when node k is not sampled. In other words, instead of using (3.1), we apply

ψkpn � 1q � r1�ζkpnqsψkpnq � ζkpnq
�
wkpnq�µkpnqukpnqekpnq

�
. (3.10)

Assuming that the nodes can store past information from their neighbors, this allows us

to cut the number of communications between nodes, since in this case ψk and εk remain static

when ζk�0 and there is no need for node k to retransmit them. Thus, when node k is not sampled

in this version of the algorithm, it only receives data and carries out (2.12b), and can therefore

turn its transmitter off. This version of the proposed algorithm is named as adaptive-sampling-

and-censoring diffusion NLMS (ASC-dNLMS), and it features a lower energy consumption as

well as a computational cost reduction in comparison with the original dNLMS algorithm. Its

pseudocode is identical to that of Algorithm 5, except for lines 20 and 21, which simply do not

exist in this version.

3.1.2 Theoretical Analysis

In the current section, we conduct a theoretical analysis of the proposed sampling mecha-

nism. In Sec. 3.1.3, we show how to choose β so as to ensure that the nodes cease to be sampled

during steady state. Then, in Sec. 3.1.4 we study how its choice influences the expected number

of sampled nodes per iteration. Finally, in Sec. 3.1.5, we analyze how fast the nodes cease to be

sampled depending on the choice for µζ , and how to select this parameter appropriately based

on that information.

Proposed algorithms 66

3.1.3 The parameter β and its effects on the algorithm

The parameter β plays a crucial role in the behavior of the AS-dNLMS. It influences the

expected number of sampled nodes during steady state, and determines when the sampling

mechanism begins to act.

Firstly, we study how to choose β so that we can ensure that every node will cease to be

sampled at some point during steady state. To do so, we examine (3.9) while node k is being

sampled. In this case, ε2
i pnq and βζkpnq can be replaced by e2

i pnq and β, respectively. Then,

subtracting αkpnq from both sides in (3.9) and taking expectations, we get

Et∆αkpnq|αkpnq ¥ 0u � µζE
$&%ϕ1kpnq

��¸
iPNk

cikpnqe2
i pnq � β

��,.- . (3.11)

where ∆αkpnq ≜ αkpn�1q � αkpnq. To make the analysis more tractable, ϕ1kpnq and the term

between brackets in (3.11) are assumed to be statistically independent. Simulation results sug-

gest it is a reasonable approximation. Furthermore, for simplicity, we consider henceforth in

our analysis that the combination weights are static and deterministic. Thus, we can write

Et∆αkpnq|αkpnq ¥ 0u � µζEtϕ1kpnqu
��¸

iPNk

cikEte2
i pnqu � β

�� . (3.12)

In order to stop sampling node k, αkpnq should decrease along the iterations until it becomes

negative. Since ϕ1kpnq is always positive, to enforce Et∆αkpnq|αkpnq ¥ 0u to be negative, βmust

satisfy

β ¡
¸
iPNk

cikEte2
i pnqu. (3.13)

Assuming that the order of the adaptive filter is sufficient and that µ̃k, k � 1, � � � , V, are

chosen properly so that the gradient noise can be disregarded, it is reasonable to assume that,

during steady state, Ete2
i pnqu � σ2

vi
, which leads to

σ2
min ¤

¸
iPNk

cikEte2
i pnqu ¤ σ2

max, (3.14)

where

σ2
min ≜ min

i
σ2

vi
(3.15)

Proposed algorithms 67

and

σ2
max ≜ max

i
σ2

vi
(3.16)

for i�1, � � � ,V . Thus, the condition

β ¡ σ2
min (3.17)

is necessary (but not sufficient) if we wish to stop sampling the nodes at some point during

steady state. On the other hand,

β ¡ σ2
max (3.18)

is a sufficient (although not necessary) condition to ensure a reduction in the number of sampled

nodes. Moreover, this ensures that Et∆αkpnq|αkpnq ¥ 0u 0, which means that, if a certain

node is being sampled, it will eventually cease to be after some iterations. This is true even

though the value of αkpn � 1q may occasionally increase at certain time instants depending

on the realization. When σ2
min � σ2

max, i.e., every node is subject to the same level of noise

power, (3.17) and (3.18) coincide and form a necessary and sufficient condition.

Moreover, given a certain value of β, we can analyze when the sampling mechanism will

begin to act in terms of the MSE. From (3.12) we observe that Et∆αkpnq|αkpnq ¥ 0u ¥ 0

as long as
°

iPNk
cikpnqEte2

i pnqu ¥ β. Since we do not allow αkpnq to become greater than

α�, we conclude that Etαkpnqu � α� for k � 1, � � � ,V as long as MSEminpnq ¡ β, where

MSEminpnq ≜ mini�1,��� ,V Ete2
i pnqu. In terms of mean-square deviation, this can be translated as

follows. Applying the independence theory [125] to the estimation errors eipnq, i � 1, � � � ,V
and assuming that uipnq is wide-sense stationary and statistically independent from wipnq, after

some algebraic manipulations we can conclude that Etαkpnqu�α� as long as

MSDminpnq ¡
β� σ2

min

mini�1,��� ,V E
!∥∥∥uipnq

∥∥∥2) ,
where MSDmin ≜mini�1,��� ,V Et

∥∥∥wopnq�w jpnq
∥∥∥2u denotes the lowest MSD in the network. This

indicates that, in the mean, the sampling mechanism does not act as long as MSDmin remains

greater than a threshold that increases with β. Consequently, we can be sure that no node will

cease to be sampled in the mean during that period. Furthermore, the higher the value of β we

adopt, the sooner Etαkpnqu begins to decrease for k � 1, � � � ,V , and thus the sooner the nodes

cease to be sampled for a fixed step size µζ .

Proposed algorithms 68

3.1.4 The expected number of sampled nodes

Based on the previous section, we can estimate upper and lower bounds for the expected

number Vs of sampled nodes in steady state. For this purpose, we consider each ζkpnq as an

independent Bernoulli random variable during steady state that is equal to one with probability

pζk or to zero with probability 1�pζk for k�1, � � � ,V , with 0¤ pζk ¤1. Thus,

V pζmin ¤ EtVsu ¤ V pζmax , (3.19)

where pζmin and pζmax are upper and lower bounds for pζk , k � 1, � � � ,V .

It is useful to note that the sampling mechanism exhibits a cyclic behavior in steady state.

After all, the algorithm eventually resumes the sampling of the nodes that are not currently being

sampled, and ceases to sample nodes that are currently sampled. Hence, we could approximate

pζk by the expected “duty cycle” of the mechanism, i.e.,

ppζk � η̆k

η̆k � ηk
, (3.20)

where η̆k denotes the expected number of iterations per cycle in which node k is sampled and ηk

is the expected number of iterations in which it is not. Since we are only interested in estimating

pζmin and pζmax , we do not need to evaluate (3.20) for every k. Instead, we only need to estimate

upper and lower bounds for η̆k and ηk, which we respectively denote by η̆max, η̆min, ηmax and ηmin.

For the sake of brevity, in this section we omit the intermediate calculations and skip to the

final results concerning the estimation of these parameters. Nonetheless, a complete demon-

stration is provided in Appendix A.

Assuming that we can write

σ2
min ¤

¸
iPNk

cikEtε2
i pnqu ¤ σ2

max (3.21)

for k � 1, � � � ,V during steady state, we can estimate η̆max by finding the maximum number

of iterations any node can remain sampled in the mean. Considering a worst-case scenario, as

well as the fact that every node must be sampled at least once during each cycle, and assuming

that (3.18) is satisfied, we obtain after some approximations

η̆max � max

#
σ2

max

β� σ2
max
, 1

+
. (3.22)

Proposed algorithms 69

Following an analogous procedure, the estimated lower bound η̆min of η̆k can be obtained as

η̆min � max

#
σ2

min

β� σ2
min

, 1

+
. (3.23)

Lastly, for ηmax and ηmin, we respectively obtain

ηmax � max

#
β� σ2

min

σ2
min

, 1

+
(3.24)

and

ηmin � max

#
β� σ2

max

σ2
max

, 1

+
. (3.25)

Thus, using (3.20), we can now estimate pζmin and pζmax as

ppmin � η̆min

η̆min � ηmax
(3.26)

and

ppmax � η̆max

η̆max � ηmin
. (3.27)

When β 2σ2
min, we observe from (3.23) and (3.24) that η̆min � σ2

min{pβ� σ2
minq and

ηmax � 1. On the other hand, for β ¥ 2σ2
min, (3.23) and (3.24) yield η̆min � 1 and ηmax �

pβ� σ2
minq{σ2

min, respectively. In both cases, making these replacements in (3.26), we get

ppmin �
σ2

min

β
. (3.28)

Analogously, from (3.22), (3.25), and (3.27) we obtain

ppmax � σ
2
max

β
. (3.29)

Thus, replacing (3.28) and (3.29) in (3.19), we finally get

V
σ2

min

β
¤ EtVsu ¤ V

σ2
max

β
. (3.30)

For β σ2
max, (F.20) yields an upper bound that is greater than the total number V of nodes,

which is not informative. However, we can generalize it for all β ¡ 0 by recasting it as

V � min

#
1,
σ2

min

β

+
¤EtVsu¤V � min

#
1,
σ2

max

β

+
. (3.31)

Proposed algorithms 70

Replacing β σ2
min in (3.31) implies EtVsu�V , which agrees with (3.17) being a necessary

condition to ensure a reduction in the number of sampled nodes. In fact, it is an even stronger re-

sult. Taking into account the fact that Vs is a discrete random variable that cannot be greater than

V , this implies that the probability of having Vs V is zero in this case. Analogously, replacing

β¡σ2
max we conclude that EtVsu V , which is in accordance with (3.18) being a sufficient con-

dition. Moreover, the higher the parameter β, the smaller the amount of nodes sampled in the

mean during steady state, as expected. Since there is a trade-off between the tracking capability

and the gains in terms of computational cost provided by the sampling mechanism, we should

care not to choose excessively high values for β, since they can deteriorate the performance in

non-stationary environments. Simulation results suggest that if β¤5σ2
max, the good behavior of

the algorithm is maintained. Moreover, the upper and lower bounds coincide when σ2
min�σ2

max.

Finally, the step size µζ ¡ 0 does not affect the number of sampled nodes in the mean.

3.1.5 Choosing the step size µζ

In this section, we show how to choose a proper value for the parameter µζ . To do so, we

study how fast the nodes cease to be sampled (i.e., how fast we arrive at Etαkpnqu¤0) after the

algorithm’s initialization with αkp0q � α� for k � 1, � � � , V . From (3.12) and (3.14), we can

write

Et∆αkpnqu ¤ µζEtϕ1kpnqupσ2
max � βq. (3.32)

Since in this case we consider αkpnq P r0, α�s, approximating ϕ1rαkpnqs by its first-order Taylor

expansion around αkpnq � 0 is not a suitable approach. Instead, we now approximate ϕ1kpnq
in that interval by a straight line that crosses the points p0, ϕ10q and pα�, ϕ1

α�
q, in which ϕ10 and

ϕ1
α�

respectively denote the value of ϕ1kpnq evaluated at αkpnq � 0 and αkpnq � α�. This

approximation is given by

ϕ1kpnq � ϑ1αkpnq � ϕ10, (3.33)

where ϑ1 �
ϕ1
α�
� ϕ10
α�

. For α��4, this is a good approximation since its mean-squared error in

r0, α�s is of the order of 5 � 10�4.

Replacing (3.33) in (3.32), we obtain

Etαkpn � 1qu ⪅ Etαkpnqup1 � ϑ1ϑ2q � ϕ10ϑ2, (3.34)

where ϑ2 � µζpσ2
max � βq. Since we assumed Etαkpnqu � α� during transient, we denote the

Proposed algorithms 71

first iteration of the steady state by n0. Then, considering Etαkpn0qu�α� in (3.34) and applying

it recursively, we conclude that ∆n iterations after the beginning of the steady state, we should

obtain

Etαkpn0�∆nqu⪅α�p1�ϑ1ϑ2q∆n�ϕ10ϑ2

∆n�1̧

ni�0

p1�ϑ1ϑ2qni . (3.35)

After some algebraic manipulations, we arrive at

Etαkpn0�∆nqu ⪅ pϑ1α
� � ϕ10qp1 � ϑ1ϑ2q∆n � ϕ10

ϑ1
. (3.36)

Since we are interested in studying how fast we arrive at Etαkpnqu ¤ 0 depending on our choice

of µζ , we set Etαkpn0�∆nqu to zero in (3.36). Thus, for a desired value of ∆n and β¡σ2
max, we

should choose

µζ ¡ α�

pβ� σ2
maxqpϕ10 � ϕ1α�q

���� ϕ1o
ϕ1
α�

� 1
∆n

� 1

��� . (3.37)

From (3.37), we observe that the smaller the ∆n, the larger the value of µζ , which is reasonable.

Moreover, as β approaches σ2
max, (3.37) yields increasingly large values for µζ . Since (3.18) is a

sufficient condition, the nodes may cease to be sampled even for β¤σ2
max. When β�σ2

max and

σ2
min σ2

max, (3.37) may overestimate the value of µζ required to cease the sampling of the nodes

within ∆n iterations. Nonetheless, this does not invalidate (3.37), since we are only interested

in ensuring that the sampling will cease in at most ∆n iterations in the mean.

3.1.6 Simulation Results

In this section, we present simulation results to illustrate the behavior of the proposed sam-

pling mechanism and to validate the results of Section 3.1.2. The results presented were ob-

tained over an average of 100 independent realizations. For better visualization, we filtered the

curves by a moving-average filter with 64 coefficients, unless otherwise stated.

We consider the ATC dNLMS algorithm and a heterogeneous network with 20 nodes. Half

of the them use rµk � 0.1, while the other half uses rµk � 1, as depicted in Fig. 16(a). The

network was generated randomly according to an Erdös-Renyi model [47], and the average

degree of the nodes is approximately 6.1. Furthermore, each node k is subject to a different

noise variance σ2
vk

, as shown in Fig. 16(b). For the optimal system wo, we consider a random

vector with M� 50 coefficients uniformly distributed in r�1,1s, which was the same for every

realization.

Proposed algorithms 72

(a)

1 5 10 15 20

Node k

0.08

0.4

σ
2 v k

(b)

Figure 16: (a) Network used in the simulations of Sections 3.1.6.1 to 3.1.6.4. (b) Noise variance
σ2

vk
for k � 1, � � � ,V .

We use δµ�10�5 as a regularization factor in (2.53) and the ACW algorithm for the update

of the combination weights. To avoid potential problems due to a division by zero in the ACW

algorithm, we also added the regularization factor δc � 10�8 to pσ2
ikpnq before calculating its

reciprocal, similarly to what was done in Sec. 2.2.7. As a performance indicator, we adopt the

NMSD. Moreover, in some situations we also analyze the network mean-square-error (NMSE),

given by

NMSEpnq � 1
V

V̧

k�1

Ete2
kpnqu. (3.38)

This subsection is divided as follows. In 3.1.6.1, we compare AS-dNLMS with a random

sampling technique. The theoretical results of Section 3.1.2 are validated in Sec. 2.2.2, and in

Sec. 3.1.6.3 we compare ASC-dNLMS to other censoring techniques. Next, in Sec. 3.1.6.4,

we study the tracking capability of the proposed techniques. It is worth noting that in these

subsections the input signal ukpnq is white Gaussian with σ2
uk

for k � 1, � � � ,V . Finally, in

Sec. 3.1.6.3, we employ AS-dNLMS in the context of graph distributed adaptive filtering with

the real-world temperature dataset considered in Sec. 2.2.7.

3.1.6.1 Comparison with Random Sampling

Firstly, we compare the behavior of AS-dNLMS to that of the original dNLMS with a ran-

dom sampling technique and different numbers of sampled nodes Vs P t5, 10, 15, 20u. In this

case, Vs nodes are randomly selected every iteration to be sampled, whereas the remainder of

the network is not sampled. It is worth noting that the case in which Vs � 20 corresponds to

Proposed algorithms 73

a scenario in which every node is sampled at every iteration. Moreover, we simulate a change

in the environment by flipping the parameter vector wo in the middle of each realization. We

adjusted AS-dNLMS to obtain approximately the same computational cost as that of dNLMS

with Vs�5 nodes sampled while maintaining a good performance. For this purpose, we adopted

β � 1.6σ2
max and µζ � 0.06 based on preliminary simulation results. Figs. 17(a) and 17(b)

present respectively the NMSD performance and the average number of multiplications per

iteration. We observe that the more nodes are sampled during the transient, the faster the con-

vergence rate. Moreover, we notice that AS-dNLMS is able to detect the change in the optimal

system and, since all nodes are sampled during the transients, it converges as fast as the dNLMS

algorithm with all nodes sampled. It is interesting to note that the sampling of less nodes per

iteration leads to a slight reduction of the steady-state NMSD in comparison with the original

algorithm. The dNLMS algorithm with Vs � 5 nodes sampled achieves a steady-state NMSD

that is approximately 1.3 dB lower than the one presented by the version with all nodes sam-

pled. In its turn, AS-dNLMS reaches a steady-state NMSD that is 0.3 dB higher than that of the

algorithm with five nodes sampled, but with a much faster convergence rate. This phenomenon

will be studied in Chapter 4. Thus, by reducing the sampling rate during steady state, there may

be a slight reduction in the NMSD. However, we remark that this reduction can be considered

marginal in the case of Fig. 17(a). From Fig. 17(b) we observe that during the transients the

computational cost of AS-dNLMS is slightly higher than that of the dNLMS algorithm with all

nodes sampled, but decreases significantly in steady-state. A similar behavior is observed for

the number of sums.

3.1.6.2 Validation of the Theoretical Analysis

In order to validate (3.31), we also tested the AS-dNLMS algorithm in a stationary environ-

ment with different values of β ¥ σ2
min and three methods for the selection of the combination

weighs: the Uniform and Metropolis rules [1], and the ACW algorithm [215]. Two scenarios

were considered: one with the noise power in the network distributed as in Fig. 16b, and another

where σ2
vk
� 0.4 for k � 1, � � � ,V . The results are shown in Fig. 18(a) and 18(b), respectively.

For the ease of visualization, they are presented in terms of βr, defined as βr ≜ β{σ2
max. Along

with the experimental data, the predicted upper and lower bounds pVsmax and pVsmin are presented

for each βr using dashed lines. We should notice that these bounds coincide in Fig. 18(b), since

σ2
min�σ2

max in this case. Moreover, in Fig. 18(a), the upper bound remains fixed at Vsmax �V�20

Proposed algorithms 74

−30

−20

−10

0

10

20

(a
)

N
M

S
D

(d
B

)

-33

-29

-33

-29

0 20 40 60 80 100

Iterations (×103)

1.4

1.55

1.7

(b
)
⊗
×

1
0

4

−50

0

Vs=20 Vs=15 Vs=10 Vs=5 AS-dNLMS

Figure 17: Comparison between dNLMS with Vs nodes randomly sampled per iteration and
AS-dNLMS (β�1.6σ2

max, µζ�0.06). (a) NMSD curves and (b) Multiplications per iteration.

for β ¤ σ2
max. We also observe from Fig. 18 that the higher β is, the less nodes are sampled

in both scenarios, as expected. Furthermore, the experimental data lie between the theoretical

bounds for all combination rules and for all values of βr in Fig. 18(a). On the other hand, from

Fig. 18(b) we notice that the theoretical model slightly overestimates the number of sampled

nodes for 1 βr ¤ 20. One possible explanation for this resides in the fact that the Assump-

tion (3.21) translates to Etε2
kpnqu � σ2

max for k � 1, � � � ,V in the case of Fig. 18(b). However,

since ζkpnq and εkpnq are not independent, Etε2
kpnqu , σ2

vk
� σ2

max. In general, we observe

that Etε2
kpnqu ¤ σ2

vk
, which can be attributed to εk remaining at a fixed value for possibly long

periods of time, which tends to reduce its variance. Furthermore, the difference between the

theoretical and analytical results in Fig. 18(b) is especially noticeable for the ACW algorithm.

This can be attributed to the fact that the analysis presented in Section 3.1.2 was derived con-

sidering static combination weights, which is not the case of ACW. Nonetheless, the scenario

considered in Fig. 18 is not realistic, since some level of noise power discrepancy across the net-

work is expected in most environments [1, 4–6, 185]. Lastly, in both Fig. 18(a) and Fig. 18(b),

the adoption of the ACW algorithm led to a smaller number of sampled nodes in comparison

with the Uniform and Metropolis rules.

Proposed algorithms 75

0.2 1 10 100

20

15

10

5

0

E
{V

s
}

(a)ACW

Metropolis

Uniform

Theoretical Bounds

1 10 100
βr = β/σ2

max

20

15

10

5

0

E
{V

s
}

(b)

Figure 18: Theoretical bounds and average number of nodes sampled by AS-dNLMS with
three combination rules as a function of β ¥ σ2

min. (a) σ2
vk

as in Fig. 16. (b) σ2
vk
� 0.4 for

k�1, � � � ,V .

In Fig. 19, we test (3.37) by using it to set the step size µζ for different values of β with

∆n � 3000. In Fig. 19(a) we show the NMSD curves, in Fig. 19(b) the number of sampled

nodes per iteration, and in Fig. 19(c) the NMSE.

From Figs. 19(b) and 19(c) we observe that, before the abrupt change in the optimal system,

the number of sampled nodes stabilizes at approximately the same time for all βr ¡ 1.1. For

βr � 1.1, we can notice that (3.37) slightly overestimates µζ . This is expected for βr ⪆ 1, as

discussed in Section 3.1.5. In this case, AS-dNLMS ceased to sample the nodes before reaching

the steady state in terms of NMSD, which compromised the convergence rate. This illustrates

the importance of a proper choice for µζ as well as β. Nonetheless, since the sampling of the

nodes ceased in less than ∆n iterations after the beginning of the steady state in terms of NMSE,

the results obtained support the validity of (3.37). However, this shows that some care must be

taken when using (3.37) for β ⪆ σ2
max. Lastly, we observe that the sampling of less nodes leads

to a slight reduction in the steady-state NMSD, as in Fig. 17(a).

In Fig. 20 we repeated the experiments of Fig. 19 with higher values of βr. We observe that

Proposed algorithms 76

20

10

0

-10

-20

-30

(a
)

N
M

S
D

(d
B

)

-31.5

-30.5

-31.5

-30.5

0

5

10

15

20

(b
)
V
s
(n

)

0 10 20 30 40

Iterations (×103)

-10

0

10

(c
)

N
M

S
E

(d
B

)

∆n↔
0 5 10 15 20 25 30

Iterações (×103)

-40

-30

-20

-10

0

10

M
S
D

(d
B

)

βr=1.1 βr=1.6 βr=2.1 βr=2.6 βr=3.1

0 5 10 15 20 25 30

Iterações (×103)

3,5

5,5

7,5
⊗
×

1
0

3

Figure 19: Simulation results obtained with 1.1σ2
max ¤ β¤ 3.1σ2

max and µζ adjusted by (3.37)
for each case. (a) NMSD curves, (b) Number of sampled nodes per iteration, and (c) NMSE
curves.

the number of sampled nodes stabilizes almost simultaneously for all values of βr before the

abrupt change and that the performance of AS-dNLMS is maintained before the change in the

optimal system. Nonetheless, after the change occurs, the NMSD is affected for βr ¥ 8. The

higher the parameter β, the more intense the deterioration in performance. The difference in the

behavior of the algorithm before and after the change in the optimal system can be explained by

the initialization with αkp0q � α� for k � 1, � � � ,V . In contrast, right before the abrupt change,

we have αkpnq ! α�. Thus, the algorithm ceases to sample the nodes earlier in this case, as can

be seen in Fig. 20(b). We recall that β ¤ 5σ2
max seems to be a safe interval for the choice of β,

according to various simulations results.

Proposed algorithms 77

20

10

0

-10

-20

-30

(a
)

N
M

S
D

(d
B

)

βr=7

βr=8

βr=9

βr=10

βr=20

0

5

10

15

20

(b
)
V
s
(n

)

0 10 20 30 40

Iterations (×103)

−10

0

10

(c
)

N
M

S
E

(d
B

)

∆n↔

Figure 20: Simulation results obtained with 7σ2
max ¤ β¤ 20σ2

max and µζ adjusted by (3.37) for
each case. (a) NMSD curves, (b) Number of sampled nodes per iteration, and (c) NMSE curves.

3.1.6.3 Application as a Censoring Technique

In this section, we test the ASC-dNLMS algorithm and compare it to other techniques found

in the literature, namely, the ACW-Selective (ACW-S) algorithm of [72] and the energy-aware

diffusion algorithm (EA-dNLMS) of [73], all arranged according to an ATC configuration. As-

suming that the nodes can broadcast their data to all of their neighbors at once, we present in

Fig. 21(a) the NMSD curves, in Fig. 21(b), the number Vtpnq of transmitting nodes per iter-

ation, i.e. the amount of broadcasts in the network, and in Fig. 21(c) the average number of

multiplications per iteration. It is worth noting that, in the simulations of this section, we do not

consider the AS-dNLMS algorithm due to the fact that this version does not restrict the amount

of data transmitted by the nodes, unlike ASC-dNLMS.

The algorithms were adjusted to achieve approximately the same level of steady-state

NMSD. Table 4 shows the adopted values for the parameters of each solution. For ease of

reference, we have maintained the notation adopted in [72, 73] for the respective parameters

Proposed algorithms 78

of each solution. In this regard, it is worth noting that EA-dNLMS presents a high number of

parameters, which may be difficult to adjust. We consider the version of EA-dNLMNS that

allows node k to receive and combine the estimates from its neighbors even when it is not trans-

mitting [73], and we adopt a normalized step size following (2.53). For comparison, we also

present results obtained with the original dNLMS and with the noncooperative case.

−30

−20

−10

0

10

20

(a
)

N
M

S
D

(d
B

)

dNLMS

Non-cooperative

ACW-S [72]

EA-dNLMS [73]

ASC-dNLMS -31

-28

0

5

10

15

20

(b
)
V
t
(n

)

0 5 10 15 20 25 30

Iterations (×103)

1.0

1.35

1.7

(c
)
⊗
×

1
0

4

Figure 21: Comparison between the ASC-dNLMS, ACW-S and EA-dNLMS algorithms. The
parameters adopted are shown in Table 4. (a) NMSD curves. (b) Number of broadcasts and (c)
multiplications per iteration.

Unlike AS-dNLMS, which led to a slight reduction in the steady-state NMSD in compari-

son to dNLMS with all nodes sampled, ASC-dNLMS achieves a slightly higher level of NMSD

in steady state in comparison with the original algorithm. The same occurs for the ACW-S and

EA-dNLMS algorithms, as can be seen in Fig. 21(a). We observe that EA-dNLMS presents a

notably slower convergence rate in comparison with ACW-S and ASC-dNLMS, which converge

at a rate similar to that of dNLMS. On the other hand, from Fig. 21 we see that ACW-S utilizes

a comparatively high number of broadcasts, thus saving less energy. We remark that ASC-

dNLMS does require each uncensored node k to transmit e2
kpnq to its neighbors, which means

Proposed algorithms 79

that there is a slight communication overhead in comparison with the other techniques when

the nodes are not censored. However, since e2
kpnq is a scalar, this overhead can be considered

negligible, especially when the number of coefficients M of the local estimates ψk is high. Dur-

ing steady state, both ACW-S and EA-dNLMS transmit more than the proposed ASC-dNLMS,

which maintains all transmissions during the transient but drastically reduces the number of

broadcasts after converging. Thus, the proposed technique saves more energy in steady state

while preserving the convergence rate.

Lastly, it should be noted from Fig. 21(c) that ASC-dNLMS requires approximately the

same number of multiplications per iteration as EA-dNLMS, while leading to 50% less broad-

casts. In comparison with ACW-S, ASC-dNLMS requires 21% more multiplications, but leads

to 81% less broadcasts. This gap in the number of multiplications is due to the fact that ASC-

dNLMS considers the local estimates in the combination step even if they were not updated in

the current iteration. In contrast, ACW-S considers that the neighborhood of each node only in-

cludes its neighbors that have broadcast their estimate in the current iteration. Despite this, we

recall that in censoring applications we are mostly concerned with the number of transmissions,

since they are usually the main responsible for energy consumption in the network [72–74].

Moreover, given the percentage differences, ASC-dNLMS can be deemed an efficient solution

for censoring.

Table 4: Parameters used in the simulations of Fig. 21

ACW-S [72] ET �1, ER�2
EA-dNLMS [73] EAct � 33.5966 � 10�3, ETx � 15.16 � 10�3, Kℓ,1 � 2, Kℓ,2 � 0.5, Kg � 2,

γg�2,γℓ�2, δ�0.5, ρ�0.01, r�2
ASC-dNLMS β�2.1σ2

max, µζ�0.0333

3.1.6.4 Random-Walk Tracking

As can be observed from Fig. 20, increased values of β may hinder the tracking capability

of AS-dNLMS. Thus, in this section, we investigate the behavior of the algorithm in nonstation-

ary environments following a random-walk model, in which the optimal solution wopnq varies

according to

wopnq � wopn � 1q � qpnq, (3.39)

where qpnq is a zero-mean random column vector with length M and autocovariance matrix

Q � EtqpnqqTpnqu independent of any other signal [125, 264]. Moreover, we consider that

Proposed algorithms 80

the vector qpnq is i.i.d. for n � 1, 2, � � � , with a Gaussian distribution such that Q � σ2
qI,

where I denotes the identity matrix. In Fig. 22, we present the results obtained with the AS-

dNLMS algorithm and different values of β as a function of TrrQs. For each βr, we maintained

the corresponding step size µζ used in the simulations of Fig. 19. For comparison, we also

show the results obtained with the dNLMS algorithm with all nodes sampled. In Fig. 22(a), we

present the steady-state levels of NMSD, in Fig. 22(b) the average number of sampled nodes

per iteration, and in Fig. 22(c) the steady-state NMSE. The results presented were obtained

by averaging the data over the last 600 iterations of each realization, after all the algorithms

achieved steady state.

5

0

-5

-10

-15

-20

-25

-30

(a
)

N
M

S
D

(d
B

)

dNLMS

βr = 1.1

βr = 1.6

βr = 2.1

βr = 2.6

0

5

10

15

20

(b
)
V
s
(n

)

10−8 10−7 10−6 10−5 10−4 10−3 10−2

Tr[Q]

−5

0

5

(c
)

N
M

S
E

(d
B

)

Figure 22: Simulation results in a nonstationary environment following Model (3.39). (a)
Steady-state NMSD, (b) Number of nodes sampled per iteration, and (c) Steady-state NMSE.

From Fig. 22(a) we can observe that, in slowly-varying environments (TrrQs � 10�8), the

performance of AS-dNLMS is similar to that of dNLMS with all nodes sampled. However, for

10�7 ¤ TrrQs ¤ 10�3, there is a degradation in performance in comparison with dNLMS. The

higher the parameter β, the more intense this deterioration becomes for a fixed value of TrrQs.
For TrrQs ¤ 10�5 and a fixed β, this deterioration in comparison with dNLMS intensifies with

Proposed algorithms 81

the increase of TrrQs. On the other hand, for TrrQs ¡ 10�5, the difference in performance

begins to decrease as the variations in the optimal system become faster. This can be explained

by analyzing Figs. 22(b) and 22(c). We observe that, when the environment varies slowly or

moderately, the number of nodes sampled by the AS-dNLMS is not significantly affected by the

increase of TrrQs. This occurs since the effects of the changes in the optimal system are small

in comparison with those of the measurement noise for TrrQs 10�5, and thus the NMSE

does not increase noticeably, as seen in Fig. 22(c). However, as these variations become faster,

they begin to affect the estimation error more intensely, and the NMSE starts to increase for

TrrQs ¥ 10�5, leading to a gradual rise in the number of sampled nodes in Fig. 22(b). For

TrrQs � 10�2, the algorithm does not cease to sample any of the nodes for βr ¤ 2.6, and thus

its performance matches that of dNLMS.

Next, we repeated the experiment of Fig. 22 for ASC-dNLMS, ACW-S and EA-dNLMS

with the parameters of Table 4. The results are shown in Fig. 23. We also present the results

obtained with ASC-dNLMS with βr � 1.3 and βr � 0.71, which were respectively adjusted to

lead to the same number of broadcasts as those of EA-dNLMS and ACW-S for TrrQs ¤ 10�6.

Finally, we also show results obtained with the dNLMS algorithm. We observe from Fig. 23(a)

that ASC-dNLMS with βr � 2.1 achieves a performance similar to that of the other solutions

for TrrQs � 10�8 and TrrQs � 10�7. However, it is outperformed for TrrQs ¥ 10�6. It

also employs less transmissions than any other solution in these scenarios. With βr � 1.3,

ASC-dNLMS outperforms EA-dNLMS for TrrQs ¤ 10�7 and TrrQs � 10�4, although its

NMSD is higher for TrrQs � 10�6 and TrrQs � 10�5. With βr � 0.71, ASC-dNLMS out-

performs ACW-S for TrrQs ¤ 10�7, while the opposite occurs for other values of TrrQs. The

results suggest that ASC-dNLMS generally outperforms ACW-S and EA-dNLMS in stationary

or slowly-varying environments while utilizing the same number of transmissions. Moreover,

in these cases it can achieve a comparatively similar performance while transmitting less. How-

ever, ASC-dNLMS must be employed with caution in scenarios in which the optimal system

changes rapidly. Finally, we can control the trade-off between energy saving and performance

by adjusting β.

3.1.6.5 Application in Graph Adaptive Filtering

In this section, we test the proposed sampling algorithm in the same scenario as that of

Sec. 2.2.7. We consider the GSP-based version of the dNLMS and AS-dNLMS algorithms, as

Proposed algorithms 82

-5

-10

-15

-20

-25

-30

(a
)

N
M

S
D

(d
B

)

dNLMS

ACW-S [72]

EA-dNLMS [73]

ASC-dNLMS (βr=2.1)

ASC-dNLMS (βr=1.3)

ASC-dNLMS (βr=0.71)

10−8 10−7 10−6 10−5 10−4

Tr[Q]

0

5

10

15

20

(b
)
V
t
(n

)

Figure 23: Simulation results in a nonstationary environment following Model (3.39) with the
algorithms listed in Table 4. (a) Steady-state NMSD, and (b) Broadcasts per iteration.

described by Eq. (2.50). Moreover, we adopt M � 5 and rµk � 1 for half of the nodes, while the

other half utilizes rµk � 0.1. Finally, we use the ACW algorithm with νkACW � 0.2 and δc�10�5.

We divided our dataset into training and testing sets. The former consists of Ntr. � 3650

measurements from 12/25/2001 to 12/22/2011, which were periodically replicated to form 20

training epochs. During this period, we consider that dkpnq � ukpn � 1q, where ukpnq denotes

the temperature measurement at node k and time instant n. The vector xkpnq is formed as

in (2.49). The testing set consists of the measurements from 12/23/2011 to 12/21/2012. In

this case, we do not have access to the temperatures registered on the following day. To keep

the adaptation going, we use the last estimate of the algorithm as the desired signal. Thus, we

set dkpnq � xT
k pn � 1qwkpn � 1q. As a performance indicator, we adopt the squared relative

reconstruction error (SSRE), given by (2.52) [47]. Similarly to what was done in Sec. 2.2.7, we

converted the temperature to degrees Fahrenheit in our experiments to avoid division by zero

in (2.52).

It should be noted that, in this scenario, σ2
max is not known a priori, making it hard to

choose β beforehand. To set β, we ran AS-dNLMS like the original dNLMS in the first epoch,

calculated the average NMSE during the last 730 days, and multiplied the result by 3. Then, we

Proposed algorithms 83

used (3.37) with ∆n�9Ntr. to set µζ , and ran the algorithm normally as in Table 5.

In Figs. 24(a) and (b) we present the SRRE obtained in the training and testing periods,

respectively. Similarly, Figs. 24(c) and (d) respectively show the number of multiplications per

iteration during training and testing. For the ease of visualization, and due to the noisy nature

of the data, the curves of Figs. 24(a) and (c) were filtered by a moving-average filter with 1024

coefficients. Nonetheless, in Fig. 24(a) we also show the envelope of the unfiltered curves as

dashed lines.

We can observe that AS-dNLMS and the original dNLMS algorithm achieved similar per-

formances during both periods. From the envelope displayed in Fig. 24(a) and the curves of

Fig. 24(b), we can see that the SRRE of both algorithms during the test phase is slightly higher

than the one observed during training, as expected. Furthermore, from Fig. 24(c) we see that

the computational cost of AS-dNLMS remains slightly higher than that of dNLMS during tran-

sient, but falls significantly after converging. In the test phase, AS-dNLMS sampled 20 nodes

on average per iteration, and performed 45% less multiplications than the original dNLMS

while preserving the performance. Considering both the training and test phases, AS-dNLMS

reduced the number of multiplications by 17%.

−35

−30

−25

−20

−15

−10

(a
)

S
R

R
E

(d
B

)
–

T
ra

in
. dNLMS

AS-dNLMS

Envelope

-24

-21

−35

−30

−25

−20

−15

−10

(b
)

S
R

R
E

(d
B

)
–

T
es

t

0 2 4 6

Iterations (×104)

1

1.5

2

2.5

(c
)
⊗
×

10
4

–
T

ra
in

.

0 100 200 300

Iterations

1

1.5

2

2.5

(d
)
⊗
×

10
4

–
T

es
t

Figure 24: Comparison between dNLMS and AS-dNLMS (β � 80.49, µζ � 2.5 � 10�5). (a)
and (b): SRRE in the training and testing periods, respectively. (c) and (d): Multiplications per
iteration during training and testing, respectively.

Lastly, as an illustrative example, in Fig. 25 we present the estimates provided by AS-

dNLMS for the temperature at the stations of Fig. 26 indicated by the arrows, along with the

measured data at these locations. We observe that the estimates of the algorithm follow closely

Proposed algorithms 84

the patterns of the real data even with a reduced number of sampled nodes, as desired.

0 100 200 300

Iterations

40

50

60

70

80

90

T
em

p
er

a
tu

re
(◦

F
)

Real Data

AS-dNLMS

Figure 25: Comparison between the temperature measured at two stations and the estimates
provided by AS-dNLMS for them.

40

45

50

55

60

65

70

75

80

85

Figure 26: Daily average temperature measured by 100 weather stations on 06/21/2002 (�F).
Circled nodes use rµk �1, whereas the others use rµk �0.1. Each edge is a communication link.
The arrows point to the stations whose data are used in Fig. 13.

3.2 Modifications for the AS Algorithm

In Sec. 3.1.6, we attested the good behavior of the AS-dNLMS algorithm in a wide range

of scenarios, including a simulation with real-world data. However, we also noticed that its

tracking capability may be deemed as a potential weakness. This is especially clear in the

simulations of Sec. 3.1.6.4, in which the optimal system varies over time according to a random-

walk model. Moreover, although the algorithm responds quickly to the abrupt change in the

Proposed algorithms 85

environment in the simulations of Sec. 3.1.6.1, there are scenarios in which an abrupt change

can lead to a deterioration in its performance – for instance, when the SNR decreases as a result

of the modifications. An example is shown in Fig. 28, considering the network of Fig. 27, which

has V � 25 nodes, and the Scenario 1 described in Sec. 3.2.6. For comparison, we included

the results of the original dNLMS algorithm with all 25 nodes sampled, and with the sampling

technique with Vs� 5 nodes sampled randomly per iteration. In Fig. 28(a) we present NMSD,

and in Figs. 28(b) and (c) the number of nodes sampled and of multiplications per iteration,

respectively. For the parameters of the AS-dNLMS algorithm, we selected β� 3.8σ2
max, which

in this scenario yields β � 1.9, and µζ � 0.0045. At the middle of each experiment, we

abruptly modify the system to be identified in such a way that the Signal-to-Noise Ratio (SNR)

drops. We can observe that the AS-dNLMS algorithm behaves well before the abrupt change

occurs. Initially, the sampling of the nodes is maintained, and thus the algorithm preserves

the convergence rate of the original dNLMS solution. However, after the abrupt change, the

convergence rate of AS-dNLMS becomes slower than that of the dNLMS with Vs � 5 nodes

sampled per iteration. As can be seen from Fig. 28(b), AS-dNLMS does slightly increase the

number of nodes sampled per iteration after the change in the environment, but this increase is

insufficient to improve the convergence rate.

Figure 27: Example of an adaptive diffusion network and its inputs. The neighborhood of node
1 is highlighted in red.

This problem can be aggravated when one of the nodes of the network is much noisier

than the others. In this scenario, it may be challenging to select the parameters of the AS-

dNLMS algorithm, since from Eq. (3.18) we notice that we must choose β ¡ σ2
max in order

to ensure that the sampling of the nodes will cease at some point in steady state. However,

Proposed algorithms 86

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25) dNLMS (Vs=5) AS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 28: Comparison between dNLMS with Vs nodes randomly sampled per iteration and
AS-dNLMS (β� 3.8σ2

max � 1.9, µζ � 0.0045). (a) NMSD along the iterations, (b) number of
nodes sampled, and (c) multiplications per iteration.

if σ2
max is much greater than the average noise power in the network, the adoption of this rule

may lead to excessively large values for β. An example is depicted in Fig. 29, in which we

set β� 3.8σ2
max, as was done in the simulations of Fig. 28. However, in comparison with the

scenario considered in Fig. 28, the noise power at the noisiest node was multiplied by ten, which

leads to β � 19. Thus, the noise variance at this node is between 10 and 100 times greater than

the noise power in the remainder of the network. Comparing Figs. 28 and 29, we can see that

the convergence rate of AS-dNLMS after the abrupt change is even more severely hampered.

This is because the largest noise variance in this scenario is much greater than the average

noise power. Hence, the selection of the parameter β can become more complicated under these

circumstances, requiring a more refined knowledge of the noise power profile throughout the

network. Moreover, since prior knowledge of the noise variance is not always available, we

can see that it may be interesting to incorporate some sort of mechanism into the AS-dNLMS

algorithm for the tuning of the parameter β.

Hence, the goal of this section is to propose modifications for the AS-dNLMS algorithm

in order to address its main weaknesses, namely, its tracking capability and the need for prior

knowledge on the noise variance for the selection of its parameters. To this end, the following

measures are taken:

1. Instead of using global parameters for the entire network, we allow each node to have

its own local set of parameters, which enables the algorithm to cope with diversity in the

Proposed algorithms 87

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25) dNLMS (Vs=5) AS-dNLMS (β=3.8σ2
max)

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 29: Comparison between dNLMS with Vs nodes randomly sampled per iteration and
AS-dNLMS (β � 3.8σ2

max � 19, µζ � 0.0045) in Scenario 2 described in Sec. 3.2.6, in which
one of the nodes is much noisier than the others. (a) NMSD curves, and (b) number of nodes
sampled per iteration.

network, e.g., due to significant variations in the measurement noise power from one node

to the other, as in the simulations of Fig. 29.

2. The proposed algorithm estimates the noise variance in each node and modifies their local

parameters accordingly in an online and distributed manner, thus eliminating the need for

a priori knowledge of the noise variance in the network.

3. The proposed algorithm incorporates a change-detection device that allows for the re-

setting of the sampling mechanism, drastically improving the tracking capability of the

algorithm.

3.2.1 Dynamic Tuning of the Parameters

In order to enable the dynamic tuning of the parameters in a local fashion, we now allow

each node k to have a local parameter βk. Thus, replacing β by βk in (3.13) and maintaining

the assumption that Ete2
i pnqu � σ2

vi
in steady state, we conclude that βk ¡

°
iPNk

cikσ
2
vi
≜ σ2

Nk

is a necessary and sufficient condition in order to stop the sampling of node k at some point in

steady state. Assuming that each node k can calculate an estimate pσ2
vk
pnq of σ2

vk
in an online

manner and that they can exchange such estimates with their neighbors, we can write

βkpnq � γ
¸
iPNk

cikpσ2
vi
pnq ≜ γpσ2

Nk
pnq, (3.40)

Proposed algorithms 88

where γ¡1 is a parameter that the designer must choose and whose selection will be discussed

in more detail in Sec. 3.2.2. Like the parameter β of the AS-dNLMS, its role is to control how

much the sampling of the nodes is penalized in the steady state. Thus, (3.9) can be recast as

αkpn � 1q � αkpnq � µζϕ1kpnq
��¸

iPNk

cikpnqε2
i pnq � γpσ2

Nk
pnqζkpnq

�� . (3.41)

In this work we consider the algorithm proposed in [265] for adaptive noise power estima-

tion. It presents a faster convergence rate in comparison with other methods and is not greatly

affected by alterations in the environment. In other words, changes in the optimal system have

little impact on the estimate of σ2
vk

produced by it, so long as vkpnq is wide-sense stationary for

k�1, � � � ,V [265]. This is an important trait, because it mitigates the impact of the convergence

of the noise power estimation on the sampling mechanism. Since some aspects of this algorithm

will serve as the basis for the proposed change-detection mechanism as well as the noise power

estimator, we summarize its operation in the following.

The algorithm of [265] uses information from e2
kpnq at every iteration to estimate the noise

variance at node k. Thus, whenever node k is sampled, three low-pass filters with different

forgetting factors ν f , νm and νs are employed to calculate our estimate:

pσ2
fkpnq � ν f pσ2

fkpn � 1q � p1 � ν f qe2
kpnq,pσ2

mk
pnq � νmpσ2

mk
pn � 1q � p1 � νmqe2

kpnq,pσ2
sk
pnq � νspσ2

sk
pn � 1q � p1 � νsqe2

kpnq.

(3.42)

(3.43)

(3.44)

On the other hand, when node k is not sampled, pσ2
fk
, pσ2

mk
and pσ2

sk
are kept fixed. In [265],

the following choices are suggested for the forgetting factors: ν f � 1� 1
5M , νm � 1� 1

15M , and

νs � 1� 1
45M . Since ν f ¡ νm ¡ νs, pσ2

fk
converges quickly, which enables it to swiftly respond

to changes. However, this estimate is more noticeably affected by fluctuations in e2
kpnq. In

contrast, pσ2
sk

provides a smoother and more accurate estimate in steady state, but takes longer

to converge and to detect changes in the environment. In its turn, σ̂2
mk

shows an intermediate

behavior [265]. If no change in the environment has been detected recently, i.e., the algorithm

is in “normal mode,” an intermediate estimate pσ2
ιk

is calculated as [265]

pσ2
ιk
pnq�ν f pσ2

ιk
pn � 1q � p1 � ν f qpσ2

mink
pnq, (3.45)

Proposed algorithms 89

where

pσ2
mink

pnq ≜ mintpσ2
fkpnq, pσ2

mk
pnq, pσ2

sk
pnqu. (3.46)

Regardless of the current mode, the consolidated estimate pσ2
vk
pnq is obtained by [265]

pσ2
vk
pnq � mintpσ2

ιk
pnq, pσ2

fkpnqu. (3.47)

The mechanism of [265] enters “change mode”, i.e., it considers that a change in the envi-

ronment has been detected whenever

pσ2
fkpnq ¡ pσ2

sk
pnq, (3.48)

unless the algorithm is still in transient. A flag is used for this purpose, which indicates whether

this state has been entered before or not. Then, if this mode is entered for the first time or ifpσ2
fk
pnq pσ2

mk
pnq, pσ2

ιk
is updated as

pσ2
ιk
pnq�νmpσ2

ιk
pn � 1q � p1 � νmqpσ2

mink
pnq. (3.49)

Otherwise, it is kept fixed until pσ2
mk
pnq pσ2

sk
pnq, upon which the algorithm returns to normal

mode [265]. A summary of this solution is presented as Algorithm 6 for clarity. The estimatepσ2
vk
pnq can be calculated locally, since it only uses information available at node k. However, in

order to calculate (3.40), each sampled node i must send pσ2
vi
pnq to its neighbors. This does lead

to a small communication overhead in the transmissions by the sampled nodes. Nonetheless, if

this information is sent bundled with ε2
i pnq and ψipnq, no extra broadcasts are required. Further-

more, since pσ2
vi
pnq is a scalar, the communication overhead associated with its transmission can

be considered negligible under most circumstances, especially if the number of coefficients in

ψipnq is high.

Since we now have a different βkpnq for each node instead of a global parameter β, we make

this replacement in (3.37), allowing the nodes to have distinct step sizes µζkpnq. Moreover,

since we do not assume the prior knowledge of σ2
max in this approach, we replace it by pσ2

Nk
pnq

in (3.37). Using (3.40), we finally conclude after some algebraic manipulations that we must

choose

µζkpnq ¡
1pσ2
Nk
pnq

$'&'% α�

pγ � 1qpϕ10 � ϕ1α�q

���� ϕ1o
ϕ1
α�

� 1
∆n

� 1

���
,/./- (3.50)

Proposed algorithms 90

Algorithm 6 The noise power estimation algorithm proposed in [265].

1: % Initialization – for each node k� 1, � � � ,V , set pσ2
fk
p�1qÐ 0, pσ2

mk
p�1qÐ 0, pσ2

sk
p�1qÐ

0, pσ2
ιk
p�1qÐ0, flagk Ð false, modek Ð “normal”

2: for n � 1, 2, � � � do
3: for k � 1, � � � ,V do
4: pσ2

fk
pnq Ð ν f pσ2

fk
pn � 1q � p1 � ν f qe2

kpnq
5:
6: pσ2

mk
pnq Ð νmpσ2

mk
pn � 1q � p1 � νmqe2

kpnq
7:
8: pσ2

sk
pnq Ð νspσ2

sk
pn � 1q � p1 � νsqe2

kpnq
9: pσ2

mink
pnq Ð mintpσ2

fk
pnq, pσ2

mk
pnq, pσ2

sk
pnqu

10: if modek = “normal” then
11: pσ2

ιk
pnqÐν f pσ2

ιk
pn�1q � p1�ν f qpσ2

mink
pnq

12: if pσ2
fk
¡ pσ2

sk
then

13: modek Ð “change”
14: flagk Ð true
15: end if
16: else
17: if pσ2

mk
 pσ2

sk
then

18: modek Ð “normal”
19: else
20: if pσ2

fk
 pσ2

Mk
or flagk = false then

21: pσ2
ιk
pnq Ð νmpσ2

ιk
pn�1q � p1�νmqpσ2

mink
pnq

22: end if
23: end if
24: end if
25: pσ2

vk
pnq Ð mintpσ2

ιk
pnq,pσ2

fk
pnqu

26: end for
27: end for

if we wish the sampling of the nodes to cease in at most ∆n iterations after the steady state is

achieved in terms of the MSE. The term between braces in the right-hand side of (3.50) is a

constant once the filter designer chooses the values for ∆n and γ. Thus, the tuning of µζk only

requires one extra division per iteration at each node and one extra sum if a regularization term

is added to pσ2
Nk
pnq in (3.50).

Incorporating Algorithm 6 as well as (3.40) and (3.50) into AS-dNLMS, we obtain an

algorithm where each node k dynamically tunes its own parameters βkpnq and µζkpnq. We name

the resulting algorithm as Dynamic-Tuning AS-dNLMS (DTAS-dNLMS). For convenience, a

pseudocode is as Algorithm 7. It should be mentioned that the same modifications can be

straightforwardly applied to ASC-dNLMS. Finally, although we considered static combination

weights while deriving DTAS-dNLMS, the resulting algorithm can be used in conjunction with

Proposed algorithms 91

an adaptive rule for the selection of combination weights. In this case, the update of tcikpnqu
should also be included in Algorithm 7.

The DTAS-dNLMS algorithm addresses the need for the prior knowledge of σ2
max and in-

creases the flexibility of the sampling mechanism by allowing different values for the parameters

in each node. Thus, it may be interesting to compare it to AS-dNLMS. For this reason, in Fig. 30

we resume the simulation of Fig. 29, considering Scenario 2 of Sec. 3.2.6. For AS-dNLMS, we

consider two sets of parameters. The curves with diamond-shaped p♦qmarkers depict the results

obtained with β � 3.8σ2
max and µζ � 0.0045, which were obtained following the same rules that

were used in the simulations of Figs. 28 and 29. On the other hand, the curves with star-shaped

p⋆q markers show the results obtained with β � 0.7σ2
max and µζ � 0.0025, which were chosen

in order to obtain roughly the same number of nodes sampled per iteration as observed in Fig. 28

and a good performance prior to the abrupt change in the optimal system. It should be noted that

in this case the choice of the step size µζ is complicated, since the rule for its selection proposed

in [81] only applies when β ¡ σ2
max. Moreover, it is interesting to mention that the AS-dNLMS

algorithm is not guaranteed to cease the sampling of the nodes when β σ2
max is chosen [81].

For DTAS-dNLMS, we consider γ � 9 and ∆n � 7 � 104. From Fig. 30(a) we observe that,

much like AS-dNLMS, DTAS-dNLMS presents a similar convergence rate to that of dNLMS

with every node sampled during the first transient. In steady-state, we see from Fig. 30(b)

DTAS-dNLMS samples roughly the same number of nodes as AS-dNLMS with β � 0.7σ2
max,

although its computational cost is slightly higher, as seen from Fig. 30(c). On the other hand,

after the abrupt change, DTAS-dNLMS presents a faster convergence rate than AS-dNLMS, al-

beit slower than dNLMS with Vs � 5 nodes sampled per iteration. DTAS-dNLMS outperforms

AS-dNLMS when their parameters are adjusted to obtain the same number of nodes sampled

per iteration. This can be attributed to the capability of DTAS-dNLMS to adjust the values of

the local parameters βkpnq at each node k accordingly, which enables it to maintain and resume

the sampling of the noisier nodes faster in comparison with AS-dNLMS. However, the compar-

ison with dNLMS with Vs � 5 nodes sampled shows that further modifications are necessary

if we desire to improve the tracking capability of the algorithm. For this reason, in Sec. 3.2.3

we incorporate a reset tool for the sampling mechanism in DTAS-dNLMS, which addresses this

issue. Before that, however, we present in Sec. 3.2.2 an analysis on the effects of the parameter

γ, thus aiding the filter designer in its selection.

Proposed algorithms 92

Algorithm 7 The ATC DTAS-dNLMS Algorithm.

1: % Initialization - for each node k � 1, � � � ,V, select a step size rµk, a regularization factor
δr, and combination weights cik satisfying (2.10) for i � 1, � � � ,V, and set ψkp0q Ð 0M,
wkp0q Ð 0M, αkp0qÐα�, ζkp0qÐ1, and εkpnqÐ0

2: for n � 1, 2, � � � do
3: % Adaptation Step
4: for k � 1, � � � ,V do
5: if αkpnq ¥ 0 then
6: ζkpnq Ð 1
7: else
8: ζkpnq Ð 0
9: end if

10: if ζkpnq � 1 then
11: Update ukpnq
12: % Calculating the estimation error:
13: ekpnq Ð dkpnq � uT

k pnqwkpn � 1q
14: % Updating εk:
15: εkpnq Ð ekpnq
16: % Calculating the normalized step size µkpnq:
17: µkpnq Ð rµk

δr�}ukpnq}2

18: % Adapting the local estimate ψkpnq:
19: ψkpnq Ð wkpn � 1q � µkpnqekpnqukpnq
20: Run lines 4-25 of the Algorithm 6, thus obtaining pσ2

vk
pnq

21: else
22: ψkpnq Ð wkpn � 1q
23: pσ2

vk
pnq Ð pσ2

vk
pn � 1q

24: end if
25: end for
26: % The nodes transmit ψ, ε, and pσv to their neighbors
27: % Combination Step
28: for k � 1, � � � ,V do
29: % Forming the combined estimate wkpnq and updating αk:
30: wkpnq Ð 0M

31: αkpn � 1q Ð αkpnq
32: pσ2

Nk
pnq Ð 0

33: for i P Nk do
34: pσ2

Nk
pnq Ð pσ2

Nk
pnq � cikpσ2

vi
pnq

35: βkpnq Ð γpσ2
Nk
pnq

36: µζkpnqÐ 1
pσ2
Nk
pnq

$&% α�

pγ�1qpϕ10�ϕ1α� q

��� ϕ1o
ϕ1
α�

 1
∆n

� 1

��,.-
37: αkpn�1q Ð αkpnq � µζkpnqϕ1kpnq � r°iPNk

cikε
2
i pnq�βkpnqζkpnqs

38: wkpnq Ð wkpnq � cikψipnq
39: end for
40: end for
41: end for

Proposed algorithms 93

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25)

dNLMS (Vs=5)

AS-dNLMS (β=0.7σ2
max)

AS-dNLMS (β=3.8σ2
max)

DTAS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 30: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-
dNLMS and DTAS-dNLMS in Scenario 2 described in Sec. 3.2.6, in which one of the nodes is
much noisier than the others. (a) NMSD curves, and (b) number of nodes sampled per iteration.

3.2.2 Selection of the parameter γ

In the simulations of Fig. 30, we adopted γ � 9 in order to achieve an average of two nodes

sampled per iteration at steady-state. However, it is not obvious at first how many nodes will be

sampled based on our choice for γ, or, conversely, how we should select this parameter so that

we obtain a certain number of nodes sampled per iteration. Intuitively, the influence of γ on the

behavior of the algorithm comes from the fact that it controls the penalization of the sampling,

similarly to the parameter β in (3.3). Since β was replaced by βkpnq � γpσ2pnq in (3.41), it is

straightforward to see that γ should affect the number of nodes sampled per iteration. Thus, in

this section, we aim to study this influence in detail, which will aid in the selection of γ. We

limit our analysis to stationary environments in the absence of impulsive noise for the sake of

simplicity, but the results can also be useful in nonstationary environments or in the presence of

impulsive noise as well.

For this purpose, we remark that each ζkpnq can be viewed as Bernoulli random variable

during steady state that is equal to one with probability pζk or to zero with probability 1�pζk for

k� 1, � � � ,V , with 0¤ pζk ¤ 1. In this case, the expected number Vs of sampled nodes can be

calculated as

EtVsu �
V̧

k�1

pζk . (3.51)

Thus, we now seek to obtain an estimate ppζk for pζk , k � 1, � � � , V . At this point, it is useful to

Proposed algorithms 94

note that the sampling mechanism should exhibit a cyclic behavior at steady state, as discussed

in Sec. 3.1.4. After all, the sampling of the nodes should cease in the steady state, but not

permanently, so as to enable to algorithm to track changes in the environment. Thus, when the

node is sampled (i.e., αk ¥ 0) αk should decrease gradually until it becomes negative, at which

point the sampling of node k ceases. On the other hand, when node k is not sampled (αk 0), αk

should increase gradually until it becomes positive once again, thus resuming the sampling of

that node. Taking this into consideration, we could obtain an upper bound for pζk by estimating

the maximum expected “duty cycle” of the mechanism, i.e.,

pζk ¤ ppmaxk ≜
η̆k

η̆k � ηk
, (3.52)

where η̆k denotes the maximum expected number of iterations per cycle in which node k is

sampled and ηk is the minimum expected number of iterations in which it is not.

For ease of reading, in this section we omit the intermediate steps that have to be taken

in order to estimate η̆k and ηk. However, the detailed derivation is provided in Appendix B.

Assuming that
°

iPNk
cikEtε2

i pnqu � Etpσ2
Nk
pnqu � σ2

Nk
, considering that ϕ1kpnq � ϕ10 in steady

state, and taking into account that the number of iterations during which the nodes are sampled

or not are natural numbers greater than or equal to one, we can estimate η̆k by

η̆k � η �
R

1
γ � 1

V
, (3.53)

for k � 1, � � � ,V , where r�s denotes the ceiling function. We should notice that (3.53) is inher-

ently greater than one for γ¡1. Analogously, for ηk, we obtain

ηk � η � maxt1,tγ � 1uu, (3.54)

where t�u denotes the floor function. It is worth noting that η̆k and ηk only depend on the value

of γ, which is assumed to be the same for every node k in the network. Thus, we conclude that

pmaxk � pmax for k � 1, � � � , V .

Replacing (3.53) and (3.54) in (3.52) and using (3.51), we finally obtain the following upper

bound:

EtVsu ¤ V �

R
1
γ � 1

V
R

1
γ � 1

V
� maxt1,tγ � 1uu

. (3.55)

Proposed algorithms 95

Analyzing (3.55), we observe that limγÑ1 EtVsu � V and limγÑ8 EtVsu � 0, which is in ac-

cordance with our expectations. Finally, the upper bound for the expected number of sampled

nodes only depends on the total number of nodes V , which is known beforehand, and on the

value of γ. This is interesting, because it means that the maximum number of nodes sampled

per iteration on average does not depend on the filter length M, the noise variance σ2
vk

or the step

sizes rµk and µζk at any node k, and so on. We should notice that (3.55) attests to the simplicity

of the selection of γ, since it suffices to choose γ ¡ 1 in order to ensure a reduction in the num-

ber of nodes sampled per iteration in steady state. Furthermore, it enables the filter designer to

make a well-informed choice for this parameter, since the maximum number of nodes sampled

per iteration on average at steady state is known beforehand. It should be mentioned that there

is a compromise between tracking capability and computational cost reduction associated with

the choice of EtVsu. For example, if EtVsu!1, changes in the environment will not be detected

until a node is sampled, which may only occur many iterations after the change has taken place.

Despite this, sensible choices for γ typically lead to satisfactory results after incorporating the

change-detection mechanism described in the next section.

3.2.3 Resetting the Sampling of the Nodes

The incorporation of the algorithm of [265] in the sampling mechanism in Sec. 3.2.1 pro-

vides a “reset tool” in the sampling mechanism through Criterion (3.48). Since we now have

access to an estimate of σ2
vk

at every node k, we can now detect changes in the environment if

we observe a significant rise in MSE for a long enough period of time. In this case, we could

reset αk to its original value by making αkpn � 1q � α� instead of running (3.9), in order to

ensure the sampling of the nodes while the effects of the change are still observed by the algo-

rithm. However, this criterion can generate many false positives throughout the operation of the

algorithm, since it is very sensitive to variations in e2
kpnq. While this does not harm the estimatepσ2

vk
pnq, it can lead to unnecessary resetting of the sampling mechanism.

To circumvent this problem, we introduce a second criterion, and only make αkpn�1q�α�

if

pσ2
fkpnq ¡ χpσ2

vk
pnq (3.56)

holds for more than M consecutive iterations, where χ¡1 is a sensitivity threshold that the filter

designer must choose. After this criterion is met for the first time, αkpn�1q � α� is applied

Proposed algorithms 96

until pσ2
fk
pnq ¤ χpσ2

vk
pnq is detected, in which case the iteration counter is reset to zero. For

convenience, a summary of the proposed reset system for the sampling mechanism is presented

as Algorithm 8. The pseudocode presented should be inserted in the combination step of DTAS-

dNLMS, between the lines 14 and 15 of Algorithm 7. In order to differentiate between the

versions of DTAS-dNLMS with and without the proposed reset system, we henceforth call the

former Dynamic-Tuning-and-Resetting AS-dNLMS, or DTRAS-dNLMS for short. We remark

that the activation of the change detection mechanism during the convergence of the DTRAS-

dNLMS in terms of MSE is not a problem, since the algorithm should maintain the sampling of

the nodes during this period.

Algorithm 8 Summary of the sampling reset mechanism of DTRAS-dNLMS.
1: % Initialization – for each node k � 1, � � � ,V , set counterk Ð 0
2: for n � 1, 2, � � � do
3: for k � 1, � � � ,V do
4: if pσ2

fk
pnq ¡ χpσ2

vk
pnq then

5: counterk Ð counterk � 1
6: else
7: counterk Ð 0
8: end if
9: if counterk ¡ M then

10: αkpn � 1q Ð α�
11: Go to line 38 of Algorithm 7
12: else
13: Go to line 34 of Algorithm 7
14: end if
15: end for
16: end for

Ideally, χmust be chosen so that the reset mechanism activates when necessary, but registers

as few “false positives” as possible. Since these goals are conflicting, there is an underlying

compromise in the selection of χ. For this reason, we show next extensive simulation results

that aid us in obtaining a practical rule for the choice of this threshold.

Firstly, we remark that (3.56) can be recast as

X ≜
pσ2

fk
pnqpσ2

vk
pnq ¡ χ, (3.57)

where we introduced the auxiliary random variable X for compactness of notation. Thus, if we

obtain a reasonable approximation for the probability density function (pdf) fX of X, we can

determine the values of χ for which the probability of Criterion (3.56) being met during the

normal operation of the algorithm is sufficiently low.

Proposed algorithms 97

To do so, we ran computer simulations considering different scenarios. In each case, we

collected the values of X for a selected node at every iteration after DTAS-dNLMS achieved

steady state, and plotted a histogram of X. We considered 100 realizations with 2 �105 iterations

in each simulation, which was enough for DTAS-dNLMS to converge in terms of NMSD. As a

base scenario, we considered Scenario 1 in Sec. 3.2.6, and gradually implemented changes in

order to analyze different conditions. The resulting histograms for some of scenarios tested are

presented in Fig. 31. In Fig. 31(a), we consider Scenario 1 of Sec. 3.2.6 and show the results

obtained for node 1. In Fig. 31(b), we also consider Scenario 1, except that the optimal system

wo is comprised of M � 10 coefficients instead of M � 50. In Fig. 31(c), we also consider

Scenario 1, but the step sizes rµk have been divided by ten in comparison with the original case.

Finally, in order to test the validity of the results under different circumstances, in Fig. 31(d)

we consider a scenario with a colored signal as input, i.e., ukpnq � rkpnq � 0.8ukpn � 1q, where

rkpnq follows a Gaussian distribution with zero mean and unit variance for k � 1, � � � ,V . We

also consider a network with V � 20 nodes, different from that of Scenario 1, and different

profiles for the step sizes rµk and noise variance σ2
vk

.

1.0 1.1 1.2 1.3

x

0

1

2

3

4

5

(a
)

O
b

se
rv

at
io

n
s

(×
10

5
)

1.0 1.2 1.4 1.6

x

0

2

4

6

8

10

12

14

(b
)

O
b

se
rv

at
io

n
s

(×
10

5
)

1.0 1.1 1.2 1.3

x

0

1

2

3

4

5

(c
)

O
b

se
rv

at
io

n
s

(×
1
05

)

1.0 1.2 1.4 1.6

x

0

2

4

6

8

10

12

14

(d
)

O
b

se
rv

at
io

n
s

(×
10

5
)

Figure 31: Histograms for X obtained from 100 realizations with 2 � 105 iterations each. Mea-
surements taken in node 1 of the network depicted in Fig. 27. (a) Scenario 1 described in
Sec. 3.2.6. (b) M � 10, noise variance σ2

vk
and step sizes rµk as depicted in Fig. 34. (c) M � 50,

noise variance σ2
vk

and step sizes rµk as depicted in Fig. 34 but divided by 10. (d) M � 10, with
a colored input signal and a different network, noise power, and step size profiles in comparison
with Scenario 1.

Comparing Figs. 31(a), (b), (c), and (d) we observe that, although the exact distribution of X

changes from one scenario to the other, its general shape does not vary significantly. Moreover,

there are no observations for x 1, and the histograms present a peak at x � 1. These

observations stem from (3.47), which imposes that pσ2
fk
pnq ¥ pσ2

vk
pnq, i.e., X ¥ 1, and enablespσ2

fk
pnq � pσ2

vk
pnq whenever pσ2

fk
pnq ¤ pσ2

ιk
pnq.

Approximating the curve for x ¡ 1 by a scaled and truncated normal distribution with mean

Proposed algorithms 98

a1 and standard deviation a2, we then estimate the pdf fXpxq as

fXpxq�a3δpx�1q� a4b
2πa2

2

exp

�
�px�a1q2

2a2
2

�
Hpx�1q, (3.58)

where δ and H respectively denote the Dirac delta and Heaviside step functions, a3 � PrrX � 1s
and a4 is a scaling factor that is a function of a1, a2 and a3.

We are interested in obtaining χ such that PrrX¡χs¤ pχ, with 0 pχ! 1. Thus, we must

have

1 � FXpχq ¤ pχ, (3.59)

where FXpχq �
³χ
�8 fXpxqdx is the cumulative density function (cdf) of X.

For the sake of brevity, in this section we omit the step-by-step resolution of (3.59) and

skip to the final solution of this inequality. However, a thorough demonstration for this result is

provided in Appendix C. It can be shown that (3.59) is satisfied if we choose

χ ¥ a1 � a2

?
2 � erf�1

�� pχ
1 � a3

� erf

�
1 � a1

a2

?
2

�
� 1 � pχ � a3

1 � a3

�� , (3.60)

where erfp�q and erf�1p�q denote respectively the error function and the inverse error function.

Let us examine (3.60) for two special cases: pχ � 0 and pχ � 1. The former case corre-

sponds to PrrX¡χs¤0, i.e., we should choose a value for χ that X can never surpass. Making

the replacement pχ � 0 in (3.60), we obtain χ Ñ 8, which is in accordance with our expec-

tations. On the other hand, the case pχ � 1 corresponds to a situation where PrrX ¡ χs ¤ 1,

which should hold for any finite value of χ, since the support of X ranges from one to infinity.

Replacing pχ � 1 in (3.60), we obtain

χ¥a1�a2

?
2 � erf�1

$&% 1
1�a3

��erf

�
1�a1

a2

?
2

�
� a3

��,.- . (3.61)

For the sake of simplicity, let us initially consider the special case a3 � 0 in (3.61). This

corresponds to the case where there is no Dirac delta in the expression for fXpxq in (3.58). In

this case, (3.61) yields χ ¥ 1. This is reasonable, since X ¥ 1 always holds. Moreover, for

0 a3 ¤ 1, (3.61) yields even lower values for χ, which further supports the validity of the

obtained expression. Finally, simulation results suggest that, in stationary environments and in

the absence of impulsive noise, pχ � 5 � 10�4 leads to good results.

Proposed algorithms 99

In order to successfully apply (3.60), we must estimate the values of a1, a2 and a3. Sim-

ulation results show that the values of these parameters do not vary significantly (e.g., more

than 10%) with the step size rµk, the network topology or the noise power profile. However,

they do depend on the filter length M. In Fig. 32 we present estimates obtained for a1, a2 and

a3 considering different values for 10¤ M ¤ 100 in Scenario 1. They were derived by fitting

the histogram obtained for X to Model (3.58) for each value of M using the Nonlinear Least

Squares method.

20 40 60 80 100

M

1.03

1.04

1.05

(a
)
a

1

20 40 60 80 100

M

0.04

0.13

0.22
(b

)
a

2

20 40 60 80 100

M

0.03

0.065

0.1

(c
)
a

3

Figure 32: Values fit from the experimental data for (a) a1, (b) a2, and (c) a3 for each filter
length 10 ¤ M ¤ 100 considering Model (3.58) and the Nonlinear Least Squares method.

Using the values depicted in Fig. 32 and considering (3.60) with an equality sign and pχ �
5 � 10�4, it is possible to plot χ as a function of M, as depicted in Fig. 33. Furthermore, for

the sake of simplicity, one could seek to approximate χpMq from the experimental data as an

exponential function. Using once again the Nonlinear Least Squares method, the resulting

approximation is given by

χpMq � 1.2326 � 0.8603 expp�0.0547 � Mq, (3.62)

which is also depicted in Fig. 33. As can be seen from the plot, (3.62) provides a reasonable

approximation for χpMq, greatly facilitating the selection of this parameter after the filter length

is set. Although we only present the results for 10 ¤ M ¤ 100, (3.62) holds as an approximation

for M outside of this range as well.

A few remarks should be made about the scenario considered in Fig. 31(d), with colored

noise as input. If we fit the values of a1, a2 and a3 using the Nonlinear Least Squares method

to the experimental data, we get values quite different from those of Fig. 32, which were ob-

tained considering Scenario 1 of Sec. 3.2.6 with different values for M and white noise as input.

However, replacing these values for a1, a2 and a3 in (3.59), we get χ� 1.622. This represents

an 8.4% error in comparison with the results depicted in Fig. 33, and a 6.7% error in compar-

ison with the value yielded by (3.62). Thus, despite all the differences between the scenario

of Fig. 31(d) and those of Figs. 31(a), (b) and (c), the final value obtained for χ by the method

Proposed algorithms 100

20 40 60 80 100

M

1.2

1.3

1.4

1.5

1.6

1.7

1.8

χ
(M

)

Experimental data

Fit curve

Figure 33: Comparison between the values obtained for χ using (3.60) with a1, a2 and a3 as
depicted in Fig 32 and those yielded by the Approximation (3.62).

described in this section is only slightly affected, which shows that it is robust to certain changes

in the scenario. Overall, the vast number of scenarios considered and experiments conducted

render this model reliable as well as wide-ranging.

In a nutshell, the DTRAS-dNLMS is given by the junction of Algorithms 6, 7, and 8. It

enables each node to have its own local parameters βk and µζk , which are tuned at each iteration

according to (3.40) and (3.50). This is made possible by the adaptive estimation of the noise

power at each node and the communication between neighbors. By combining these algorithms,

we are able to address all of the main limitations of AS-dNLMS.

3.2.4 Computational Complexity

In this section, we analyze the computational cost of DTRAS-dNLMS and compare it to

those of dNLMS and AS-dNLMS. As can be seen from Algorithms 6 and 8, the number of

operations required by DTRAS-dNLMS can vary from one iteration to another, since some

operations are only carried out if certain conditions are met. Thus, we consider the worst-case

scenario in our analysis and assume that the algorithms are used in conjunction with ACW.

We begin by comparing the costs of DTRAS-dNLMS and AS-dNLMS [81]. For this pur-

pose, we examine the increase in cost that the modifications proposed in Secs. 3.2.1–3.2.3

produce. From Algorithms 6 and 7, we can see that the noise estimation algorithm of [265]

is only run when node k is sampled, and its cost can be represented by 8ζkpnq multiplications,

4ζkpnq sums, and 3ζkpnq comparisons per node at iteration n. Moreover, from lines 34 and 35

of Algorithm 7, we observe that the computation of βkpnq requires ζkpnq � p|Nk| � 1q multiplica-

Proposed algorithms 101

tions and ζkpnq � p|Nk| � 1q sums per node per iteration, since we do not need to run these lines

if node k is not sampled. From line 17 of the same table, we conclude that the computation

of µζkpnq demands one extra sum and one extra division. Finally, line 5 of Algorithm 8 adds

one multiplication and one comparison to the total computational cost of the algorithm. Line

5 from the same table contributes with yet another comparison, and if the condition of line 1

holds, there is one extra sum. Hence, in comparison with AS-dNLMS, DTRAS-dNLMS re-

quires ζkpnq � p|Nk| � 9q � 1 more multiplications, ζkpnq � p|Nk| � 3q � 2 more sums, one extra

division, and 2 � 3ζkpnq more comparisons at each node k and time instant n in the worst-case

scenario. These results are summarized in Tab. 5, in which we show the estimated number of

operations required by each algorithm. For reference, we also show the computational cost of

dNLMS with all nodes sampled. For both AS-dNLMS and DTRAS-dNLMS, we consider an

implementation of ϕ1rαkpnqs through a look-up table, which is not taken into account in Tab. 5.

Table 5: Computational cost comparison between dNLMS, AS-dNLMS and DTRAS-dNLMS
with ACW: number of operations per iteration for each node k.

Cost dNLMS AS-dNLMS DTRAS-dNLMS
(worst-case scenario)

Mult.
Mp3�2|Nk|q�|Nk|�1 ζkpnqp3M � 4q �

2M|Nk| � 3|Nk| � 1
ζkpnqp3M�13�|Nk|q�
2M|Nk| � 3|Nk|

Sums
Mp2�3|Nk|q�2|Nk|�1 ζkpnqp5M�1q�p|Nk|�

1qp3M � 1q
ζkpnqp5M� 2�|Nk|q�
p|Nk| � 1qp3M� 1q � 2

Div.
2|Nk| � 1 2|Nk| � ζkpnq 2|Nk| � ζkpnq � 1

Compar.
0 3 5 � 3ζkpnq

From the analysis presented, we can see that the computational cost of DTRAS-dNLMS is

always higher than that of AS-dNLMS if both algorithms are adjusted to sample the nodes at

the same rate. In other words, the improvement in the tracking capability of the algorithm from

the reset mechanism and the elimination of the need for a priori knowledge of the noise power

come at the inevitable expense of an increase in computational complexity. However, this rise

in the computational cost is mostly concentrated on the occasions in which node k is sampled,

i.e., ζkpnq � 1, especially if node k has many neighbors, in which case |Nk| is large. In contrast,

if node k is not sampled, i.e. ζkpnq � 0, the difference in complexity between both algorithms

comes down to one extra multiplication, two sums, one division, and two comparisons at that

node. Hence, the increase in computational cost generated by the proposed mechanisms tends

Proposed algorithms 102

to be much more noticeable in the transient than in steady state. Finally, the cost associated

with the algorithm can be lower than depicted in Tab. 5 at several iterations. For example, if the

reset mechanism is activated, i.e., the condition of line 9 of Algorithm 8 holds, αkpn � 1q is set

to α� and lines 34–37 of Algorithm 7 do not have to be run, which saves some computation.

In comparison with dNLMS, we observe from Tab. 5 that DTRAS-dNLMS saves 3M�
2|Nk|�1 multiplications and sums when node k is not sampled. Thus, the reduction in com-

putational cost provided by DTRAS-dNLMS becomes more noticeable as M increases. On the

other hand, if most nodes have large neighborhoods, the computational savings tend to be lower.

However, the filter length M is usually larger than the average neighborhood size, especially for

sparse and cluster topologies [42–44, 266, 267].

The expressions depicted in Tab. 5 refer to the instantaneous computational cost at each

node k and time instant n. To analyze the expected computational cost of DTRAS-dNLMS

in steady state, we should replace ζkpnq with its expected value Etζku � pζk , for which we

estimated an upper bound in Sec. 3.2.2. Denoting the savings difference in the number of

multiplications required by dNLMS and DTRAS-dNLMS at each node k by ∆bk, we conclude

from Tab. 5 that, in steady state,

Et∆bku � 3M�2|Nk|�1 � pζkp3M�13�|Nk|q. (3.63)

If Et∆bku ¡ 0, DTRAS-dNLMS saves computation at node k in comparison with dNLMS.

On the other hand, if Et∆bku 0, DTRAS-dNLMS is the costlier algorithm. We can see

from (3.63) that lower sampling probabilities pζk lead to greater Et∆bku. In other words, the

less nodes are sampled on average, the greater the expected savings in computational resources,

as we expected. On the other hand, if the sampling probabilities pζk are too high, Et∆bku can

become negative. Summing Et∆bku for k � 1, � � � , V , we obtain the difference in cost for the

whole network, given by

Et∆bglobalu � Vp3M � 1q �
V̧

k�1

�
2|Nk| � pζkp3M�13�|Nk|q

�
. (3.64)

Since pζk ¤ pmaxk � pmax for k � 1, � � � , V , we conclude from (3.64) that, in order to ensure

a reduction in the number of multiplications in steady state in comparison with dNLMS, i.e.,

Proposed algorithms 103

Et∆bglobalu ¡ 0, we must have

pmax �

R
1
γ � 1

V
R

1
γ � 1

V
� maxt1,tγ � 1uu

 Vp3M � 1q � 2
°V

k�1 |Nk|
Vp3M � 13q �°V

k�1 |Nk|
. (3.65)

Hence, assuming that the network topology is known beforehand, which is a usual prac-

tice [1, 4–6, 142, 186, 268], we can use (3.65) to determine the minimum value of γ required to

ensure that DTRAS-dNLMS has a lower computational cost than dNLMS in steady state for a

certain filter length M. It is worth noting that if

M 1
3

�
2 � 1

V

V̧

k�1

|Nk| � 1

�
, (3.66)

DTRAS-dNLMS cannot save computation in comparison with dNLMS in the worst-case sce-

nario. If (3.66) holds, we would need pmax 0 to ensure a reduction in the computational

cost in (3.65), which is impossible. Nonetheless, we should notice that the condition imposed

by (3.66) is not very restrictive, since M is usually larger than the average neighborhood size.

Finally, we remark that an analogous procedure could be done to ensure a reduction in the

number of sums, but we focused on the multiplications since they are usually more demanding

from a computational perspective.

3.2.5 Overview of the Parameters of DTRAS-dNLMS

In this section, we provide a brief summary of the roles of the parameters of DTRAS-

dNLMS and how to select them. Besides the forgetting factors ν f , νm and ν f of the algorithm

of [265], which are respectively given by ν f � 1 � 1
5M , νm � 1 � 1

15M and νm � 1 � 1
45M ,

DTRAS-dNLMS has three other parameters: γ, ∆n and χ. The role of γ is analogous to that of

β in the AS-dNLMS algorithm. Both are used to control the number of nodes sampled in steady

state. Furthermore, the parameter ∆n was already present in AS-dNLMS. In both algorithms,

its role is the same: adjusting the speed of the update of αkpnq, and thus controlling how fast the

nodes cease to be sampled. The difference between both solutions resides in the fact that, in the

AS-dNLMS algorithm, ∆n is used to set the step size µζ a priori according to (3.37), whereas

in DTRAS-dNLMS it is used to adjust each local step size µζkpnq in an online manner, as can

be seen in (3.50). Thus, the only additional parameter that DTRAS-dNLMS has in comparison

Proposed algorithms 104

with AS-dNLMS is χ, which is responsible for tuning the sensitivity of the reset mechanism

proposed in Sec. 3.2.3. This comparison is summarized in Tab. 6.

Table 6: Comparison between the parameters of DTRAS-dNLMS and AS-dNLMS.

Role AS-dNLMS DTRAS-dNLMS
Controlling the number of nodes sampled in
steady state

β γ

Controlling the speed of the update of αkpnq ∆n
Controlling the probability of activation of the
reset mechanism

– χ

The only condition on the parameter γ to ensure that the nodes cease to be sampled is γ ¡ 1.

Furthermore, (3.55) allows the filter designer to know how many nodes would be sampled per

iteration in the worst-case scenario. If γ is close to one, the number of nodes sampled per

iteration may be high, which undermines the benefits of the sampling mechanism. This can be

attested from (3.65), which can be used to ensure a reduction in the computational cost of the

algorithm. Due to (3.50) and to the reset mechanism, the influence of the parameter γ on the

tracking capability is reduced. This is in stark contrast with the parameter β of AS-dNLMS. It

was shown in [81] that the higher the β, the more noticeable the deterioration in the tracking

capability of the algorithm, even for moderate β{σ2
max ratios such as β ¤ 5σ2

max. However,

as mentioned in Sec. 3.2.2, selecting γ such that EtVsu ! 1 can be problematic. In this case,

changes in the environment may go unnoticed for long periods of time, since the network may

not sample any node for a high number of iterations.

As for the parameter ∆n, adopting a very low value for it can lead to high µζkpnq, which may

lead to the lack of sampling during transient. Simulations suggest that the convergence speed

of the algorithm in terms of NMSD should be generally taken into account when selecting ∆n.

Nonetheless, it is important to mention that DTRAS-dNLMS is not very sensitive to moderate

variations in its value, so this selection does not have to be very precise. Simulation results

indicate that choosing

∆n � 2M2 � V°V
k�1 rµk

(3.67)

leads to good performances by the DTRAS-dNLMS algorithm if the average step size 1
V

°V
k�1 rµk

is less than one. This is a heuristic result that can be interpreted as follows. The values for ∆n

should be greater when the convergence speed in terms of NMSD is slow, which occurs when

M is high or the average step size is low.

Proposed algorithms 105

Lastly, in stationary environments and in the absence of impulsive noise, χ can be set

according to (3.62). The model proposed in Sec. 3.2.3 for the adjustment of this parameter

produced satisfactory results in different environments. Therefore, DTRAS-dNLMS fully ad-

dresses the main weaknesses of AS-dNLMS and the adjustment of its parameters is simple

given the analysis previously presented.

3.2.6 Simulation Results

In this section, we present simulation results to showcase the behavior of the DTAS-dNLMS

and DTRAS-dNLMS algorithms. The results presented were obtained over an average of 100

independent realizations. For better visualization, we filtered the curves by a moving-average

filter with 64 coefficients. In every case, we consider that the order of the filter is equal to

that of the optimal system. The combination weights are updated using the ACW algorithm

with νkACW � 0.2 for k� 1, � � � ,V [215]. Moreover, we use δr � 10�5 as a regularization factor

in (2.53) and add δc � 10�8 to pσ2
ikpnq before calculating its reciprocal in (2.23). Although the

results obtained with DTAS-dNLMS in the simulations of Fig. 30 are poor, we still include it in

the simulations of this section for the sake of comparison.

3.2.6.1 Scenario 1 – Base Scenario

We consider the network of Fig. 27 in the simulations. Furthermore, each node k is subject

to a different noise variance σ2
vk

, as shown in Fig. 34(a), and we consider rµk P t0.1, 1u for

each node k, as depicted in Fig. 34(b). For the optimal system wo, we consider a vector with

M� 50 coefficients randomly generated following a Uniform distribution in the range r�1, 1s.
The vector thus obtained was then normalized, so that the resulting wo presents unit norm. To

simulate an abrupt change in the environment, in the middle of each realization we multiply

the vector wo by 0.25. Finally, the input signal ukpnq is white Gaussian with unit variance for

k � 1, � � � ,V .

Firstly, we resume the simulation of Fig. 28 in order to compare DTRAS-dNLMS with

the algorithms previously considered. Its parameter χ was set to 1.298 using the results of

Sec. 3.2.3 with pχ � 5 � 10�4. In order to obtain approximately the same number of nodes

sampled per iteration in steady state in comparison with AS-dNLMS and DTAS-dNLMS, γ�11

was adopted. Comparing to DTAS-dNLMS in which we adopted γ � 9, a higher value of γ is

Proposed algorithms 106

1 5 10 15 20 25

Node k

0.5

5

(a
)
σ

2 v
k

×10−1

1 5 10 15 20 25

Node k

0.1

1

(b
)
µ̃
k

Figure 34: (a) Noise variance σ2
vk

, and (b) normalized step size rµk for k � 1, � � � , V considered
in the simulations.

required for DTRAS-dNLMS. This difference is due to spurious resets of the sampling system,

which still occasionally occur in DTRAS-dNLMS even with pχ � 5 � 10�4. This will be

illustrated in more detail in the sequel. Lastly, the value of µζ for AS-dNLMS was chosen

using (3.37) with an equality sign, whereas DTAS-dNLMS and DTRAS-dNLMS tune µζkpnq at

each iteration using (3.50). In all cases, ∆n � 7000 was adopted.

In Fig. 35(a) we present the NMSD curves, in Fig. 35(b) the number of nodes sampled, and

in Fig. 35(c) the number of multiplications per iteration, respectively. As seen in Fig. 28, the

more nodes are sampled during the transient, the faster the convergence rate. We also observe

that, unlike AS-dNLMS and DTAS-dNLMS, DTRAS-dNLMS resumes the sampling of prac-

tically every node after the abrupt change in the environment. For this reason, its convergence

rate is similar to that of dNLMS with Vs � 25 during both transients. Moreover, as observed

in the simulations of Figs. 17, 28, and 29, the sampling of less nodes leads to a slight reduction

in steady-state NMSD. The dNLMS algorithm with Vs�5 sampled nodes per iteration presents

a steady-state NMSD approximately 2 dB lower than the one achieved by the version with all

nodes sampled, whereas DTRAS-dNLMS reaches a steady-state NMSD that is 1.3 dB lower

than that of the algorithm with five sampled nodes, as well as a faster convergence rate. From

Figs. 35(b) and 35(c) we observe that during the transients the computational cost of DTRAS-

dNLMS is slightly higher than those of the dNLMS algorithm with all nodes sampled and AS-

dNLMS. Furthermore, during the first iterations, its cost is slightly lower than that of DTAS-

dNLMS, since in this period the activation of the reset mechanism prevents the update of αk,

which saves some computation. After a while, the cost of DTRAS-dNLMS slightly increases

as the reset mechanism ceases to act, becoming close to that of DTAS-dNLMS. However, once

steady state is achieved, the computational cost of DTRAS-dNLMS decreases drastically, be-

coming much lower than that of dNLMS and only marginally higher than that of AS-dNLMS.

This is in line with the discussion presented in Sec. 3.2.4. In comparison with the worst-case

scenario depicted in Tab. 5, DTRAS-dNLMS actually performed, on average, 18.6 less multipli-

Proposed algorithms 107

cations per iteration throughout the entire network. This discrepancy is mostly concentrated in

the transients, rather than the steady state. For instance, between iterations 50 � 103 and 60 � 103,

the average difference comes down to 1.4 multiplication per iteration.

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25) dNLMS (Vs=5) AS-dNLMS DTAS-dNLMS DTRAS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)
0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 35: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-
dNLMS (β � 1.9, µζ � 0.0045), DTAS-dNLMS (γ � 9), and DTRAS-dNLMS (γ � 11, χ �
1.298). For DTAS-dNLMS and DTRAS-dNLMS, µζkpnq was set using (3.50) with ∆n� 7000.
(a) NMSD curves, (b) number of nodes sampled and (c) multiplications per iteration.

In order to verify (3.55), we also tested the DTAS-dNLMS and DTRAS-dNLMS algorithms

in a stationary environment with different values of γ ¥ 1. For γ � 1, a fixed step size µζk was

adopted for k � 1, � � � ,V in order to avoid division by zero in (3.50). Furthermore, χ � 1.298

was adopted for DTRAS-dNLMS. In each experiment, we considered 4 � 104 iterations and

calculated the average number of nodes sampled during the last 4 � 103, which guaranteed that

the algorithm had achieved steady state in terms of NMSD and number of nodes sampled. The

results are shown in Fig. 36. Along with the experimental data, we also present the result

yielded by (3.55) for each γ. Firstly, we observe that the greater the γ, the less nodes are

sampled, as expected. Furthermore, it can be seen that the simulation results obtained with

DTAS-dNLMS lie below the theoretical upper bound for every value of γ ¡ 1, while they

coincide for γ � 1, which validates (3.55). It is interesting to notice that, as γ increases, the

simulation results obtained with both algorithms approach the theoretical upper bound, whereas

they remain far below it for small γ ¡ 1. In the case of DTRAS-dNLMS, the number of nodes

sampled per iteration lies below the theoretical upper bound for γ 30. For γ ¥ 30, the

results yielded by (3.55) slightly surpass the theoretical upper bound due to spurious resets of

the sampling system. Nonetheless, this difference between the simulation results and the values

Proposed algorithms 108

yielded by (3.55) are so slim in these cases that it can be neglected. Moreover, we observe

that DTRAS-dNLMS in general samples slightly more nodes per iteration than DTAS-dNLMS

for the same reason. However, we remark that the difference between both algorithms is less

than 1 node per iteration for all values of γ. From Fig. 36, we can see that (3.55) enables a

well-informed selection of γ, since it allows the filter designer to know how many nodes would

be sampled per iteration in a worst-case scenario.

1 10 100

γ

0

5

10

15

20

25

E
{V

s
}

DTAS-dNLMS

DTRAS-dNLMS

Theoretical Upper Bound

Figure 36: Theoretical results yielded by (3.55) and average number of nodes sampled by
DTAS-dNLMS and DTRAS-dNLMS (χ�1.298) as a function of γ ¥ 1.

3.2.6.2 Scenario 2 – Network with a Noisy Node

We now analyze a scenario in which one of the nodes is much noisier than the remainder

of the network. Thus, starting from the base scenario, we increase the noise power σ2
max of the

noisiest node from Fig. 34(a) by tenfold.

Hence, in Fig. 37, we resume the simulations of Figs. 29 and 30, with the addition of

the DTRAS-dNLMS algorithm. In Fig. 37(a) we present the NMSD curves, in Fig. 37(b) the

number of nodes sampled, and in Fig. 37(c) the number of multiplications per iteration. The

parameters of the AS-dNLMS and DTAS-dNLMS algorithms are the same as those used in

Figs. 29 and 30, whereas for DTRAS-dNLMS we consider γ � 11, ∆n � 7�104, and χ � 1.298.

Moreover, we also show results obtained by the dNLMS algorithm with Vs � 25 and Vs � 5

nodes sampled per iteration.

We observe from Fig. 37(a) that, unlike AS-dNLMS and DTAS-dNLMS, the DTRAS-

dNLMS algorithm was able to roughly maintain the convergence rate of dNLMS with Vs � 25

nodes sampled per iteration even after the abrupt change, while sampling the same number of

nodes per iteration as AS-dNLMS with β � 0.7σ2
max and DTAS-dNLMS in steady state, as

we can see from Fig. 37(b). Hence, we observe from this simulation that DTRAS-dNLMS

addresses the main limitations of AS-dNLMS and DTAS-dNLMS when an abrupt change oc-

Proposed algorithms 109

curs in the optimal system. Moreover, much like DTAS-dNLMS, its online estimation of the

measurement noise power eliminates the need for a priori knowledge of this information.

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25)

dNLMS (Vs=5)

AS-dNLMS (β=0.7σ2
max)

AS-dNLMS (β=3.8σ2
max)

DTAS-dNLMS

DTRAS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

1
03

Figure 37: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-
dNLMS (β�19 � 3.8σ2

max, µζ �0.0045, and β�3.5 � 0.7σ2
max, µζ�0.0025), DTAS-dNLMS

(γ� 9, ∆n� 7000), and DTRAS-dNLMS (γ� 11, χ� 1.298, ∆n� 7000) in a scenario where
σ2

max is increased by tenfold in comparison with Fig. 34(b). (a) NMSD curves, and (b) number
of nodes sampled per iteration.

3.2.6.3 Scenario 3 – Random-Walk Tracking

In this section, we investigate the behavior of the proposed algorithms in nonstationary en-

vironments following a random-walk model, similarly to what was done in Sec. 3.1.6.4. Starting

from Scenario 1, we consider that the optimal solution wopnq varies according to (3.39). As in

Sec. 3.1.6.4, we consider a Gaussian distribution for qpnq with Q � σ2
qI, where I denotes the

identity matrix.

In Fig. 38, we present the results obtained with the AS-dNLMS, DTAS-dNLMS, and

DTRAS-dNLMS algorithms for different values of TrrQs. For comparison, we also show results

obtained by dNLMS with Vs � 25 and Vs � 2. Moreover, for DTRAS-dNLMS, we considered

two values of χ: 1.3 and 1.2. The other parameters of the aforementioned algorithms were

maintained from the simulations of Fig. 35. In Fig. 38(a), we present the steady-state levels of

NMSD, and in Fig. 38(b) the average number of sampled nodes per iteration. The results pre-

sented were obtained by averaging the data over the last 70 � 103 iterations of each realization,

after all the algorithms achieved steady state.

We observe from Fig. 38(a) that higher values for TrrQs lead to worse steady-state per-

Proposed algorithms 110

formances by all algorithms, which was expected. However, the rate at which the steady-state

NMSD deteriorates as we increase TrrQs varies from one solution to another. The dNLMS

algorithm with Vs � 25 presents a slightly higher steady-state NMSD for TrrQs � 10�8, but a

better performance for TrrQs ¥ 10�6 in comparison with the other solutions. A possible inter-

pretation for this is that, in the former case, the scenario is similar to that of Fig. 35. However,

as TrrQs increases, it becomes more important to sample the nodes because it allows the algo-

rithm to keep better track of the changes in the environment. Comparing Figs. 38(a) and 38(b),

we observe that the more nodes are sampled, the better the performances of the algorithms for

TrrQs ¥ 10�6. Furthermore, dNLMS with Vs � 2 and DTAS-dNLMS present similar results

and the highest NMSD for higher values of TrrQs. As for AS-dNLMS and DTRAS-dNLMS

with χ � 1.3, we observe that their performances are similar to those of DTAS-dNLMS for

TrrQs ¤ 10�6, but are superior for TrrQs�10�5 and TrrQs�10�4. For TrrQs�10�4, DTRAS-

dNLMS with χ � 1.3 performs noticeably better than AS-dNLMS. By changing the value

of χ, we can control the behavior of the proposed algorithm, since for TrrQs ¥ 10�7 DTAS-

dNLMS with χ � 1.2 performs better than AS-dNLMS and DTAS-dNLMS, as well as dNLMS

with Vs � 2 and DTRAS-dNLMS. From Fig. 38(b) we observe that the DTRAS-dNLMS with

χ � 1.2 samples more nodes per iterations than all other solutions, except for dNLMS with

Vs � 25. Thus, it is able to keep better track of the changes in the optimal system, which

explains the improvement in the performance.

10−8 10−7 10−6 10−5 10−4

Tr[Q]

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs = 25)

dNLMS (Vs = 2)

AS-dNLMS

DTAS-dNLMS

DTRAS-dNLMS (χ = 1.3)

DTRAS-dNLMS (χ = 1.2)

10−8 10−7 10−6 10−5 10−4

Tr[Q]

0

5

10

15

20

25

(b
)
V
s
(n

)

Figure 38: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-
dNLMS (β � 1.9, µζ � 0.0045), DTAS-dNLMS (γ � 9, ∆n � 7000), and DTRAS-dNLMS
(γ � 11, ∆n � 7000, and different values for χ) in a nonstationary environment following
Model (3.39). (a) steady-state NMSD, and (b) average number of nodes sampled per iteration.

The sampling mechanism of DTRAS-dNLMS algorithm presents a cyclic behavior in the

Proposed algorithms 111

case of TrrQs � 10�4. In Figs. 39(a) and 39(b), we respectively present the NMSD and number

of nodes sampled per iteration under these circumstances. The number of nodes sampled per

iteration by the DTRAS-dNLMS algorithm with χ � 1.3 oscillates intensely during the first

2 � 105 iterations. Consequently, the NMSD also fluctuates greatly after the initial convergence.

As time goes by, both of these oscillations decrease in amplitude, but never cease completely.

An interpretation for this phenomenon lies in the reset system of the sampling mechanism.

Since the variations in the optimal system are swift when TrrQs � 10�4, the lack of sampling

heavily impacts the performance and, consequently, the error magnitude in each node. Thus,

the reset mechanism is activated, which resumes the sampling of the nodes. This, in its turn,

improves the tracking capability of the algorithm and decreases the magnitude of the error.

However, such decrease leads to a reduction in the number of nodes sampled once again due

to (3.9). Hence, the oscillations in the number of sampled nodes arise. Over time, they stabilize,

but do not die out. From Figs. 39(a) and 39(b), we can see that the DTRAS-dNLMS algorithm

with χ � 1.2 also presents fluctuations, but these are much slighter in comparison. The adoption

of a lower value for χ makes the reset system activate much more easily, which reduces the

impact of oscillations in the error magnitude on the number of nodes sampled.

0 1 2 3

Iterations (×105)

−20

−15

−10

−5

0

5

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25)

dNLMS (Vs=2)

AS-dNLMS

DTAS-dNLMS

DTRAS-dNLMS (χ = 1.3)

DTRAS-dNLMS (χ = 1.2)

0 1 2 3

Iterations (×105)

0

5

10

15

20

25

(b
)
V
s
(n

)

Figure 39: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-
dNLMS (β � 1.9, µζ � 0.0045), DTAS-dNLMS (γ � 9, ∆n � 7000), and DTRAS-dNLMS
(γ � 11, χ � 1.298, ∆n � 7000) in a scenario with random-walk tracking as in (3.39) with
TrrQs�10�4. (a) NMSD curves, and (b) number of nodes sampled per iteration.

Finally, in the simulations of Fig. 40, we repeat the experiments of Fig. 38 considering

only the DTRAS algorithm with 1.15 ¤ χ ¤ 1.45. The lower the value of χ, the more nodes

are sampled for all values of TrrQs, as expected. By selecting χ� 1.15, the reset mechanism

Proposed algorithms 112

maintained the sampling of all nodes. Moreover, for χ ¥ 1.3, the differences in performance

and number of nodes sampled are slight for TrrQs¤10�6. As TrrQs increases, these disparities

become more noticeable. When the changes in the optimal system are slow, choosing χ ¥
1.3 prevents the reset mechanism from resetting spuriously. This is beneficial in the cases of

stationary environments and of TrrQs�10�8, but deteriorates the performance as the variations

in the optimal system become faster, e.g., TrrQs¥10�7. As these changes become even swifter,

e.g. TrrQs ¥ 10�5, the reset mechanism begins to act more noticeably. Thus, the selection of

different values for χ leads to prominent discrepancies in the sensitivity of the reset system,

which impacts the number of nodes sampled per iteration and the performance. In contrast, by

selecting 1.2¤ χ¤ 1.25, the reset mechanism activates for all values of TrrQs ¥ 10�8. This is

especially noticeable for χ�1.2, and, similarly to what was observed in Fig. 38, leads to more

nodes sampled per iteration and a lower steady-state NMSD for TrrQs¥10�8.

10−8 10−7 10−6 10−5 10−4

Tr[Q]

-5

-10

-15

-20

-25

-30

(a
)

N
M

S
D

(d
B

)

χ = 1.15

χ = 1.20

χ = 1.25

χ = 1.30

χ = 1.35 χ = 1.40 χ = 1.45

10−8 10−7 10−6 10−5 10−4

Tr[Q]

0

5

10

15

20

25

(b
)
V
s
(n

)

Figure 40: Simulation results obtained in a nonstationary environment following Model (3.39)
with DTRAS-dNLMS (γ� 11, ∆n� 7000 and different values for χ). (a) Steady-state NMSD,
and (b) Number of nodes sampled per iteration.

In the presence of impulsive noise, higher values for χ lead to lower computational costs

as well as improved performance, whereas in nonstationary environments lower values are re-

quired to maintain the performance. Moreover, in this case, there is a trade-off between com-

putational cost and NMSD. Nonetheless, it should be noted that the parameter χ grants the

DTRAS-dNLMS algorithm a great degree of flexibility, which makes it suitable for different

scenarios and applications.

Proposed algorithms 113

3.2.6.4 Scenario 4 – Colored Input and diffusion Affine Projection Algorithm

Unlike what was done in the experiments of Secs. 3.2.6.1, 3.2.6.2, and 3.2.6.3, in the simu-

lations of this section we consider a colored input signal ukpnq at each node k, given by

ukpnq � rkpnq � 0.8ukpn � 1q, (3.68)

where rkpnq is white Gaussian with zero mean and unit variance for k � 1, � � � , V . Furthermore,

we consider a filter length of M�150. As in Sec. 3.2.6.1, the coefficients of the optimal system

wo were randomly generated following a Uniform distribution in the range r�1, 1s, and then

normalized to ensure that wo has unit norm. In the middle of each realization, we multiply wo

by 0.25 to simulate an abrupt change in the environment. The noise variances and step sizes are

the same as in Fig. 34.

In order to illustrate how the proposed sampling mechanism can be used in conjunction

with other types of diffusion algorithms aside from dNLMS, we apply it to dAPA [185, 186].

Its adaptation step is given by

ψkpn � 1q�wkpnq�rµkUkpnqrδrI � UT
k pnqUkpnqs�1ekpnq, (3.69)

where Ukpnq � rukpnq ukpn� 1q � � � ukpn� L� 1qs, ekpnq � dkpnq �UT
k pnqwkpnq, and dkpnq �

rdkpnq dkpn � 1q � � � dkpn � L � 1qsT, with L ¤ M being a parameter that the filter designer

must choose [125,186]. The adoption of greater values for L usually increases the convergence

speed, but also deteriorates its steady-state performance [186]. If L�1 is chosen, the algorithm

coincides with dNLMS. Finally, the combination step of dAPA is also given by (2.50b) [186].

To incorporate the sampling mechanisms into dAPA, we introduce the binary sampling

variable ζkpnq in the correction term of (3.69) analogously to (2.50a). Hence, if ζkpnq � 0,

UT
k pnqwkpnq, ekpnq, UT

k pnqUkpnq, rδrI�UT
k pnqUkpnqs�1, and rµkUkpnqrδrI�UT

k pnqUkpnqs�1ekpnq
do not have to be calculated. If ζkpnq � 1, (3.69) is computed as usual. Unlike in the dNLMS

adaptation, we consider that the desired signal dkpnq is sampled even if ζkpnq � 0, since its

value may be necessary to form the vector dk at future iterations. Furthermore, we continue to

use the instantaneous error ekpnq given by (2.7) for the adaptation of the sampling mechanisms,

rather than the error vector ekpnq.

In Fig. 41 we present a comparison between DTRAS-dAPA, DTAS-dAPA, AS-dAPA and

Proposed algorithms 114

dAPA with Vs � 3 nodes sampled randomly, as well as dAPA with all Vs � 25 nodes sampled.

We adopted L � 4 for all of the aforementioned algorithms. In Fig. 41 (a) we show the NMSD

curves, in Fig. 41(b) the number of nodes sampled, and in Fig. 41(c) the number of multiplica-

tions per iteration, respectively. The parameters of the sampling mechanisms of each algorithm

were selected so as to obtain roughly the same steady-state NMSD for every solution. In the

case of dAPA with every node sampled, we can see from Fig. 41 (a) that the steady-state NMSD

is about 10 dB higher in comparison with the other algorithms, even though the step sizes are

the same for every solution. Thus, we observe that the difference in steady-state performance

entailed by the sampling of less nodes is more pronounced in comparison with the simulations

using the dNLMS algorithm, such as in Fig. 35. We adopted β � 4σ2
max � 2 and µζ � 0.0098

for AS-dAPA, γ � 9.5 and ∆n � 103 for DTAS-dAPA, and γ � 9.5, ∆n � 500, and χ � 1.2328

for DTAS-dAPA. The value for χ was obtained by replacing M � 150 in (3.62). In this case,

DTRAS-dNLMS sampled on average 2.1 nodes per iteration, whereas AS-dAPA and dAPA

respectively sampled 2.2 and 2.6 nodes per iteration.

Before the abrupt change in the environment, we can see from Fig. 41 (a) that DTRAS-

dAPA converges to a steady-state NMSD of �30 dB faster than dAPA with Vs � 3, albeit

slower than AS-dAPA and DTAS-dAPA. This occurs since it maintains the sampling of all

the nodes for a longer period of time, during which it behaves similarly to dAPA with every

node sampled, as can be attested from Figs. 41 (a) and (b). On the other hand, it resumes

to an NMSD level of �30 dB faster than any other solution after the abrupt change, which

shows that it has a better tracking capability than the other sampling algorithms. In terms of the

computational cost, we can see from Fig. 41 (c) that DTRAS-dAPA, AS-dAPA, DTAS-dAPA

and dAPA with with Vs�3 demanded a similar number of multiplications per iteration in steady

state. Although the cost of DTRAS-dAPA is higher than that of dAPA with all nodes sampled

during the transient, the difference in this case is negligible in comparison with the overall cost

of both algorithms. This contrasts with Fig. 35 (c), in which the difference in cost between

DTRAS-dNLMS and dNLMS with all nodes sampled during the transient is more noticeable,

since the dNLMS algorithm is less costly overall than dAPA with L¡1.

Proposed algorithms 115

0 2.5 5 7.5 10

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dAPA (Vs=25) dAPA (Vs=3) AS-dAPA DTAS-dAPA DTRAS-dAPA

0
5

10
15
20
25

(b
)
V
s
(n

)

0 2.5 5 7.5 10

Iterations (×104)

5

10

15

(c
)
⊗
×

10
4

Figure 41: Comparison between dAPA with Vs nodes randomly sampled per iteration, AS-
dAPA (β � 2, µζ � 0.0098), DTAS-dAPA (γ � 9.5), and DTRAS-dAPA (γ � 9.5, χ �
1.2328). For DTAS-dAPA and DTRAS-dAPA, µζkpnq was set using (3.50) with ∆n�1000 and
∆n�500, respectively. (a) NMSD curves, (b) number of nodes sampled and (c) multiplications
per iteration.

3.3 Adaptive Sampling and Censoring for Kernel-Based Diffusion Networks

In this section, we extend the algorithm of Sec. 3.2 to RFF kernel-based adaptive diffusion

networks. For simplicity, we restrict our attention to the DTAS technique of Algorithm 7,

without the reset mechanism for the sampling proposed in Sec. 3.2.3. The analysis on the

choice of the parameter pχ carried out in that section would have to be redone for the RFF

kernel algorithm in order to enable the usage of the proposed reset mechanism in this context.

This poses an interesting challenge, which we consider a promising topic for future research.

Moreover, we also incorporate the concept of censoring into the DTAS algorithm of

Sec. 3.2, similarly to what was done to the AS technique in Sec. 3.1.1. We would like to remark

that that the concepts of sampling and censoring may be especially relevant for kernel-based

diffusion networks than for the more “conventional” adaptive diffusion networks of Sec. 2.2.

This is because kernel methods tend to present greater computational costs in comparison with

linear solutions, which makes their application more challenging in practice. Hence, we believe

that a technique for reducing the computational and energy costs associated with the learning

task may be even more helpful in this context.

We begin by modifying (2.45a), similarly to what was done to (2.12a) in Sec. 3.1.1 with

Proposed algorithms 116

Eq. (3.10). Thus, we obtain

ψkpn�1q � r1�ζkpnqsψkpnq � ζkpnq
�
wkpnq�µkpnqĕkpnqzkpnq

�
, (3.70)

where we have introduced

ĕkpnq � dkpnq � zT
k pnqwkpnq (3.71)

for compactness. Moreover, we remark that in (3.70) we are considering a normalized step size

µkpnq, similarly to the one adopted in (2.53). Then, replacing eipnq with ĕipnq in Eq. (3.3), we

arrive at the following cost function:

JRFF
ζ,k pnq �

�sζkpnq� βζkpnq��1�sζkpnq�¸
iPNk

cikpnqĕ2
i pnq, (3.72)

where sζkpnq is defined as in (3.2). Following a rationale similar to the one employed in Sec. 3.1,

we introduce the auxiliary variable αk, and derive (3.72) with respect to it. Thus, we arrive at

the following stochastic gradient descent rule:

αkpn � 1q�αkpnq�µζϕ1kpnq
��¸

jPNk

c jkε̆
2
jpnq � βζkpnq

�� , (3.73)

where µζk ¡ 0 is a step size as before, ϕ1kpnq is defined as in (3.6), and

ε̆kpnq � r1 � ζkpnqsε̆pn � 1q � ζkpnqekpnq (3.74)

denotes the last measurement of ĕk that we have access to, due to the sampling of node k.

Much like the AS-dNLMS algorithm of Sec. 3.1, the choice of the parameter β in (3.73)

depends on the measurement noise power profile throughout the network. To circumvent this,

we replace β by βkpnq given by Eq. (3.40) and µζ with µζkpnq by (3.50) in (3.73). One thus

obtains

αkpn � 1q�αkpnq�µζkpnqϕ1kpnq
��¸

jPNk

c jkε̆
2
jpnq � γpσ2

Nk
pnqζkpnq

�� . (3.75)

The resulting algorithm is named as Dynamic-Tuning Adaptive-Samping-and-Censoring

(DTASC) RFF-dKNLMS.

Proposed algorithms 117

3.3.1 Simulation results

Next, we compare the performance of our DTASC-RFF-dKNLMS algorithm to that of other

state-of-the-art solutions considering two simulation scenarios (Secs. 3.3.1.1 and 3.3.1.2), and

using the network with V � 20 nodes depicted in Fig. 42(a). The noise power σ2
vk

is shown in

Fig. 42(b) for k � 1, � � � ,V , and the input signal ukpnq is a white Gaussian noise with zero mean

and unit variance. The results were obtained over an average of 500 realizations.

Besides the proposed DTASC-RFF-dKNLMS scheme, we also consider in the simula-

tions the RFF-dKNLMS algorithm with two different censoring approaches: (i) the censor-

ing mechanism of [83], and (ii) a random censoring policy, in which Vs nodes are selected

randomly at each iteration to remain uncensored. To enable the comparison between DTASC-

RFF-dKNLMS and the censoring strategy of [83], their parameters γ and τn were selected to

obtain roughly one node uncensored per iteration in steady state in each case. In the random

censoring technique, censored nodes are prevented from updating their local estimates, in a

similar fashion to DTASC-RFF-dKNLMS. In addition, and for the sake of comparison, we also

show results obtained with three other approaches: the RFF-dKNLMS algorithm with all nodes

uncensored, the RFF-dKNLMS scheme with a noncooperative communication policy, and the

linear dNLMS with all nodes uncensored. In all cases, we adopt rµk � 1 for every node k and

δr � 10�5.

1 5 10 15 20

Node k

0.1

0.8

1.6

(b
)
σ

2 v
k

×10−2

Figure 42: (a) Network topology, with the connections between node #1 and its neighbors
highlighted, and (b) σ2

vk
used in the experiments.

3.3.1.1 Toy Example

Firstly, we consider a toy example in which dkpnq � zT
k pnqwo � vkpnq, where wo is an

unknown system [1]. In our simulations, we randomly generated the D � 50 coefficients of

wo following a Uniform distribution in r�1,1s. At each iteration, zkpnq is generated using the

Proposed algorithms 118

past M � 2 samples of ukpnq and RFFs drawn from a multivariate Gaussian distribution with

σ2�10�2.

We assume that the RFFs utilized to generate zkpnq are the same employed by the RFF-

dKNLMS algorithm. Although not realistic, this assumption allows us to adopt the network

mean-square deviation (NMSD) as a performance indicator, which is given by NMSDpnq �
1
V

°V
k�1 Et∥wo � wkpnq∥2u. Specifically for the dNLMS algorithm, we adopt M � D � 50

to enable the comparison between wo and the coefficients of the adaptive filter. In addition,

we set γ � 10 for our DTASC-RFF-dKNLMS scheme and, to preserve its convergence rate,

∆n � 5000. For the censoring mechanism of [83], named COKE by the authors, we adopted

τn � 0.05. This parameter was set so as to achieve roughly the same number of uncensored

nodes per iteration as the DTASC-RFF-dKNLMS algorithm.

In Fig. 43, we show (a) the NMSD curves, (b) the number of uncensored nodes, and (c)

the number of multiplications per iteration. We can see that DTASC-RFF-dKNLMS keeps

the nodes uncensored during the transient phase [Fig. 43(b)] and thus converges as fast as RFF-

dKNLMS with Vs � 20 nodes uncensored, which can be considered as a lower bound regarding

the NMSD [Fig. 43(a)]. In contrast, the RFF-dKNLMS with Vs � 2 nodes randomly uncen-

sored clearly presents a slower convergence rate. The algorithm of [83] outperforms the random

censoring technique while censoring more nodes, but converges slightly slower than DTASC-

RFF-dKNLMS and the RFF-dKNLMS algorithm with Vs � 20 nodes uncensored. In terms of

the computational cost, the DTASC-RFF-dKNLMS algorithm demands less multiplications per

iteration in steady state than any other solution. On average, DTASC-RFF-dKNLMS reduces

the burden by roughly 95% in comparison with the RFF-dKNLMS algorithm with Vs � 20

nodes uncensored and 90% in comparison with the solution of [83] in steady state. This clearly

compensates the slight increment in computational burden during the transient phase.

3.3.1.2 Nonlinear Channel Identification

In this subsection, we consider that dkpnq� ykpnq�0.2y2
kpnq�0.1y3

kpnq�vkpnq, where ykpnq
is the output of a linear channel described by Hpzq � 0.3482� 0.8704z�1� 0.3482z�2 with

input ukpnq. In this case, we consider M � 3 and D � 500 features generated with σ2 � 1.

Moreover, we adopt the network MSE (NMSE) as a performance indicator, which is given

by NMSEpnq � 1
V

°V
k�1Etĕ2

kpnqu, and shown in Fig. 3(a) for all the algorithms. We selected

Proposed algorithms 119

0 10 20 30

Iterations (×103)

-10

0

10

(a
)

N
M

S
D

(d
B

)

0

10

20

(b
)
V
s
(n

)

0 10 20 30

Iterations (×103)

0

5

10

(c
)
⊗
×

10
3

−30

−20

−10

RFF-dKNLMS (Vs = 20)

RFF-dKNLMS (non-coop.)

RFF-dKNLMS (Vs = 2)

COKE [83]

dNLMS (Vs = 20)

DTASC-RFF-dKNLMS

Figure 43: Simulation results obtained in the toy example scenario. (a) NMSD curves, (b)
number of uncensored nodes, and (c) multiplications per iteration.

γ � 10 for the DTASC-RFF-dKNLMS algorithm and set ∆n � 104 in order to preserve its

convergence rate. For the solution of [83], we considered τn � 10�3. As in the previous

simulation, this parameter was selected so as to obtain roughly the same number of uncensored

nodes per iteration as DTASC-RFF-dKNLMS at steady state.

We observe from Fig. 44 that, similarly to what was seen in Fig. 43, DTASC-RFF-dKNLMS

keeps the nodes uncensored during the transient phase and thus preserves the convergence rate

of RFF-dKNLMS with Vs � 20 nodes uncensored. In terms of the computational cost, the

DTASC-RFF-dKNLMS algorithm carries out less multiplications per iteration in steady state

in comparison with any other solution, except for the linear dNLMS algorithm, whose cost was

much lower in this scenario due to the adoption of M � 3. Once again, we can see that DTASC-

RFF-dKNLMS outperforms the censoring algorithm of [83] in terms of the convergence rate

and computational cost.

3.4 Adaptive Sampling for Multitask Diffusion Networks

In this section, we extend the AS-dNLMS algorithm of Sec. 3.1 to the multitask networks

of Sec. 2.2.4. Similarly to the single-task case, the idea is that, if node k is not sampled, the

gradient-related correction term should not be added to the combined estimate wkpnq in the

adaptation step, as was done in Eq. (3.1). Applying this idea to Eq. (2.29a), one obtains

ψkpn � 1q�wkpnq�µkζkpnq
$&% ¸

iPNkXCpkq

bikeikpnquipnq
δr�}uipnq}2 �η

¸
iPNkzCpkq

ρ̄kirwipnq�wkpnqs
,.- , (3.76)

Proposed algorithms 120

0 20 40 60 80

Iterations (×103)

−20

−15

−10

−5

(a
)

N
M

S
E

(d
B

)

-15

-20

0

10

20

(b
)
V
s
(n

)

0 20 40 60 80

Iterations (×103)

0

50

100

(c
)
⊗
×

1
0

3

−30

−20

−10

RFF-dKNLMS (Vs = 20)

RFF-dKNLMS (non-coop.)

RFF-dKNLMS (Vs = 2)

COKE [83]

dNLMS (Vs = 20)

DTASC-RFF-dKNLMS

Figure 44: Simulation results obtained for nonlinear channel identification. (a) NMSE curves,
(b) number of uncensored nodes, and (c) multiplications per iteration. For better visualization,
we applied a moving-average filter with 64 coefficients to the curves.

where we normalized the first summation by the norm of the regressor vector uipnq. This makes

it easier to choose the adaptation steps µk, since the selection of this parameter depends on

the norm of the regressor vectors for the non-normalized versions of the algorithm [1,125]. We

recall that, as mentioned in Sec. 2.2.4, the bik are convex weights satisfying (2.10), as mentioned

in Secs. 2.2 and 2.2.4.

As before, the question that arises is how to adjust the sampling. In this regard, we remark

that it would be convenient if each node k were influenced only by neighbors belonging to the

same cluster, as these are the ones that share the same optimal system. This change in relation

to the single-task algorithm may allow, for example, clusters whose nodes have already reached

estimates sufficiently close to their optimal systems to no longer be sampled. On the other hand,

in clusters where the learning task is still far from steady-state performance, it would be possible

to maintain the adaptation of the nodes. In both scenarios, adapting the sampling mechanism to

nodes in one cluster does not affect those belonging to other clusters.

Furthermore, comparing Eqs. (2.12a) and (2.29a), we notice that a difference between the

multitask dLMS and the single-task one consists in the fact that, in the first case, each node

k uses information from all neighbors belonging to the same cluster already in the adaptation

stage. This could also be incorporated into the sampling mechanism in its multitasking version.

Thus, we change the cost function of Eq. (3.3) to

Jmulti.
ζ,k pnq � �sζkpnq� βζkpnq��1�sζkpnq� ¸

iPNkXCpkq
cikēipnq, (3.77)

Proposed algorithms 121

where

ēipnq �
¸

jPNiXCpiq
b jie2

jipnq (3.78)

uses the data from d jpnq and u jpnq from every neighboring node j belonging to the same cluster

as node i.

3.4.1 Simulation Results

In this section, simulation results are presented to verify the performance of the multitask

AS-dNLMS algorithm. These results were obtained from an average of 100 independent real-

izations. To facilitate visualization of the results, a moving average filter with 64 coefficients

was applied to the curves presented.

For the simulations, a network was randomly generated with 28 nodes grouped into four

different clusters, each with seven nodes, numbered from C1 to C4 . The resulting network is

shown in Fig. 45(a). Furthermore, each node k is subject to a different noise variance σ2
vk

and

uses a distinct adaptation step µk, as shown in Fig. 45(b).

4 8 12 16 20 24 28

Nó k

1

5

10

(b)

×10−3

σ2
vk

µk

Figure 45: (a) The network considered in the simulations, in which the nodes are grouped into
four distinct clusters, numbered as C1 to C4. (b) Noise power σ2

vk
and adaptation step µk for

k � 1, � � � ,V .

The input signal ukpnq is Gaussian with zero mean and unit variance for all nodes k, k �
1, � � � ,V . The optimal system wo

Ci
associated with cluster Ci was generated as

wo
Ci
� wo

common � wo
locali ,

where wo
common is a portion common to all clusters and wo

locali
is specific to cluster Ci. The

Proposed algorithms 122

coefficients of the vector wo
common were generated according to a Uniform distribution in the

interval r�1,1s. This vector was then normalized to present unit norm. In contrast, the coeffi-

cients of the vectors wo
locali

were generated according to a Uniform distribution in the interval

r�2 �10�2, 2 �10�2s. The length of the optimal systems is M � 10. Furthermore, to simulate

an abrupt change in the environment, halfway through each realization the order of the vector

coefficients wo
Ci

is reversed.

For the selection of the combination weights c jk and b jk in (2.29a), (2.29b), and (3.76),

we consider the normalized version of ACW, as in Secs. 3.1 and 3.2. Moreover, we adopted

δr � δc � 10�5 as regularization factors. To simplify the choice of the parameters, we adopted

cik � bik for every i and k. For the weights ρ̄ik, we adopted the Uniform rule. For the selection of

η, we ran preliminary simulations considering the scenario described with different values for

this parameter. Since η � 10�3 led to the best steady-state performance in our tests, we adopted

this value in the simulations. As a performance indicator, we adopt the NMSD.

First, a comparison is made between the multitask AS-dNLMS and dNLMS algorithms

with Vs nodes randomly sampled at each iteration, with Vs P t7, 14, 21, 28u. It is worth not-

ing that Vs � 28 corresponds to the case in which all nodes are sampled. For reference, the

result obtained with the single-task dNLMS algorithm for the same simulation scenario with

all nodes sampled is also presented. For each algorithm, the NMSD curves, and the average

number of sampled nodes and multiplications per iteration are shown in Figs. 46(a), 46(b),

and 46(c), respectively. For the proposed algorithm, β � 0.09 and µζ � 0.055 were adopted.

These values were selected because they led to the same number of multiplications per iteration

in steady state as that of the single-task dNLMS algorithm, while maintaining a good perfor-

mance. Analyzing Fig. 46(a), we notice that the single-task dNLMS algorithm is outperformed

in steady state performance by the multitask solutions, which illustrates the importance of con-

sidering regional variations in the optimal system. In regards to the multitask algorithms, we

notice that the random sampling significantly affects the convergence rate, as was observed in

Secs. 3.1.6 and 3.2.6 for the single-task scenario. On the other hand, the proposed algorithm

presents approximately the same convergence rate as that of multitask dNLMS with all sampled

nodes. Observing Fig. 46(b), it is possible to see that the AS-dNLMS algorithm keeps all nodes

sampled in the transient. Furthermore, the proposed algorithm was able to detect the change

in the environment and resume the sampling of the nodes, which allows it to again achieve a

convergence rate similar to that of multitask dNLMS after the abrupt change as well. Analyz-

Proposed algorithms 123

ing Fig. 46, we notice that the proposed algorithm presents a higher computational cost than

the dNLMS algorithm with all nodes sampled during the transient. However, after the multitask

AS-dNLMS algorithm reaches steady state, the computational cost is significantly reduced with

the decrease in the number of nodes sampled per iteration. On average, the AS-dNLMS algo-

rithm performs approximately 4211 multiplications per iteration during steady state, compared

to 6436 for the multitask dNLMS algorithm with all nodes sampled and 4268 for the single-task

algorithm.

−60

−40

−20

0

(a
)

N
M

S
D

(d
B

)

4
12
20
28

(b
)
V
s
(n

)

0 2 4 6 8 10 12 14 16

Iterações (×104)

3,5

5,5

7,5

(c
)
⊗
×

10
3

−60

−40

−20

0

(a
)

N
M

S
D

(d
B

)

dNLMS Multi. (Vs=28)

dNLMS Multi. (Vs=21)

dNLMS Multi. (Vs=14)

dNLMS Multi. (Vs=7)

dNLMS Mono. (Vs=28)

AS-dNLMS Multi.

Figure 46: Comparison between the multitask dNLMS algorithm with Vs nodes sampled ran-
domly per iteration (Vs P t7, 14, 21, 28u), the multitask AS-dNLMS algorithm (β � 0,09 and
µζ � 0,055), and single-task dNLMS algorithm with all nodes sampled. (a) NMSD curves, (b)
number of nodes sampled, and (c) number of multiplications per iteration.

In order to verify the effect of the sampling mechanism on different clusters, the previous

simulation was repeated with the multitask AS-dNLMS algorithm, but considering a scenario

in which the noise variance in the nodes belonging to cluster C4 of Fig. 16(a) was increased

by tenfold. The results are shown in Fig. 47. In Fig. 47(a), in addition to the NMSD curve of

the network as a whole, we also present curves with the average NMSD of the nodes in each

cluster. Furthermore, we show the total number of nodes sampled per iteration in the network as

whole in Fig. 47(b), and in Fig. 47 (c) we present the number of nodes sampled in each cluster.

We notice that the steady-state NMSD level in the cluster C4 is greater than that found in the

Proposed algorithms 124

other clusters, as expected. Analyzing Fig. 47(c), we can also see that that, due to the greater

noise variance in this cluster, the sampling of its nodes is maintained for more iterations in the

transient, in comparison with the other clusters. Furthermore, in steady state, nodes sampled in

cluster C4 than in the rest of the network. For clusters C1 to C3, we can see a similar behavior

to that observed for the network as a whole in the simulations of Fig. 46. This shows that

the sampling mechanism works in an isolated manner in each cluster, which prevents adverse

phenomena in a given region from affecting the sampling in the network as a whole.

−40

−20

0

20

(a
)

N
M

S
D

(d
B

) Global

Cluster C1
Cluster C2
Cluster C3
Cluster C4

4
12
20
28

(b
)
V
s
(n

)

0 2 4 6 8 10 12 14 16

Iterações (×104)

1
3
5
7

(c
)
V
s
(n

)

Figure 47: Results obtained with the multitask AS-dNLMS algorithm (β� 0,09 e µζ � 0,055)
considering the network of Fig. 16(a) as a whole, and each cluster individually. (a) NMSD
curves, (b) Number of nodes sampled per iteration in the network as a whole, and (c) in each
cluster.

3.5 Conclusions

In this chapter, several adaptive sampling and censoring mechanisms were derived for dif-

fusion networks. In Sec. 3.1, we presented the AS-dNLMS algorithm, which served as the basis

for the solutions proposed in the other sections. As shown in Sec. 3.1, this algorithm maintains

the sampling of the nodes when the error is high in magnitude, and ceases to sample them oth-

erwise. As a result, it can perform well under a wide range of scenarios. In particular, we were

able to attest its satisfactory performance in a simulation with real-world temperature data. Nev-

ertheless, AS-dNLMS does present two main weaknesses: its tracking capability, as observed in

Sec. 3.1.6.4, and the fact that the proper choice of its parameter β depends on prior knowledge

Proposed algorithms 125

of the measurement noise power throughout the network. These weaknesses were addressed

in Sec. 3.2, in which two modified versions of AS-dNLMS were presented. By estimating the

noise power in an online manner, the DTAS-dNLMS algorithm eliminates the need for prior

knowledge of the noise variance, whereas the DTRAS-dNLMS algorithm further enhances the

proposed solution by incorporating a mechanism that resets the sampling of the nodes when

changes in the environment are detected. Thus, the tracking capability of the DTRAS-dNLMS

algorithm is significantly improved in comparison with that of the DTAS-dNLMS and AS-

dNLMS algorithms. Then, in Secs. 3.3 and 3.4, we extended the algorithms presented in the

previous sections to the kernel-based and multitask networks of Secs. 2.2.5 and 2.2.4, respec-

tively. Simulation results exemplify the good behavior of the proposed sampling and censoring

techniques in these scenarios as well.

It should be noted that algorithms have been proposed for the sampling of graph signals in

GSP that utilize slightly different frameworks, such a graph spectral-domain concepts [44–46].

These strategies seek to take advantage of the fact that, when dealing with real-world data,

graph signals often admit sparse representations in the frequency domain. The goal in these

cases is to determine a subset of nodes to be sampled, such that the signal over the whole graph

can be recovered from noisy measurements of the signal collected only at that subset. Due to

the different nature of these applications in comparison with the ones studied in this chapter,

a direct comparison between these techniques and the proposed algorithms is not possible in a

straightforward manner. However, it may be interesting to study in future works if the proposed

solutions can be modified to work in the spectral domain in GSP problems.

Lastly, it is worth noting that we can establish an analogy between the sampling of the

nodes in diffusion networks and the adoption of VSS algorithms in the adaptive filtering liter-

ature [269–275]. These types of solutions seek to implement a step size that varies over time

according to the estimation error. The idea is that, by employing a greater step size when the

error is high, and a smaller one otherwise, we can speed the convergence up while retaining a

good steady-state performance [269–275]. Building on this analogy, we have proposed a VSS

adaptive filter based on the algorithms from Secs. 3.1 and 3.2 in [276]. However, since this

algorithm is not directly related to adaptive diffusion networks apart from its inspiration, we

believe that it is out of the scope of this work to present it and explain it in detail.

126

4 PERFORMANCE ANALYSIS: THE IMPACTS OF SAMPLING

In the simulations of Figs. 17, 28, 29, 35, 37, and 41, we have noticed that, in stationary

environments, the sampling of less nodes leads to a slight reduction in the steady-state NMSD.

The goal of this chapter is to investigate why this occurs through a theoretical analysis on the

performance of adaptive diffusion networks with sampling mechanisms. This may be deemed a

matter of practical interest, as the aforementioned simulations seem to suggest that, by control-

ling the sampling of the nodes appropriately, one may simultaneously reduce the computational

cost and improve the performance in steady state in stationary environments, while preserving

the convergence rate of the original dNLMS algorithm.

To the best of our knowledge, this phenomenon has not been pointed out in the literature.

For example, in [277–279], a scenario was considered in which some of the nodes are not capa-

ble of performing the adaptation step. These are referred to as “uninformed” nodes, in contrast

with the “informed” ones, which can perform it. In those works, it was shown that, in com-

parison with a network in which every node is informed, the steady-state NMSD can decrease,

increase, or remain unchanged, as we turn some of the nodes into uninformed ones. However,

differently from the scenario considered in the simulations of Figs. 17, 28, 29, 35, 37, and 41,

informed nodes carry out the adaptation step at every time instant, whereas uninformed nodes

never do so. Moreover, in this case, the enhancement or the deterioration in the steady-state

NMSD depends on the noise power at the informed or uninformed nodes. In other words,

prior knowledge of the noise variance at each node is required. This differs from the behavior

observed in the simulations of the aforementioned figures, in which the nodes are sampled ran-

domly, and this still leads to a decrease in the steady-state NMSD. Furthermore, in [146–148],

the authors study networks in which the adaptation and combination steps are not necessarily

carried out simultaneously by all the nodes at every iteration. These networks are referred to as

“asynchronous,” in contrast with the “synchronous” ones that appear, e.g., in [1–5]. From this

perspective, the networks with sampling mechanisms can be deemed as a type of asynchronous

network. However, in those papers, the reduction in the steady-state NMSD as a result of sam-

pling was not observed. For this reason, in this section we shall refer to the networks in which

the nodes are permanently sampled as “synchronous” ones, whereas the networks in which the

sampling of the nodes may cease shall be referred to as “asynchronous.”

Performance analysis: the impacts of sampling 127

To simplify the analysis, in this chapter, we shall consider the dLMS algorithm of (2.12),

rather than its normalized version considered in Chapter 3. Therefore, we focus our attention

on the linear and single-task type of scenario examined in Sec. 2.2. Moreover, for simplicity,

we initially analyze the case in which the nodes are sampled randomly. This type of solution

is covered in Sec. 4.1. Based on the results derived therein, in Sec. 4.2, we obtain a simplified

model for the NMSD of the dTRAS-dLMS algorithm.

4.1 The Effects of Random Sampling

We begin by noticing that the we can incorporate the concept of sampling into the dLMS

algorithm of (2.12) in a similar manner to what was done in Sec. 3.1 with Eq. (3.1). Multiplying

the correction term in (2.12a) by the binary variable ζkpnq, we get

ψkpnq�wkpn � 1q � ζkpnqµkekpnqukpnq (4.1)

In our analysis, we are especially interested in the NMSD. For the clarity of the exposition,

it is convenient to introduce the quantities

ξi jpnq ≜ EtrwT
i pnqrw jpnqu (4.2)

for i � 1, � � � ,V and j � 1, � � � ,V , where rw is the weight error vector given by (2.16). Other-

wise, the notation could become overloaded. It is worth noting that

ξkkpnq � Et}rwkpnq}2u � MSDkpnq. (4.3)

We then introduce the matrix Ξpnq such that rΞpnqsi j�ξi jpnq, i.e.,

Ξpnq �

���������
ξ11pnq ξ12pnq � � � ξ1Vpnq
ξ21pnq ξ22pnq � � � ξ2Vpnq
...

...
. . .

...

ξV1pnq ξV2pnq � � � ξVVpnq

��������� , (4.4)

which allows us to recast the NMSD as

NMSDpnq � 1
V

TrtΞpnqu. (4.5)

Performance analysis: the impacts of sampling 128

Furthermore, defining the V2 � 1 vector

ξpnq ≜ vectΞpnqu � rξ11pnq ξ21pnq � � � ξVVpnqsT, (4.6)

and recalling that

TrtM1M2u � vectM1uTvectM2u (4.7)

for any arbitrary matrices M1 and M2 of compatible dimensions, (4.5) can be written as

NMSDpnq � 1
V

bTξpnq, (4.8)

where we have defined b ≜ vectIVu.

Resuming our analysis, by subtracting both sides of (4.1) from wo, and replacing (2.1)

and (2.7) in the resulting equation, after some algebraic manipulations, we can write

rψkpnq � rIM � µkζkpnqukpnquT
k pnqsrwkpn � 1q � µζkpnqukpnqvkpnq, (4.9)

where we have introduced rψkpnq ≜ wo � ψkpnq. (4.10)

On the other hand, from (2.12b), we observe that

rwkpnq �
¸
iPNk

cikrψipnq. (4.11)

We remark that, for the sake of simplicity, we are considering static combination weights.

If we multiply both sides of (4.11) by rwT
k pnq from the left, and use (2.12b) again, we obtain

after some algebra

}rwkpnq}2 �
¸
iPNk

¸
jPNk

cikc jkrψT
j pnqrψipnq. (4.12)

Replacing (4.9) in (4.12), we obtain

}rwkpnq}2 �
¸
iPNk

¸
jPNk

cikc jk

!
rIM�µ jζ jpnqu jpnquT

j pnqsrw jpn�1q � µ jζ jpnqu jpnqv jpnq
)T

�
!
rIM�µiζipnquipnquT

i pnqsrwipn�1q�µiζipnquipnqvipnq
)
.

(4.13)

To examine the MSD of node k, we need to take the expectations from both sides of (4.13).

Performance analysis: the impacts of sampling 129

At this point, we make a few assumptions to make the analysis more tractable:

A1. The weight error vectors rwipn�1q are statistically independent of u jpnq for any pair i and

j. This is a multi-agent version of the independence theory, a common assumption in the

adaptive filtering literature [125, 126];

A2. The measurement noise vkpnq is zero-mean with variance σ2
vk

, i.i.d. across n, and inde-

pendent from any other variable for k � 1, � � � ,V;

A3. The input signal at each node k is zero-mean and white Gaussian with variance σ2
uk

.

Hence, the autocorrelation matrix of ukpnq is given by Ruk ≜ EtukpnquT
k pnqu � σ2

uk
I;

A4. For every node k, ζkpnq is independent from any other variable, and drawn from a

Bernoulli distribution, such that ζkpnq � 1 with probability 0 ¤ pζk ¤ 1 and ζkpnq � 0

with probability 1�pζk . Furthermore, for any pair of distinct nodes, ζipnq and ζ jpnq, i , j,

are statistically independent from each other;

A5. At any time instant n, uipnq is statistically independent from u jpnq for any pair of nodes i

and j, i , j.

With these assumptions at hand, we can continue with our analysis. For the sake of brevity,

we shall omit here the intermediate steps and focus on the main results obtained from (4.13).

These results are justified in detail in Appendix D. For the scenario described, using (2.10), we

can obtain

ξkkpnq�
V̧

i�1

c2
ikτiiξiipn�1q�

V̧

j�1

V̧

ℓ�1
ℓ, j

c jkcℓkτ jℓξ jℓpn�1q � M
V̧

q�1

c2
qkµ

2
q pζqσ

2
uq
σ2

vq
, (4.14)

where for the sake of compactness we have introduced

τ jℓ ≜

$''&''%
1 � µ j pζ jσ

2
u j
� µℓpζℓσ2

uℓ � µ jµℓpζ j pζℓσ
2
u j
σ2

uℓ if j , ℓ

1 � 2µ j pζ jσ
2
u j
� µ2

j pζ jσ
4
u j
pM � 2q otherwise.

(4.15)

Hence, we can see that MSDkpnq depends on the MSD of its neighbors at the previous iter-

ation, as well as on the trace of the cross correlation matrices between rw jpn�1q and rwℓpn � 1q,
i.e., ξ jℓpn � 1q�EtrwT

j pn � 1qrwℓpn � 1qu, for every pair of nodes j and ℓ in the neighborhood

of node k. The impact of each of these terms on the behavior of node k depends on the network

Performance analysis: the impacts of sampling 130

topology, on the step sizes, on the sampling probabilities, and on the variance of the input signal

in the nodes involved. Moreover, if j � ℓ, the filter length M plays a role in the dynamic of the

MSD as well. Lastly, the noise variance in the neighborhood of node k also impacts its MSD.

From (4.14), it becomes evident that we also need to study how the trace of the cross-

correlation matrix of rw jpnq and rwℓpnq, with j , ℓ, evolves over time. Again, we focus on the

main result and leave the details for Appendix D. Using assumptions A1 to A5, we can obtain

the following recursion:

ξ jℓpnq �
V̧

t�1

ct jctℓτttξttpn � 1q �
V̧

r�1

V̧

s�1
s,r

cr jcsℓτrsξrspn � 1q � M
V̧

z�1

cz jczℓµ
2
z pζzσ

2
uz
σ2

vz
. (4.16)

From (4.14) and (4.16), we observe that ξkkpnq can be seen as a linear combination of the

ξiipn � 1q and ξ jℓpn � 1q, plus a constant term that aggregates information from the step sizes,

input signal power, and noise variance in the neighborhood of node k. An analogous procedure

can be applied to each ξ jℓpnq based on (4.16). Hence, we should be able to write

ξpnq � Γξpn � 1q � Msσ, (4.17)

where Γ is a matrix whose k-th row determines how exactly each ξi jpn � 1q influences the

corresponding term in the current iteration, and sσ is a vector that aggregates the information

from the network topology, step sizes, input signal variance, and noise power from the constant

terms that appear in (4.14) and (4.16).

Let us now aggregate the combination weights into a V � V matrix C, such that rCsi j�ci j.

Similarly, let us collect the information from the step sizes, sampling probabilities, input signal

power, and noise variances from the last summations in the right-hand side (rhs) of (4.14)

and (4.16) in a V�V diagonal matrixΠ, such that its k-th element is equal to µ2
k pζkσ

2
uk
σ2

vk
, i.e.,

Π�

���������
µ2

1 pζ1σ
2
u1
σ2

v1
0 � � � 0

0 µ2
2 pζ2σ

2
u2
σ2

v2
� � � 0

...
...

. . . 0

0 0 � � � µ2
V pζVσ

2
uV
σ2

vV

���������. (4.18)

Performance analysis: the impacts of sampling 131

In this case, we notice that CΠCT yields

CΠCT �

��������������

V̧

k�1

c2
k1µ

2
k pζkσ

2
uk
σ2

vk

V̧

k�1

ck1ck2µ
2
k pζkσ

2
uk
σ2

vk
� � �

V̧

k�1

ck1ckVµ
2
k pζkσ

2
uk
σ2

vk

V̧

k�1

ck2ck1µ
2
k pζkσ

2
uk
σ2

vk

V̧

k�1

c2
k2µ

2
k pζkσ

2
uk
σ2

vk
� � �

V̧

k�1

ck2ckVµ
2
k pζkσ

2
uk
σ2

vk

...
...

. . .
...

V̧

k�1

ckVck1µ
2
k pζkσ

2
uk
σ2

vk

V̧

k�1

ckVck2µ
2
k pζkσ

2
uk
σ2

vk
� � �

V̧

k�1

c2
kVµ

2
k pζkσ

2
uk
σ2

vk

��������������
. (4.19)

Consequently, we may write the V2 � 1 vector sσ in (4.17) as

sσ � vectCΠCTu �

���������

°V
i�1 c2

i1µ
2
i pζiσ

2
ui
σ2

vi°V
i�1 ci2ci1µ

2
i pζiσ

2
ui
σ2

vi

...°V
i�1 c2

iVµ
2
i pζiσ

2
ui
σ2

vi

��������� . (4.20)

As for the matrix Γ, from (4.14) and (4.16) we obtain that

Γ � Ωd C. (4.21)

The matrix C introduced in (4.21) is defined as

C ≜ pC b CqT, (4.22)

whereas Ω is given by

Ω ≜ 1V2 b vectMτuT, (4.23)

where Mτ is a V�V matrix such that rMτs jℓ � τ jℓ. Hence, we can continue with the analysis of

Eq. (4.17). Considering an initial condition ξ0 � ξp0q, the recursive application of (4.17) leads

to

ξpnq � Γnξ0 � M
n�1̧

ni�0

Γnisσ. (4.24)

If the algorithm is initialized with wkp0q � 0M for every node k, we have that rwkp0q � wo. Thus,

for any i and j, we have that ξi jp0q � EtrwT
i p0qrw jp0qu � EtwoTwou � }wo}2, and, consequently,

ξ0 � }wo}21V2 . (4.25)

Performance analysis: the impacts of sampling 132

Hence, replacing (4.25) in (4.24) and observing that
°n�1

ni�0 Γ
ni � rIV2 � Γs�1rIV2 � Γns, we

obtain

ξpnq�}wo}2Γn1V2�MrIV2�Γs�1rIV2�Γnssσ. (4.26)

Thus, considering (4.26) and (4.8), we can write

NMSDpnq� 1
V

"
}wo}2bTΓn1V2�MbTrIV2�Γs�1rIV2�Γnssσ*. (4.27)

Assuming that

ρpΓq 1, (4.28)

where ρp�q denotes the spectral radius of a matrix, i.e., the maximum of the absolute values of its

eigenvalues, we have that limnÑ8 Γn � 0V2�V2 . In this case, we therefore observe from (4.27)

that

NMSDp8q � M
V

bTrIV2�Γs�1sσ. (4.29)

It is worth noting that although wo appears in (4.26) and (4.27), we do not need to know it

beforehand. Instead, we only need to know its norm. This is usually not a problem, since the

norm of the optimal system can be adjusted by using adaptive gain control. Furthermore, we

remark that ξi jpnq � ξ jipnq, which means that the matrix Ξ defined in (4.4) is symmetric. Thus,

the vector ξpnq given by (4.2) has VpV � 1q{2 duplicated entries. Although we could remove

these elements from our model to make it more efficient from a computational perspective, and

make the appropriate modifications where needed, we opted not to make this change for the

clarity of the exposition. This is due to the fact that we are not primarily concerned with the

computational complexity of the proposed model, and we believe that the formulation adopted

is more convenient for the calculations. However, we would like to reinforce that this change is

possible, and can reduce the amount of computations significantly, especially if V is large.

The models described by (4.27) and (4.29) can be applied to networks in which each node

k has a distinct step size µk, input signal variance σ2
uk

, and sampling probability pζ . However, it

is very difficult to draw qualitative conclusions about the network performance from it. For this

reason, in the remainder of this section we focus our attention on the particular case in which

these parameters have the same value for every node in the network. As will become clear,

this will give us some insights into the effects of sampling on the behavior of adaptive diffusion

networks. Thus, we shall proceed with the analysis with an additional assumption:

Performance analysis: the impacts of sampling 133

A6. All the nodes in the network employ the same step size, i.e., µ1 � � � � � µV � µ ¡ 0

and are sampled with the same probability, i.e., pζ1 � pζ2 � � � � � pζV � pζ . Moreover,

the input signals have the same variance throughout the network, i.e., σ2
u1
� σ2

u2
� � � � �

σ2
uV
� σ2

u.

In this case, we notice from (4.15) that we may write

τkk � τa ≜ 1 � 2µpζσ2
u � µ2 p2

ζσ
4
u (4.30)

for k � 1, � � � ,V , and

τ jℓ � τb ≜ 1 � 2µpζσ2
u � µ2 pζσ4

upM � 2q (4.31)

for j , ℓ.

Moreover, in this case we notice from (4.18) that

Π � µ2 pζσ2
uRv, (4.32)

where Rv is a diagonal matrix such that its k-th element is equal to σ2
vk

, i.e.,

Rv �

���������
σ2

v1
0 � � � 0

0 σ2
v2

� � � 0
...

...
. . . 0

0 0 � � � σ2
vV

��������� . (4.33)

Consequently, we notice that sσ can be recast as

sσ � µ2 pζσ2
uσ, (4.34)

where we have introduced

σ ≜ vectCRvCTu. (4.35)

Finally, we remark that in this case the matrix Ω given by (4.23) can be written as

Ω � rΩ1 Ω2 � � � ΩVs, (4.36)

in whichΩi is a V2 �V matrix whose elements in the i-th column are all equal to τb, and whose

Performance analysis: the impacts of sampling 134

other elements are all equal to τa, i.e.

Ωi �

i-th column

Ó�������

�������
τa � � � τa τb τa � � � τa
τa � � � τa τb τa � � � τa
...
. . .

...
...
...
. . .

...

τa � � � τa τb τa � � � τaloooooooooooooooooooomoooooooooooooooooooon
V columns

. (4.37)

For illustration purposes, in Appendix E, we calculate the matrix Γ for a network with two

nodes considering Assumption A6. Under these circumstances, (4.26) can be recast as

ξpnq�}wo}2Γn1V2�µ2 pζMσ2
urIV2�Γs�1rIV2�Γnsσ. (4.38)

Thus, (4.27) and (4.29) can be rewritten as

NMSDpnq� 1
V

"
}wo}2bTΓn1V2 � µ2 pζMσ2

ubTrIV2�Γs�1rIV2�Γnsσ
*

(4.39)

and

NMSDp8q � µ
2 pζMσ2

u

V
bTrIV2�Γs�1σ, (4.40)

respectively.

Lastly, it is interesting to notice that we can obtain the theoretical MSD of the LMS algo-

rithm [125,126,280] as a special case of (4.39). In this situation, we have that V � 1, and b, σ,

C, Ω and Γ degenerate into b � 1, σ � σ2
v , C � 1, Ω � τb and Γ � τb, respectively. Replacing

these results in (4.39), we obtain

MSDpnq � p}wo}2 � χLMSqτn
b � χLMS,

with χLMS given by

χLMS ≜
µMσ2

v

2 � µσ2
upM � 2q . (4.41)

In order to draw further insights on the behavior of adaptive diffusion networks and on

the effects of sampling on their performance, we break our analysis down into two cases: one

Performance analysis: the impacts of sampling 135

for the noncooperative strategy, which shall be analyzed in Sec. 4.1.1, and another one for the

cooperative schemes. For the latter, we shall obtain an approximate model in Sec. 4.1.2, which

will enable us to reach interesting qualitative conclusions.

4.1.1 The noncooperative Case

For the noncooperative case, we have ckk � 1 for any k � 1, � � � ,V , and cik � 0 if i , k.

Thus, we can replace C by IV2 in (4.21) and notice that, in this case, we obtain from (4.35) that

σ � vectRvu. Alternatively, we may also see from (4.14) that in this case we can write

ξkkpnq � τbξkkpn � 1q � µ2 pζMσ2
uσ

2
vk
. (4.42)

Assuming ξkkp0q�}wo}2, by recursively applying (4.42) we get

ξkkpnq � τn
b }wo}2 � µ2 pζMσ2

uσ
2
vk

n�1̧

ni�0

τni
b . (4.43)

Assuming that |τb| 1, we have that τn
b fades to zero as n Ñ 8. At this point, it is worth noting

that

τa � p1 � µpζσ2
uq2 ¥ 0 (4.44)

and that

τb � τa � µ2 pζσ4
upM � 2 � pζq ¥ τa, (4.45)

where the equality only occurs if pζ � 0, in which case τb � τa � 1. Hence, assuming pζ ¡ 0,

we notice that τb 1 if, and only if

0 µ 2
pM � 2qσ2

u
, (4.46)

where we have incorporated the fact that µ ¡ 0. In this case, we can write
°n�1

ni�0 τ
ni
b � 1�τnb

1�τb .

Thus, considering (2.15) and (4.3), by applying some algebraic manipulations to (4.43), we can

write the NMSD as

NMSDncpnq � p}wo}2 � χncqτn
b � χnc, (4.47)

with

χnc ≜
µM

2 � µσ2
upM � 2q �

°V
k�1 σ

2
vk

V
. (4.48)

Performance analysis: the impacts of sampling 136

Taking the limit of the NMSD for n Ñ 8 in (4.47) yields

NMSDncp8q � χnc. (4.49)

Therefore, we can clearly see that χnc given by (4.48) represents the steady-state value of the

NMSD for the noncooperative strategy. It is interesting to notice that pζ does not appear

in (4.48). Thus, the sampling probability does not affect the steady-state NMSD of the al-

gorithm in the noncooperative approach whatsoever, so long as pζ ¡ 0. If pζ � 0 were chosen,

we would obtain τb � 1, and, from (4.42), we would get ξkkpnq � }wo}2 for every iteration

n. This is reasonable, since in this case the nodes would never acquire any information on the

optimal system.

There are a couple of additional things to notice from the previous analysis. Firstly, we

remark that (4.48) agrees with Eq. (2.18) for pζ � 1, considering sufficiently small step sizes.

Lastly, we remark that (4.46) is simply the condition for the stability of an LMS filter in the

mean [125, 126]. Therefore, we can interpret (4.46) as follows: so long as pζ ¡ 0, if we pick

a step size µ that leads to the individual stability of each filter in the network, the network as a

whole will be stable, regardless of the value of pζ .

Finally, we notice that in (4.47) the term p}wo}2 � χncqτn
b decays exponentially along the

iterations. Assuming that this term is dominant during the transient phase in comparison with

χnc, we conclude that the closer τb is to unity, the slower the convergence rate. From (4.31), we

can clearly see that

lim
pζÑ0�

τb � 1. (4.50)

This indicates that the lower the sampling probability, the slower the convergence.

From the previous discussion, we can summarize the effects of sampling on the behavior of

noncooperative networks as in the following result.

Result 1 (noncooperative networks): In the case of the noncooperative networks, the stability

of dLMS is ensured if (4.46) holds and 0 pζ ¤ 1. Under these conditions, the lower the

sampling probability pζ , the slower the convergence rate. Moreover, the steady-state NMSD is

completely unaffected by pζ . This result follows as a direct consequence of Eqs. (4.47)–(4.49)

and (4.50).

Performance analysis: the impacts of sampling 137

4.1.2 An Approximate Model for the Cooperative Strategies

Since the columns of the matrixΩ are filled by either τa or τb, we could adoptΩ � τa1V2�V2

orΩ � τb1V2�V2 as an approximation. Making these replacements in (4.21) leads to Γ � τaC or

Γ � τbC, respectively. Due to (4.45), the second approximation tends to be more conservative.

Replacing it in (4.28), and using the fact that for any real scalar α and matrix M, ρpαMq �
|α|ρpMq, we conclude that

τb � ρpCq 1, (4.51)

where we used the fact that τb ¡ 0.

Due to (2.10), C is a left-stochastic matrix, i.e., a matrix whose entries are all non-negative,

and whose columns add up to one. Consequently, C b C is also a left-stochastic matrix. By

transposing it, we conclude that C is a right-stochastic matrix, i.e., all of its entries are non-

negative, and its rows add up to one. One interesting property of such matrices is that their

spectral radius is always equal to one [211, 281]. Thus, the condition established by (4.51)

can be recast as simply τb 1. Replacing (4.31) in (4.51) and assuming that pζ ¡ 0, after

some algebra we get (4.46). Hence, we can observe that our previous conclusion that if µ lies

within a certain range, the sampling probability pζ does not affect the stability of the algorithm,

so long as pζ ¡ 0, holds for the general case, and not just for the noncooperative approach.

We remark that (4.46) corresponds to ensuring that each individual filter in the noncooperative

scheme is stable. It is a well-known fact in the adaptive diffusion networks literature that, if

every individual node is stable, the stability of the network as a whole in a cooperative scenario

is also ensured [1–3]. However, we remark that (4.46) was obtained considering a worst-case

scenario, in which Γ� τbC. In practice, (4.46) is not strictly necessary to ensure the stability

of the algorithm if a cooperative strategy is adopted. In these cases, greater step sizes may be

employed without making the algorithm unstable. In this case, it will be shown in Sec. 4.1.4

that the sampling of the nodes may actually be beneficial to the stability. In other words, in the

worst-case scenario, sampling does not hinder the stability of the algorithm, and, in general, it

may improve it.

Furthermore, simulation results show that, when the nodes do cooperate, the approximation

Γ � τaC leads to more accurate predictions than Γ � τbC. Thus, adopting the first approxima-

Performance analysis: the impacts of sampling 138

tion for the cooperative strategies, we obtain from (4.38)

NMSDpnq� 1
V

"
}wo}2bTτn

aCn1V2�µ2pζMσ2
ubTrIV2�Γs�1rIV2�τn

aCnsσ
*
. (4.52)

We remark that the result of the multiplication Cn1V2 is a column vector whose i-th element is

the sum of the elements of the i-th row of the matrix Cn. Since the product of right-stochastic

matrices is also right-stochastic [211], Cn is right-stochastic, from which we conclude that

Cn1V2 � 1V2 . Thus, (4.52) can be recast as

NMSDpnq� 1
V

"
}wo}2τn

a bT1V2�µ2pζMσ2
ubTrIV2�Γs�1rIV2�τn

aCnsσ
*
. (4.53)

Using the fact that bT1V2 � V , we thus conclude that for the cooperative strategies, the NMSD

is well approximated by

NMSDτapnq � }wo}2τn
a �
µ2 pζMσ2

u

V
� bTrIV2�τaCs�1rIV2�τn

aCnsσ. (4.54)

Analogously to what we observed in Sec. 4.1.1 about (4.47), the first term in (4.54) decays

exponentially along the iterations with τn
a . Assuming once again that this term is dominant dur-

ing the transient phase, we conclude that the closer that τa is to unity, the slower the convergence

rate. From (4.31) and (4.30), we observe that

lim
pζÑ0�

τa � 1. (4.55)

Hence, much like in the noncooperative case of Sec. 4.1.1, the lower the sampling probability,

the slower the convergence for the cooperative strategies.

Finally, for the steady state, assuming that τa 1 and taking the limit when n Ñ 8 in (4.54)

yields

NMSDτap8q�
µ2 pζMσ2

u

V
bTrIV2�τaCs�1σ. (4.56)

Eq. (4.56) clearly depends on the matrix C, and, therefore, on the network topology and

combination rule adopted. It is not straightforward to extract conclusions from (4.56) and (4.49)

for any arbitrary topology without calculating them explicitly. However, we can show that, if

the matrix sC is symmetric, which certainly occurs if Metropolis weights are employed, for

Performance analysis: the impacts of sampling 139

example, one may write

NMSDτap8q ¤
µM

2 � µpζσ2
u
�
°V2

i�1 |λipsΣq|
V

, (4.57)

where λip�q denotes the i-th greatest eigenvalue of a matrix and

sΣ ≜ 1
2

�
Σ� ΣT

	
, (4.58)

with Σ defined as

Σ ≜ σbT. (4.59)

This result is derived in Appendix F. We notice from (4.57) that the upper bound for the steady-

state NMSD decreases as we reduce pζ .

Although the steady-state NMSD for the cooperative strategies does depend on the net-

work topology, it has been shown that its impact on the network performance is somewhat

limited [63], so long as the graph that represents the network remains strongly connected, as

defined in Sec. 2.2. With this in mind, let us calculate the steady-state NMSD for a particular

network topology, which will facilitate the math and enable some qualitative conclusions that,

as we shall see in Sec. 4.1.4, also hold for arbitrary networks. Thus, we next consider a network

topology represented by a complete graph, i.e., one in which every pair of nodes is directly

connected by an edge. A graph with this topology and V nodes is usually denoted by KV in the

literature. An example with V � 8 nodes is depicted in Fig. 48.

Figure 48: A network arranged according to the K8 topology.

For the KV topology, the Uniform and Metropolis weights coincide, and lead to CKV �
1
V 1V�V and CKV � 1

V2 1V2�V2 , where the index KV is adopted to refer to this type of topology with

Performance analysis: the impacts of sampling 140

Uniform or Metropolis weights. For the aforementioned matrix CKV , from (4.56), we get

NMSDτKV
p8q � χKV ≜

µM
2 � µpζσ2

u

°V
k�1 σ

2
vk

V2 . (4.60)

This result is derived in Appendix G. Comparing (4.48), (4.49), and (4.60), we observe that

the sampling probability does not affect the steady-state performance of the noncooperative

strategy, but does influence the steady-state NMSD of the cooperative schemes. From (4.60),

we get
µM
2

°V
k�1 σ

2
vk

V2 χKV ¤
µM

2 � µσ2
u

°V
k�1 σ

2
vk

V2 , (4.61)

i.e., as we reduce the value of pζ , χKV decreases as well. The first inequality is obtained by

taking the limit of χKV as pζ Ñ 0�. This observation is in accordance with the results from

Figs. 17, 28, 29, 35, 37, and 41. This reduction in the steady-state NMSD should be more

significant for relatively large values of µ and σ2
u. If µσ2

u ! 2, however, the impact of sampling

becomes negligible. We remark that (4.48) and (4.60) agree with the analysis of [1–3] for the

ATC dLMS algorithm with every node sampled and small step sizes, if we consider pζ � 1 in

the latter. Lastly, it is worth noting that (4.60) only holds for pζ ¡ 0. This is because, in order to

obtain this result, we assumed in our calculations that τa 1, which can only be true if pζ ¡ 0,

as can be seen from (4.30). If we consider pζ � 0, we would get τa � 1 and therefore obtain

from (4.56) that NMSDτapnq � }wo}2 for every iteration n, which is in accordance with our

expectations.

We can summarize the results of the analysis for the cooperative networks as in the follow-

ing result.

Result 2 (cooperative networks): In the case of the cooperative networks, the stability of

dLMS is ensured in the mean-squared sense if (4.28) holds, which can only occur if pζ ¡ 0. If

the sampling probability is different from zero, (4.46) is a sufficient but not strictly necessary

condition for stability of cooperative networks. Furthermore, if the algorithm is stable, then the

lower the sampling probability pζ , the slower the convergence rate, much like in the noncooper-

ative case. However, in contrast with the noncooperative approach, in cooperative schemes the

steady-state NMSD decreases as we reduce pζ . This follows as a consequence of Eqs. (4.28)

and (4.54)–(4.56), and is better visualized from the approximate model given by (4.60).

Comparing Results 1 and 2, therefore, we can see that in both the noncooperative and

cooperative schemes, the convergence rate is deteriorated as we reduce pζ . However, it is only in

Performance analysis: the impacts of sampling 141

the latter case that the steady-state NMSD decreases. One possible interpretation is as follows.

The adaptation step is the process through which the algorithm acquires knowledge about its

environment. For this reason, it is particularly relevant when there is little knowledge about the

optimal system – e.g., during the transient phase. Thus, it makes sense that by not sampling the

nodes in the transient phase, the convergence rate should deteriorate. However, the adaptation

step also introduces noise into the algorithm, since it involves the acquisition of the desired

signal, which is corrupted by it. In steady state, the algorithm does not gain enough information

from the adaptation step to continue to improve its estimate of the optimal system, but is affected

by the noise that it injects. The step size directly influences the impact of the measurement noise

on the algorithms, since it multiplies dkpnq, and, therefore, vkpnq in (4.1). Thus, the greater the

µ, the more the noise will affect the behavior of the algorithm. Conversely, if µ is small, this

effect is restricted. Following this line of reasoning, if we cease to sample some of the nodes,

there is less noise entering the algorithm. In a noncooperative scheme, if a node is not sampled,

its estimate remains fixed until its sampling is resumed. Hence, there is no reason why the

steady-state performance should be affected by sampling less nodes, which is predicted by

our theoretical model. However, in the cooperative schemes, this is changed by the existence

of the combination step. Indeed, (4.60) shows that we should expect some decrease in the

steady-state NMSD in this scenario, even if slightly. The theoretical model attributes this to the

parameter τa, which is related to the cooperation between nodes in (4.14), since it determines

how EtrwT
ℓ pn�1qrw jpn�1qu, for ℓ and j in the neighborhood of node k, will affect Et}rwkpnq}2u.

The model also shows that when µ is large, the effects of sampling less nodes on the steady-

state NMSD should be more noticeable , which supports the idea of the step size as a factor that

determines the impact of the measurement noise in the algorithm. Interestingly, the diagnosis

that the adaptation step injects noise in the algorithm, and that the combination step tends to

remove it, has been raised in, e.g., [81, 82, 282], but lacked formal theoretical support, until

now.

Lastly, it may be interesting to compare the steady-state NMSD achieved by the algo-

rithm with a certain step size µ and sampling probability pζ , and the one obtained by utilizing

µ1 � µpζ and maintaining all nodes sampled. Denoting these quantities by NMSDasync.p8q and

NMSDsync.p8q, respectively, we notice from (4.60) that, for the topology of Fig. 48, we get

NMSDsync.p8q � pζNMSDasync.p8q. (4.62)

Performance analysis: the impacts of sampling 142

This is in accordance with [148], in which it was noticed that the steady-state NMSD of the

synchronous networks should be less than or equal to that of the asynchronous one, if an ad-

justed step size is adopted taking pζ into consideration. In other words, if we adjust the step

size, the network with all nodes sampled should outperform the one with random sampling, as it

will present approximately the same convergence rate, with a lower steady-state NMSD. How-

ever, for a fixed step size, our conclusion that sampling less nodes improves the steady-state

performance remains valid. This means that networks with random sampling are outperformed

by synchronous ones. Thus, it is clear that the random sampling strategy is not, in itself, a

recommendable approach. However, if one adapts the sampling of the nodes according to the

estimation error, as the algorithms of Chapter 3 do, one may outperform the synchronous net-

works – as observed in Figs. 17, 28, 29, 35, 37, and 41 – while reducing the computational

cost in steady state. As seen in Chapter 3, this comes at the expense of a slight increase in the

computational burden in the transient phase.

4.1.3 Computational Cost Reduction

In this section, we seek to estimate the effects of random sampling on the expected compu-

tational cost of the dLMS algorithm. For brevity, we focus on the number of multiplications per

iteration, but a similar analysis could be done for the additions.

We begin by noticing that each sampled node k needs to perform Mp2�|Nk|q�1 multiplica-

tions per iteration, assuming that static combination weights are employed. This is summarized

in Table 7, in which the number of multiplications required at each node k per iteration is de-

noted by bk and detailed for each calculation required. We can see that 2M � 1 multiplications

are related to the adaptation step. Assuming that none of the operations associated with this

step have to be performed at node k if it is not sampled, we conclude that the total number of

multiplications required at the iteration n and node k with random sampling can be estimated as

bkpnq � ζkpnq � p2M � 1q � M|Nk|. (4.63)

Taking the expectations from both sides in (4.63), we obtain

Etbku � pζp2M � 1q � M|Nk|, (4.64)

where we dropped the indication of the time instant n since the right-hand side of (4.64) remains

Performance analysis: the impacts of sampling 143

constant along the iterations.

Table 7: Estimated number of multiplications per iteration at each sampled node k.

Calculation Step bk

1 ykpnq � uT
k wkpn � 1q Adapt. M

2 ekpnq � dkpnq � ykpnq Adapt. 0
3 µ � ekpnq Adapt. 1
4 rµ � ekpnqs � ukpnq Adapt. M
5 wkpn�1q�trµ�ekpnqs�ukpnqu Adapt. 0
6

°
iPNk

cikψipnq Comb. M|Nk|
Total Mp2 � |Nk|q � 1

Summing (4.64) for k � 1, � � � ,V , we can estimate the expected computational cost for the

whole network as

Etbtotalu � V pζp2M � 1q � M
V̧

k�1

|Nk|. (4.65)

By replacing pζ � 1 in (4.65), we obtain the number of multiplications required by the dLMS

with every node sampled. Thus, denoting the number of multiplications saved per iteration due

to the sampling by ∆btotal, we can thus estimate it as

Et∆btotalu � Vp2M � 1qp1 � pζq (4.66)

by subtracting (4.65) from the case with pζ � 1.

From (4.66), we see that the smaller the pζ , the greater the savings in computation, as

expected. Moreover, for a given pζ , the number of multiplications saved increases with V and

M.

4.1.4 Simulation Results

In this section, we present simulation results to validate the theoretical analysis. They were

obtained over an average of 1000 independent realizations, considering the scenarios summa-

rized in Table 8. In every case, the coefficients of the optimal system wo are drawn from a

Uniform distribution in the range r�1,1s, and later normalized so that wo has unit norm. More-

over, the length of the adaptive filter is always equal to that of wo. We consider the network

topology presented in Fig. 49(a), which was generated randomly. The input signal ukpnq and the

measurement noise vkpnq follow Gaussian distributions with zero mean for each node k, with

σ2
uk
�σ2

u�1, whereas the noise variance σ2
vk

is drawn from a Uniform distribution in the range

Performance analysis: the impacts of sampling 144

r0.001,0.01s for k�1, � � � ,V , as depicted in Fig. 49(b).

(a)

1 5 10 15 20

Node k

0.1

0.5

1

σ
2 v
k

×10−3

(b)

Figure 49: (a) Network topology, and (b) noise variance profile considered in the simulations.

Table 8: List of scenarios considered in the simulations.

Scenario µ M Combination Rule
Scenario 1 0.1 10 Metropolis
Scenario 2 0.01 10 Metropolis
Scenario 3 0.02 100 Uniform
Scenario 4 0.01 10 noncooperative

This section is organized as follows. In Sec. 4.1.4.1, we study the transient performance of

the algorithm, in Sec. 4.1.4.2, its stability, and in Sec. 4.1.4.3, its steady-state NMSD.

4.1.4.1 Transient Performance

In Fig. 50, we present the simulation results obtained in the Scenarios 1, 2, and 3 of Table 8,

considering pζ P t1, 0.5, 0.1u, and compare them to the theoretical models of Sec. 3.1.2. The

sub-figures in the top row present a comparison with the more precise model of Eq. (4.39),

whereas those in the bottom row show the comparison with the approximate model of Eq. (4.54).

Furthermore, each column of Fig. 50 refers to a scenario, with Figs. 50 (a) and (b) presenting

the results obtained in Scenario 1, Figs. 50 (c) and (d) those from Scenario 2, and Figs. 50 (e)

and (f) those from Scenario 3.

From Figs. 50(a), (c), and (e), we can see that the simulation results match the theoretical

curves very well for all three scenarios, and that the model accurately predicts the improve-

ment in steady-state NMSD caused by the sampling of less nodes. Furthermore, comparing the

Performance analysis: the impacts of sampling 145

results of Figs. 50(c) and (e) with those of Fig. 50(a), we can observe that the difference in per-

formance caused by the sampling is indeed more noticeable for larger step sizes, as expected.

By comparing Figs. 50(a) and 50(b) one can see that, in Scenario 1, the approximate model is

less accurate than the one described by Eq. (4.39). This was expected, to a certain extent. The

same can be said about Scenario 3, by comparing Figs. 50(e) and (f). However, we observe

from Figs. 50(c) and (d) that, in Scenario 2, both models practically coincide. Hence, we can

conclude that the approximate model of Eq. (4.54) tends to be more accurate for relatively low

step sizes µ and filter lengths M, and is more affected by them than the model of Eq. (4.39).

−30

−20

−10

0

N
M

S
D

(d
B

)

(a)
pζ = 1 – Simul.

pζ = 0.5 – Simul.

pζ = 0.1 – Simul.

pζ = 1 – Eq. (4.39)

pζ = 0.5 – Eq. (4.39)

pζ = 0.1 – Eq. (4.39)

−36

−34

−32

0.0 0.2 0.4 0.6 0.8 1.0
Iterations ×103

−30

−20

−10

0

N
M

S
D

(d
B

)

(b)
pζ = 1 – Simul.

pζ = 0.5 – Simul.

pζ = 0.1 – Simul.

pζ = 1 – Eq. (4.54)

pζ = 0.5 – Eq. (4.54)

pζ = 0.1 – Eq. (4.54)

−36

−34

−32

−50

−40

−30

−20

−10

0
(c)

−49

−48

−47

−46

0 2 4 6 8 10
Iterations ×103

−50

−40

−30

−20

−10

0
(d)

−49

−48

−47

−46

−30

−20

−10

0

(e)

−35

−34

−33

0 1 2 3 4 5
Iterations ×103

−30

−20

−10

0

(f)

−35

−34

−33

Figure 50: The sub-figures in the top row present a comparison between the simulation results
and the model of Eq. (4.39), whereas the ones in the bottom row show a comparison with the
model of Eq. (4.54). The simulation results were obtained considering the Scenario 1 of Table 8
in sub-figures (a) and (b), Scenario 2 in (c) and (d), and Scenario 3 in (e) and (f).

In order to examine the impact of sampling on the computational cost in this scenario, in

Table 9 we present the average number of multiplications required per iteration in the whole

network for each pζ considered in the simulations for M � 10, as in Scenarios 1 and 2, and

for M � 100, as in Scenario 3. We also present the number of multiplications saved per

iteration in comparison with the case in which every node is sampled, and compare them to the

results given by (4.66). We can see that the average number of operations saved per iterations

matches Eqs. (4.66), which can be attributed to the high number of realizations and iterations

considered in the computations. Furthermore, it is straightforward to see that the smaller the pζ ,

the greater the savings in terms of computation, as expected. Moreover, for a fixed value of pζ ,

the computational cost and the savings increase with M, as expected. From these experiments,

we can summarize the effects of sampling as follows: smaller sampling probabilities pζ lead to

Performance analysis: the impacts of sampling 146

lower steady-state NMSD and computational costs, at the expense of a deteriorated convergence

rate.

Table 9: Average number of multiplications per iteration in the network for pζ P t0.1, 0.5, 1u
with M�10 and M�100.

pζ
btotal ∆btotal Eq. (4.66)

M�10 M�100 M�10 M � 100 M�10 M�100
1 �1460 14420 0 0 0 0

0.5 1250 12410 210 2010 210 2010
0.1 1082 10802 378 3618 378 3618

In the simulations of Fig. 51, we consider the Scenario 4 of Table 8, and compare the simu-

lation results to the theoretical model given by Eq. (4.47) for the noncooperative scheme. Once

again, the simulation results closely match the theoretical analysis. Furthermore, the simula-

tions support the idea that the sampling probability does not affect the steady-state performance

of the algorithm in the noncooperative scheme, unlike what was observed in Fig. 50 for the

cooperative rules.

0 2 4 6 8 10
Iterations ×103

−30

−20

−10

0

N
M

S
D

(d
B

)

pζ = 1 – Simul.

pζ = 0.5 – Simul.

pζ = 0.1 – Simul.

pζ = 1 – Eq. (4.47)

pζ = 0.5 – Eq. (4.47)

pζ = 0.1 – Eq. (4.47)

−36.0

−35.5

−35.0

Figure 51: Comparison between the simulation results and the model of Eq. (4.47) for pζ P
t1, 0.5, 0.1u in Scenario 4.

4.1.4.2 Effects of Sampling on the Stability

From (4.46), we concluded that the sampling probability does not affect the stability of the

algorithm so long as µ is sufficiently small and pζ¡0. However, (4.46) is not strictly necessary

to ensure the stability of the algorithm in the mean-squared sense. For instance, the value of µ

considered in the Scenario 3 of Table 8 does not satisfy (4.46), but still leads to the stability of

the dLMS algorithm for the network of Fig. 4 with Uniform weights and M�100. Under these

Performance analysis: the impacts of sampling 147

conditions, one obtains ρpΓq � 0.9628 for pζ � 1, which satisfies (4.28) and thus ensures the

convergence in the mean-squared sense. For pζ�0.5 and pζ�0.1, we get ρpΓq 1 as well.

To verify if the sampling of the nodes influences the stability of the algorithm in the general

case, we calculated the spectral radius of the matrix Γ considering M � 100 and the three

combination policies for the network of Fig. 4 with µ�0.1 and several values of pζ . The results

are shown in Fig. 52 (a), where we have highlighted with a red horizontal line the threshold

ρpΓq�1. We can see that, for all combination policies, the adoption of pζ�0 leads to ρpΓq�1.

This is expected, since in this case we get τb � τa � 1, and consequently Γ�C, whose spectral

radius is equal to one. Intuitively, this comes from the fact that the algorithm never acquires

any knowledge on the optimal system if the nodes are never sampled. For the noncooperative

strategy, ρpΓq increases with pζ , indicating that the algorithm is unstable for any sampling

probability. For the Uniform and Metropolis combination policies, however, ρpΓq decreases

up to a certain point with the increase of pζ , and then begins to rise. Interestingly, for both

policies, Fig. 52 (a) tells us that, under the conditions considered, the algorithm is unstable with

all nodes sampled, but we can stabilize it by sampling less nodes. For the Uniform rule, we

conclude from Fig. 52 (a) that the dLMS algorithm is stable for pζ Ps0, 0.71s (approximately),

whereas for the Metropolis rule the stability occurs for pζ Ps0, 0.39s. In order to verify these

results, we ran the dLMS algorithm under the same circumstances considered in Fig. 52 (a) with

different sampling probabilities in the range r0.01, 1s for 200 �103 iterations, which is more than

necessary for the algorithm to achieve the steady state with pζ�0.01 and cooperative strategies.

Then, utilizing the isnan and isinf functions of MATLAB®, we calculated the percentage of

realizations in which the dLMS algorithm diverged at some iteration. The results are depicted

in Fig. 52 (b). We can see that, for the noncooperative strategy, the algorithm diverges in 100%

of the realizations for all values of pζ considered. For the Uniform and Metropolis rules, the

percentage of realizations in which the algorithm diverges is initially zero, and increases steeply

as pζ approaches the limit values of pζ � 0.71 and pζ � 0.39, respectively. For the former

combination policy, the algorithm starts to diverge for pζ¡0.68, whereas for the latter the first

divergences occur for pζ ¡ 0.41. In both cases, by increasing pζ slightly further, the algorithm

begins to diverge at some point in 100% of the realizations. Therefore, the simulation results of

Fig. 52 (b) support the theoretical findings of Fig. 52 (a). It is worth noting that, although the

Uniform rule leads to the stability of the algorithm for a wider range of pζ than the Metropolis

rule in this case, this does not necessarily occur in all scenarios. For example, for the topology

Performance analysis: the impacts of sampling 148

in Fig. 48, the weights coincide for the two rules and therefore there is no difference between

them in terms of the stability of the algorithm.

1.0

1.2

ρ
[Γ

(p
ζ
)]

(a) Uniform

Metropolis

Non-coop.

0.0 0.2 0.4 0.6 0.8 1.0
pζ

0

50

100
D

iv
er

ge
n

ce
(%

)
(b)

Figure 52: (a) ρpΓq as a function of pζ , and (b) percentage of realizations in which the dLMS
diverged with µ�0.1 and M�100 for pζ Pr0.01, 1s with different combination policies.

4.1.4.3 Steady-State Performance

Lastly, in order to verify Eqs. (4.40) and (4.56) in detail, we ran the ATC dLMS for different

values of pζ P r0.1, 1s, and calculated the average NMSD during the final 20% iterations of

each realization. The results are shown in Figs. 53(a), (b), and (c) for Scenarios 1, 2, and

3, respectively. In each case, we set the total number of iterations N so that the algorithms

achieved the steady state before the end of each realization, resulting in 103 ¤ N ¤ 105. In

all scenarios, we observe that the steady-state NMSD drops continuously as we decrease pζ .

Moreover, the simulation results match (4.40) very closely in Scenarios 1 and 2. In Scenario

3, there is a discrepancy between the simulation results and the theoretical curve of 0.1 dB,

on average. As for the model of Eq. (4.56), there is a difference of approximately 0.40 dB in

comparison with the simulation results in Fig. 53(a), on average. In Fig. 53(c), this difference

is of roughly 0.23 dB, whereas in Fig. 53(b) the curve practically overlaps with the simulation

results.

4.2 A Simplified Model for the NMSD of DTRAS-dLMS

Based on the analysis presented in Sec. 4.1, in this section we derive a simplified model for

the performance of the DTAS-dNLMS and DTRAS-dNLMS algorithm in a stationary environ-

ment. We assume that, in this case, the reset mechanism of DTRAS-dNLMS is never activated

Performance analysis: the impacts of sampling 149

-39

-37

-35

-33

N
M

S
D

(∞
) (a)

Simulations

Eq. (4.40)

Eq. (4.56)

-49

-48

-47

N
M

S
D

(∞
) (b)

0.0 0.2 0.4 0.6 0.8 1.0
pζ

-35

-34

-33

N
M

S
D

(∞
) (c)

Figure 53: Steady-state NMSD for pζ P r0.01, 1s in: (a) Scenario 1, (b) Scenario 2, and (c)
Scenario 3.

due to the absence of changes in the environment, and thus neglect its effects on the sampling

of the nodes. For simplicity, we maintain our Assumption A6 in our analysis.

In this model, we consider that the sampling probability can vary over time, but is common

to every node in the network, i.e., pζ1pnq � pζ2pnq � � � � � pζV pnq � pζpnq. Moreover, we

consider that pζpnq is equal to one in the transient phase, but switches to ppmax given by (3.52)

after a certain number of iterations, which we denote by nswitch. This is a conservative approach,

but leads to a good match between the theoretical results thus obtained and the steady-state

performance, as we shall see next. Hence, we have that

pζpnq �

$''&''%
1, if n nswitch,

ps.s.max , otherwise.
(4.67)

In a situation in which pζ varies over time, the parameters τb and τa do as well. In this case,

we can see from (4.30) and (4.31) that they are given by

τapnq � 1 � 2µpζpnqσ2
u � µ2 p2

ζpnqσ4
u (4.68)

and

τbpnq � 1 � 2µpζpnqσ2
u � µ2 pζpnqσ4

upM � 2q. (4.69)

Performance analysis: the impacts of sampling 150

Consequently, we have that Γpnq varies over time according to

Γpnq � Ωpnq d C, (4.70)

with

Ωpnq � rΩ1pnq Ω2pnq � � � ΩVpnqs, (4.71)

in which Ωipnq is given by

Ωipnq �

i-th column

Ó�������

�������
τapnq � � � τapnq τbpnq τapnq � � � τapnq
τapnq � � � τapnq τbpnq τapnq � � � τapnq
...

. . .
...

...
...

. . .
...

τapnq � � � τapnq τbpnq τapnq � � � τapnqlooooooooooooooooooooooooooomooooooooooooooooooooooooooon
V columns

. (4.72)

Thus, (4.38) must be recast as

ξpnq � Γpnqξpn � 1q � µ2 pζpnqMσ2
uσ. (4.73)

By considering pζpnq given by (4.67) in (4.31), (4.30), and (4.73), we can predict the NMSD

performance of the DTRAS-dLMS algorithm. The only question left is at which iteration nswitch

the sampling probability transitions from unity to its steady-state value. To answer this, we

must investigate when the algorithm achieves the steady state in terms of the NMSD. From

Assumptions A1–A5, we can write that MSEkpnq�σ2
uMSDkpn � 1q�σ2

vk
, and, consequently,

NMSEpnq � σ2
uNMSDpn � 1q � σ̄2

v , (4.74)

where we have introduced σ̄2
v ≜

°V
k�1 σ

2
vk

V . During the transient phase, we have pζpnq � 1

and therefore, τapnq � τa0 ≜ 1 � 2µσ2
u � µ2σ4

u. Moreover, if we adopt the approximation

Ωipnq � τa01V2�V while the nodes are still sampled, we have that Γpnq � Γ0 ≜ τa0C during

this period. Thus, using (4.8) and (4.73) with the previous approximations, and considering that

Performance analysis: the impacts of sampling 151

ξp0q � }wo}2, we conclude that, while the nodes are still sampled, we may write

NMSDpnq � }wo}2τn
a0

V
� bTCn1V2 � µ

2Mσ2
u

V
bTrIV2�τa0Cs�1rIV2�τn

a0
Cnsσ. (4.75)

From (4.75), we see that the NMSD depends on the network topology due to the matrix C.

For simplicity, as an approximation, we consider instead that the network has a KV topology

such as that of Fig. 48. Using the results from Appendix G, in this case we obtain bTrIV2 �
τa0CCs�1σ� 1

1�τa0
σ̄2

v . Thus, from (4.75) and (4.74) we can write

NMSEpnq � σ2
u}wo}2τn�1

a0
�
�
µMσ2

u

p2 � µσ2
uqV

� µ
2Mσ4

uτ
n�1
a0

V
� 1

�
σ̄2

v . (4.76)

From (4.76), we notice that, while the nodes are sampled, and assuming τa0 1, the NMSE

converges approximately to

χNMSE �
�
µMσ2

u

p2 � µσ2
uqV

� 1

�
σ̄2

v . (4.77)

Next, we shall consider that the algorithm has achieved the steady state in terms of the

NMSE at the time instant n if NMSEpnq ¤ p1 � δthresholdqχNEMSE, where 0 δthreshold ! 1 is a

constant. From (4.76) and (4.77), after some algebra, we conclude that this holds for

n ¥ ns.s. � 1 �

�������
lnpδthresholdq � lnpχNEMSEq � ln

�
σ2

u

�
}wo}2 � µ2 Mσ2

uσ̄
2
v

V

	�
lnpτa0q

������� . (4.78)

Finally, the iteration at which the sampling probability transitions in (4.67) can be approximated

by

nswitch � ns.s. � ∆n. (4.79)

4.2.1 Simulations

The results presented next were obtained from an ensemble average of 100 independent

realizations. In each experiment, we consider the network topology presented in Fig. 54(a),

which was generated randomly. The input signal ukpnq and the measurement noise vkpnq follow

Gaussian distributions with zero mean for each node k, with σ2
uk
� σ2

u � 1, whereas the noise

variance σ2
vk

is drawn from a Uniform distribution in the range r0.001,0.01s for k � 1, � � � ,V ,

Performance analysis: the impacts of sampling 152

as shown in Fig. 54(b). We consider M � 10 for both the optimal system and the diffusion

algorithm, and adopt µ � 0.1. The coefficients of the optimal system wo are drawn from a

Uniform distribution in the range r�1,1s, and are later normalized so as to obtain }wo}2 � 1. We

adopt Metropolis combination weights. For the theoretical model, we consider δthreshold � 0.01

in Eq. (4.78).

1 5 10 15 20

Node k

0.1

0.5

1

(b
)
σ

2 v
k

×10−2

Figure 54: (a) Network topology, and (b) noise variance profile considered in the simulations.

In Fig. 55, we show the theoretical curves as well as the simulation results obtained with

the DTRAS-dLMS algorithm with γ� 25 and ∆n� 200 . These parameters were chosen so as

to obtain a significant reduction in the sampling probability in steady state and a good transient

performance. It is worth noting that in this case (3.65) yields ps.s.max � 0.04. For reference,

we also show the results for the dLMS algorithm with fixed sampling probabilities pζ � 1 and

pζ� ps.s.max . In Fig. 55(a) we show the NMSD curves, and in Fig. 55(b) the sampling probability

along the iterations. We notice that, initially, the DTRAS-dLMS algorithm maintains every node

sampled, and consequently presents the same convergence rate as the dLMS algorithm with pζ�
1, which is captured by our theoretical model. Then, after nswitch�146 iterations, the sampling

probability of the DTRAS-dLMS suddenly decreases. We observe that the approximation given

by Eq. (4.67) is reasonable in this case, and we notice that the NMSD of DTRAS-dLMS begins

to decrease until it stabilizes at a steady-state level approximately 6 dB lower than that of the

dLMS algorithm with every node sampled. This is also predicted by our theoretical model.

Overall, we observe that the theoretical curves match the simulation results well. Lastly, we

observe that the dLMS algorithm with a fixed sampling probability of pζ � 0.04 converges

approximately to the same level of steady-state NMSD as the DTRAS-dLMS algorithm, but at

a much slower convergence rate. Simulation results obtained with other values of M and µ led

to similar conclusions, but are omitted here due to space restrictions.

Performance analysis: the impacts of sampling 153

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

−40

−30

−20

−10

0

0 250 500 750 1000 1250 1500 1750 2000

Iterations

0.0

0.5

1.0
(b

)
p
ζ
(n

)

dLMS (pζ = 1, Simul.)

dLMS (pζ = 0.04, Simul.)

DTRAS-dLMS (Simul.)

pζ = 1 (pζ = 1, Theory)

dLMS (pζ = 0.04, Theory)

DTRAS-dLMS (Theory)

−20

0

(a
)

N
M

S
D

(d
B

)

−40

−30

−20

−10

0

0 250 500 750 1000 1250 1500 1750 2000

0

1
(b

)
p
ζ
(n

)

dLMS (pζ = 1, Simul.)

dLMS (pζ = 0.04, Simul.)

DTRAS-dLMS (Simul.)

pζ = 1 (pζ = 1, Theory)

dLMS (pζ = 0.04, Theory)

DTRAS-dLMS (Theory)

Figure 55: Comparison between the theoretical models and the simulation results with γ� 25
and ∆n�100. (a) NMSD curves, and (b) sampling probability along the iterations.

Lastly, in Fig. 56, we repeat the previous experiment, but considering ∆n � 1000 for

the DTRAS-dLMS algorithm. In this case, the theoretical model underestimates nswitch, and,

as a result, there is a noticeable mismatch between the simulation results and the theoretical

NMSD curve between n � 2000 and n � 2800. Overall, the simulations suggest that the

theoretical model for nswitch is fairly accurate for relatively small values of ∆n, but can lead to

poor estimates if ∆n is very large. Nonetheless, we remark that, typically, it is not desirable

to choose excessively large values for ∆n, since in this case it takes more iterations for the

algorithm to cease the sampling of the nodes. Thus, the situation depicted in Fig. 56 is not of

practical interest. Nevertheless, in future works we intend to improve our estimate of nswitch.

Despite this, it is interesting to note that the theoretical model still predicts the steady-state

NMSD accurately in this scenario.

4.3 Conclusions

In this chapter, we analyzed the effects of sampling on the network performance. In Sec. 4.1,

we focused our attention on the case in which the nodes are sampled at random, whereas in

Sec. 4.2 we derived a simplified model for the NMSD of the DTRAS-dLMS algorithm. In the

former case, the analysis shows that, as we reduce the sampling probability, the convergence

rate is severely affected, but the steady-state NMSD slightly decreases, which is in accordance

with the phenomena observed in the simulations of Chapter 3. Interestingly, we also conclude

that the sampling of less nodes may render the algorithm stable in situations in which it would

Performance analysis: the impacts of sampling 154

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

−40

−30

−20

−10

0

0 1000 2000 3000 4000 5000

Iterations

0.0

0.5

1.0
(b

)
p
ζ
(n

)

dLMS (pζ = 1, Simul.)

dLMS (pζ = 0.04, Simul.)

DTRAS-dLMS (Simul.)

pζ = 1 (pζ = 1, Theory)

dLMS (pζ = 0.04, Theory)

DTRAS-dLMS (Theory)

−20

0

(a
)

N
M

S
D

(d
B

)

−40

−30

−20

−10

0

0 250 500 750 1000 1250 1500 1750 2000

0

1
(b

)
p
ζ
(n

)

dLMS (pζ = 1, Simul.)

dLMS (pζ = 0.04, Simul.)

DTRAS-dLMS (Simul.)

pζ = 1 (pζ = 1, Theory)

dLMS (pζ = 0.04, Theory)

DTRAS-dLMS (Theory)

Figure 56: Comparison between the theoretical models and the simulation results with γ� 25
and ∆n�1000. (a) NMSD curves, and (b) sampling probability along the iterations.

be unstable if every node remained sampled. However, when the nodes are sampled randomly,

the network performance is degraded in comparison with the asynchronous network if the step

sizes are adjusted, which indicates that the random sampling technique is not the most adequate

approach, as expected. Nevertheless, the model derived in Sec. 4.2 shows that, by keeping the

nodes sampled in the transient phase, and ceasing to sample them otherwise, the DTAS-dLMS

algorithm can achieve a slightly improved steady-state performance in comparison with the

case in which every node is permanently sampled, while preserving its convergence rate. Thus,

the analysis shows that, by managing the sampling of the nodes in an intelligent manner, it is

possible for adaptive diffusion networks to perform better with less, rather than more, data, as

we can attest from the simulations of Chapter 3.

155

5 CONCLUSIONS

Due to their advantages in comparison with centralized strategies and other distributed ap-

proaches, adaptive diffusion networks have consolidated themselves in the literature as an in-

teresting tool for distributed signal processing [1–6]. Moreover, with the recent advances in

areas such as IoT and 5G networks, we may expect to see an increased applicability of adaptive

diffusion networks in the near future [99, 100].

Due to their success, several branches of research have emerged from adaptive diffusion

networks. Examples include, e.g., kernel-based [32–36] and multitask adaptive diffusion net-

works [20–29], as well as adaptive diffusion networks for GSP [39, 41, 42, 47, 48].

However, it is oftentimes desirable to restrict the amount of data measured, processed, and

transmitted in these networks. Such restrictions may affect the network performance, but are

typically important for their feasibility in practice. One way to limit the number of measure-

ments and the computational cost in adaptive diffusion networks is through the adoption of

sampling, whereas several techniques have been proposed to reduce the amount of data trans-

mitted. Some of these solutions are known as censoring techniques in the literature, since they

seek to prevent transmissions between a node and all of its neighbors [72–82].

In Chapter 2, we carried out an extensive literature review on the various forms of adaptive

diffusion networks, highlighting the types of situations that each approach seeks to address.

Moreover, we showed simulation results considering synthetic and real-world data, illustrating

the potential, as well as the challenges, associated with the usage of each type of network.

In Chapter 3, we presented several algorithms for the adaptive sampling and censoring of

diffusion networks. In Sec. 3.1, we presented the AS-dNLMS algorithm. Its goal is to keep the

nodes censored when the error is high in magnitude, and cease to censor them otherwise. Thus,

the sampling of the nodes is maintained, e.g., during the transient phase, which preserves the

convergence rate of the original dNLMS algorithm with all nodes sampled. Moreover, with only

slight modifications it can also be used as a censoring technique, resulting in the ASC-dNLMS

algorithm. Simulation results showed the good behavior of the AS-dNLMS and ASC-dNLMS

solutions in a wide range of situations, including simulations with real-world data in a GSP

setting.

Conclusions 156

However, the AS-dNLMS does have weaknesses. One important issue resides in the fact

that the proper selection of its parameter depends on prior knowledge of the noise power. At the

very least, the filter designer must know the maximum noise variance in the network, but this

may lead to problematic situations if one of the nodes is much noisier than the others, as was

shown in Sec. 3.2. For this reason, the DTAS-dNLMS algorithm was introduced in Sec. 3.2.

By allowing each node k to select its own time-varying parameter βkpnq and by incorporating

an online estimation of σ2
vk

, the DTAS-dNLMS directly addresses the first weakness of the

AS-dNLMS algorithm. However, its other main weakness is not solved by the DTAS-dNLMS

version: its comparatively poor tracking capability. For this reason, we also proposed in Sec. 3.2

the DTRAS-dNLMS algorithm, which incorporates a reset mechanism for the sampling of the

nodes. Thus, if changes in the environment are detected, the algorithm resumes the sampling of

the nodes, which significantly improves its tracking capability in comparison with the previous

versions of the algorithm.

Moreover, in Sec. 3.3, we extended the DTAS-dNLMS algorithm of Sec. 3.2 to RFF kernel-

based networks, and also employed it as a censoring technique. Finally, in Sec. 3.4, we also ex-

tended the AS-dNLMS algorithm to multitask networks. Since the AS-dNLMS, DTAS-dNLMS

and DTRAS-dNLMS algorithms can be straightforwardly employed in GSP settings, as was

done in Sec. 3.1.6.5, we remark that we have proposed a sampling and/or censoring solution for

every type of network covered in Chapter 2.

Interestingly, we noticed in many of the simulations of Chapter 3 that, under many circum-

stances, the sampling of less nodes led to a slightly lower steady-state NMSD in comparison

with the case in which every node is permanently sampled. This motivated us to analyze the

effects of sampling on network performance in Chapter 4. We began by investigating the effects

of random node sampling on these networks in Sec. 4.1. Our analysis shows that, indeed, a

reduction in the steady-state NMSD is expected as we decrease the probability pζ of the nodes

being sampled. On the other hand, the convergence rate deteriorates as we reduce pζ . If adjusted

step sizes are adopted, a network with random node sampled is outperformed by its counterpart

with every node permanently sampled. Thus, we observe that the random node sampling is not

an efficient technique, as expected. However, this also shows that, if one manages to maintain

the sampling of the nodes in the transient phase, and cease to sample them in the steady state,

the convergence rate of the original should be preserved, and the sampling of less nodes should

lead to a slightly better steady-state performance. This is exactly what was observed, e.g., in

Conclusions 157

Figs. 17, 28, 29, 35, 37, and 41 with the algorithms proposed in Chapter 3. Based on this, we

derived in Sec. 4.2 a simple model for the NMSD of the DTAS-dNLMS and DTRAS-dNLMS

algorithm. The theoretical curves thus obtained matched the simulation results well in the sce-

nario of Fig. 55. In contrast, in the simulations of Fig. 56, there is a period during which there is

a mismatch between the theoretical curve and the simulation results. Despite this, in both cases

we observed a good match between the predicted steady-state NMSD and the simulations.

In light of these observations, we provide in Table 10 a succinct list of the contributions of

each chapter.

Table 10: Summary of the main contributions of each chapter.

Chapter Main Contributions

2 Literature Review

3 Adaptive Sampling and Censoring algorithms: AS-dNLMS, ASC-dNLMS,

DTAS-dNLMS, DTRAS-dNLMS, DTASC-RFF-dKNLMS, and Multitask

AS-dNLMS

4 Theoretical analysis of the effects of random sampling on network performance

and theoretical model for the NMSD of DTAS-dNLMS and DTRAS-dNLMS

Moreover, based on the conclusions presented, we believe that the following items consti-

tute a list of interesting topics for future work:

1. Apply the sampling mechanism to the distributed training of neural networks. As

mentioned in Sec. 2.1.4, the distributed training of neural networks has been proposed

in recent years [168–171]. Given the potentially high computational cost associated with

neural networks, we believe that it would be interesting to thoroughly investigate whether

the sampling mechanisms proposed in this work can be extended to this type of solution.

Some preliminary steps have been taken in this direction in the works [NC-3] and [NC-4]

mentioned in Sec. 1.4, but further research is necessary in this regard.

2. Investigate the existence of optimal sampling probabilities. Eq. (4.29) yields the

steady-state NMSD for arbitrary network topologies, step sizes, input signal variances,

and sampling probabilities. One interesting question is whether it is possible to select

the probabilities pζ1 , pζ2 , � � � , pζV so as to minimize the steady-state NMSD, and therefore

Conclusions 158

optimize the network performance in steady state. Considering that 0 pζk ¤ 1 for

k � 1, � � � ,V , we can see that this leads to a constrained optimization problem. Addition-

ally, we could also enforce a minimum sampling probability to ensure that the network

does not cease to sample all of the nodes permanently, which could have negative effects

on the tracking capability, for example. From an intuitive perspective, we expect that

assigning smaller sampling probabilities to the noisier nodes should lead to a better per-

formance, but a thorough mathematical analysis is necessary to examine this issue. We

believe that this topic deserves to be investigated in future works.

3. Extend the reset mechanism of DTRAS-dNLMS to the algorithms of Secs. 3.3

and 3.4. In Secs. 3.3 and 3.4, we extended the AS-dNLMS and DTAS-dNLMS algo-

rithms to kernel-based and multitask networks. However, the reset mechanism of the

DTRAS-dNLMS algorithm could also be adjusted to these scenarios. For this, the anal-

ysis of Sec. 3.2.3 would need to be redone. This may pose an interesting challenge for

future works as well.

4. Improve the theoretical model for the NMSD of the DTAS-dNLMS and DTRAS-

dNLMS algorithms. Currently, the model presented in Sec. 4.2 provides an accurate

prediction for the steady-state NMSD. However, the simulations show that the main

weakness of the model lies in the estimation of the iteration nswitch at which the algo-

rithms switch their sampling probability from one to its steady-state value. For relatively

low values of ∆n, this prediction tends to be fairly accurate, but, as ∆n increases, a notice-

able mismatch arises between the theoretical model and the simulation results. Therefore,

deriving a more refined version of Eqs. (4.78) and (4.79) seems to be an interesting topic

for future research.

As we wrap up this work, it seems fitting to return to the title question: after all, can adap-

tive networks do better with less data? After all, when the nodes are not sampled, they do

not sense their desired signals, which effectively reduces the amount of data used in the learn-

ing task. However, from the previous chapters, an appropriate answer seems to be: not if the

selection of the data is done randomly, as in the cases with the random node sampling.

However, if we control this process, so that we employ more data when the error is high, and

less data otherwise, the theory and the simulations show that we can maintain the convergence

rate of the synchronous network, and, in a single-task and linear scenario with a stationary envi-

Conclusions 159

ronment, achieve a slightly better, rather than worse, steady-state performance. Thus, it seems

reasonable to claim that, with a proper sampling mechanism, adaptive diffusion networks

may indeed, under these circumstances, do better with less data.

160

REFERENCES

1 SAYED, A. H. Adaptation, Learning, and Optimization over Networks, volume 7.
Foundations and Trends in Machine Learning, now Publishers Inc., Hanover, MA, 2014.

2 SAYED, A. H. Diffusion adaptation over networks. In CHELLAPA, R. and
THEODORIDIS, S. (Ed.). Academic Press Library in Signal Processing: array and
statistical signal processing, volume 3, chapter 9, p. 323–456. Academic Press, 2014.

3 SAYED, A. H. Adaptive networks. Proceedings of the IEEE, v. 102, n. 4, p. 460–497,
2014.

4 LOPES, C. G. and SAYED, A. H. Diffusion least-mean squares over adaptive networks:
Formulation and performance analysis. IEEE Transactions on Signal Processing, v. 56, n. 7,
p. 3122–3136, 2008.

5 CATTIVELLI, F. S. and SAYED, A. H. Diffusion LMS strategies for distributed estimation.
IEEE Transactions on Signal Processing, v. 58, n. 3, p. 1035–1048, 2009.

6 CATTIVELLI, F. S.; LOPES, C. G.; and SAYED, A. H. Diffusion recursive least-squares
for distributed estimation over adaptive networks. IEEE Transactions on Signal Processing,
v. 56, n. 5, p. 1865–1877, 2008.

7 SAYED, A. H. and LOPES, C. G. Adaptive processing over distributed networks In
Transactions on Fundamentals of Electronics, Communications, and Computer Sciences,
v. E90-A, p. 1504–1510, 2007.

8 RABBAT, M. G. and NOWAK, R. D. Quantized incremental algorithms for distributed
optimization. IEEE Journal on Selected Areas in Communications, v. 23, n. 4, p. 798–808,
2005.

9 LOPES, C. G. and SAYED, A. H. Distributed adaptive incremental strategies: Formulation
and performance analysis. In: PROC. 2006 IEEE Int. Conf. Acoustics, Speech, and Signal
Process. (ICASSP). 2006, v. III, P. 584–587.

10 LOPES, C. G. and SAYED, A. H. Incremental adaptive strategies over distributed
networks. IEEE Transactions on Signal Processing, v. 55, n. 8, p. 4064 –4077, 2007.

11 OLFATI-SABER, R. and MURRAY, R. M. Consensus problems in networks of agents
with switching topology and time-delays. IEEE Transactions on automatic control, v. 49, n.
9, p. 1520–1533, 2004.

12 XIAO, L. and BOYD, S. Fast linear iterations for distributed averaging. Systems &
Control Letters, v. 53, n. 1, p. 65–78, 2004.

13 OLFATI-SABER, R. and SHAMMA, J. S. Consensus filters for sensor networks and
distributed sensor fusion. In: PROC. 44th IEEE Conference on Decision and Control. 2005.
P. 6698–6703.

References 161

14 XIAO, L.; BOYD, S.; and LALL, S. A scheme for robust distributed sensor fusion based
on average consensus. In: PROC. Fourth International Symposium on Information Processing
in Sensor Networks (IPSN). 2005. P. 63–70.

15 SPANOS , D. P.; OLFATI-SABER, R.; and MURRAY, R. M. Dynamic consensus on
mobile networks. In: IFAC World Congress. 2005. P. 1–6.

16 BOYD, S.; XIAO, L. and LALL, S. A space-time diffusion scheme for peer-to-peer
least-squares estimation. In: PROC. 5th International Conference on Information Processing
in Sensor Networks. 2006. P. 168–176.

17 BARBAROSSA, S. and SCUTARI, G. Bio-inspired sensor network design. IEEE Signal
Processing Magazine, v; 24, n. 3, p. 26–35, 2007.

18 DI LORENZO, P.; BARBAROSSA, S.; and SAYED, A. H. Bio-inspired decentralized
radio access based on swarming mechanisms over adaptive networks. IEEE Transactions on
Signal Processing, v. 61, n. 12, p. 3183–3197, 2013.

19 AKYILDIZ, I. F.; SU, W.; SANKARASUBRAMANIAM, Y.; and CAYIRCI, E. A survey
on sensor networks. IEEE Communications Magazine, v. 40, n. 8, p. 102–114, 2002.

20 CHEN, J.; RICHARD, C.; and SAYED, A. H. Multitask diffusion adaptation over
networks. IEEE Transactions on Signal Processing, v. 62, n. 16, p. 4129–4144, 2014.

21 CHEN, J.; RICHARD, C.; Alfred O Hero, and SAYED, A. H. Diffusion LMS for multitask
problems with overlapping hypothesis subspaces. In: PROC. 2014 IEEE International
Workshop on Machine Learning for Signal Processing (MLSP). 2014. P. 1–6.

22 CHEN, J.; RICHARD, C.; and SAYED, A. H. Diffusion LMS over multitask networks.
IEEE Transactions on Signal Processing, v. 63, n. 11, p. 2733–2748, 2015.

23 PLATA-CHAVES, J.; BOGDANOVIĆ, N., and BERBERIDIS, K. Distributed diffusion-
based LMS for node-specific adaptive parameter estimation. IEEE Transactions on Signal
Processing, v. 63, n. 13, p. 3448–3460, 2015.

24 NASSIF, R.; RICHARD, C.; FERRARI, A.; and SAYED, A. H. Proximal multitask
learning over networks with sparsity-inducing coregularization. IEEE Transactions on Signal
Processing, v. 64, n. 23, p. 6329–6344, 2016.

25 CHEN, J.; RICHARD, C.; and SAYED, A. H. Multitask diffusion adaptation over
networks with common latent representations. IEEE Journal of Selected Topics in Signal
Processing, v. 11, n. 3, p. 563–579, 2017.

26 GOGINENI, V. C. and CHAKRABORTY, M. Partial diffusion affine projection algorithm
over clustered multitask networks. In: PROC. 2019 IEEE International Symposium on Circuits
and Systems (ISCAS). 2019. P. 1–5.

27 JIN, D.; CHEN, J.; RICHARD, C.; and CHEN, J. Online proximal learning over jointly
sparse multitask networks with ℓ8,1 regularization. IEEE Transactions on Signal Processing,
v. 68, p. 6319–6335, 2020.

28 NASSIF, R.; VLASKI, S.; RICHARD, C.; and SAYED, A. H. Learning over multitask
graphs – part I: Stability analysis. IEEE Open Journal of Signal Processing, v. 1, p. 28–45,
2020.

References 162

29 NASSIF, R.; VLASKI, S.; RICHARD, C.; and SAYED, A. H. Learning over multitask
graphs – part II: Performance analysis. IEEE Open Journal of Signal Processing, v. 1, p.
46–63, 2020.

30 GOGINENI, V. C.; TALEBI, S. P.; and WERNER, S. Performance of clustered multitask
diffusion LMS suffering from inter-node communication delays. IEEE Transactions on
Circuits and Systems II: Express Briefs, v. 68, n. 7, p. 2695–2699, 2021.

31 MARANO, S. and SAYED, A. H. Decision learning and adaptation over multi-task
networks. IEEE Transactions on Signal Processing, v. 69, p. 2873–2887, 2021.

32 GAO, W.; CHEN, J.; RICHARD, C.; and HUANG, J. Diffusion adaptation over networks
with kernel least-mean-square. In: PROC. 2015 IEEE 6th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2015. P. 217–220.

33 SHIN, B.-S.; PAUL, H.; and DEKORSY, A. Distributed kernel least squares for
nonlinear regression applied to sensor networks. In: PROC. 2016 European Signal Processing
Conference (EUSIPCO). 2016. P. 1588–1592.

34 CHOUVARDAS, S. and DRAIEF, M. A diffusion kernel LMS algorithm for nonlinear
adaptive networks. In: PROC. 2016 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2016. P. 4164–4168.

35 SHIN, B.-S.; YUKAWA, M.; CAVALCANTE, R. L. G.; and DEKORSY, A. Distributed
adaptive learning with multiple kernels in diffusion networks. IEEE Transactions on Signal
Processing, v. 66, n. 21, p. 5505–5519, 2018.

36 GAO, W.; CHEN, J.; and ZHANG, L. Diffusion approximated kernel least mean
p-power algorithm. In: PROC. 2019 IEEE International Conference on Signal Processing,
Communications and Computing (ICSPCC). 2019. P. 1–6.

37 BOUBOULIS, P.; CHOUVARDAS, S.; and THEODORIDIS, S. Online distributed
learning over networks in RKH spaces using random Fourier features. IEEE Transactions on
Signal Processing, v. 66, n.7, p. 1920–1932, 2017.

38 BOUBOULIS, P.; THEODORIDIS, S.; and CHOUVARDAS, S. A random Fourier
features perspective of KAFs with application to distributed learning over networks. In
COMINIELLO, D. and PRÍNCIPE, J. C. (Ed.). Adaptive Learning Methods for Nonlinear
System Modeling, chapter 7, p. 149–172. Elsevier, 2018.

39 ELIAS, V. R. M.; GOGINENI, V. C.; MARTINS, W. A.; and WERNER, S. Adaptive
graph filters in reproducing kernel hilbert spaces: Design and performance analysis. IEEE
Transactions on Signal and Information Processing over Networks, v. 7, p. 62–74, 2020.

40 MITRA, R. and KADDOUM, G. Random Fourier feature-based deep learning for wireless
communications. IEEE Transactions on Cognitive Communications and Networking, v. 8,
n. 2, p. 468–479, 2022.

41 DI LORENZO, P.; ISUFI, E.; BANELLI, P.; BARBAROSSA, S.; and LEUS, G.
Distributed recursive least squares strategies for adaptive reconstruction of graph signals. In:
PROC. 2017 European Signal Processing Conference (EUSIPCO). 2017. P. 2289–2293.

References 163

42 DI LORENZO, P.; BANELLI, P.; BARBAROSSA, S.; and SARDELLITTI, S. Distributed
adaptive learning of graph signals. IEEE Transactions on Signal Processing, v. 65, n. 16, p.
4193–4208, 2017.

43 DI LORENZO, P.; BANELLI, P.; ISUFI, E.; BARBAROSSA, S.; and LEUS, G. Adaptive
graph signal processing: Algorithms and optimal sampling strategies. IEEE Transactions on
Signal Processing, v. 66, n. 13, p. 3584–3598, 2018.

44 ANIS, A.; GADDE, A.; and ORTEGA, A. Efficient sampling set selection for bandlimited
graph signals using graph spectral proxies. IEEE Transactions on Signal Processing, v. 64,
n. 14, p. 3775–3789, 2016.

45 MARQUES, A. G.; SEGARRA, S.; LEUS, G.; and RIBEIRO, A. Sampling of graph
signals with successive local aggregations. arXiv preprint arXiv:1504.04687, 2015.

46 CHAMON, L. F. O.; and RIBEIRO, A. Greedy Sampling of Graph Signals. arXiv
preprint arXiv: arXiv:1704.01223, 2017.

47 NASSIF, R.; RICHARD, C.; CHEN, J.; and SAYED, A. H. Distributed diffusion
adaptation over graph signals. In: PROC. 2018 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2018. P. 4129–4133.

48 HUA, F.; NASSIF, R.; RICHARD, C.; WANG, H.; and SAYED, A. H. A preconditioned
graph diffusion LMS for adaptive graph signal processing. In: PROC. 2018 European Signal
Processing Conference (EUSIPCO). 2018. P. 111–115.

49 YUAN, K.; YING, B.; ZHAO, X.; and SAYED, A. H. Exact diffusion for distributed
optimization and learning – part I: Algorithm development. IEEE Transactions on Signal
Processing, v. 67, n. 3, p. 708–723, 2018.

50 YUAN, K.; YING, B.; ZHAO, X.; and SAYED, A. H. Exact diffusion for distributed
optimization and learning – part II: Convergence analysis. IEEE Transactions on Signal
Processing, v. 67, n. 3, p. 724–739, 2018.

51 BORDIGNON, V.; MATTA, V.; and SAYED, A. H. Adaptive social learning. IEEE
Transactions on Information Theory, v. 67, n. 9, p. 6053–6081, 2021.

52 INAN, Y.; KAYAALP, M.; TELATAR, E.; and SAYED, A. H. Social learning under
randomized collaborations. In: PROC. 2022 IEEE International Symposium on Information
Theory (ISIT). 2022. P. 115–120.

53 HU, P.; BORDIGNON, V.; VLASKI, S.; and Ali H Saye. Optimal combination policies
for adaptive social learning. In: PROC. ICASSP 2022 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2022. P. 5842–5846.

54 ARABLOUEI, R.; WERNER, S.; HUANG, Y.-F.; and DOĞANÇAY, K. Distributed least
mean-square estimation with partial diffusion. IEEE Transactions on Signal Processing, v.
62, n. 2, p. 472–484, 2013.

55 XU, S.; DE LAMARE, R. C.; and POOR, H. V. Dynamic topology adaptation for
distributed estimation in smart grids. In: PROC. 2013 5th IEEE International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). 2013. P. 420–423.

References 164

56 CHOUVARDAS, S.; SLAVAKIS, K.; and THEODORIDIS, S. Trading off complexity
with communication costs in distributed adaptive learning via Krylov subspaces for
dimensionality reduction. IEEE Journal of Selected Topics in Signal Processing, v. 7, n. 2,
p. 257–273, 2013.

57 SAYIN, M. O. and KOZAT, S. S. Compressive diffusion strategies over distributed
networks for reduced communication load. IEEE Transactions on Signal Processing, v. 62,
n. 20, p. 5308–5323, 2014.

58 XU, S.; DE LAMARE, R. C.; and POOR, H. V. Distributed compressed estimation based
on compressive sensing. IEEE Signal Processing Letters, v. 22, n. 9, p. 1311–1315, 2015.

59 GUPTA, S.; SAHOO, A. S.; and SAHOO, U. K. Partial diffusion over distributed
networks to reduce inter-node communication. In: PROC. 2017 IEEE International Conference
on Advanced Networks and Telecommunications Systems (ANTS). 2017. P. 1–6.

60 HARRANE, I. E. K.; FLAMARY, R.; and RICHARD, C. On reducing the communication
cost of the diffusion LMS algorithm. IEEE Transactions on Signal and Information
Processing over Networks, v. 5, n. 1, p. 100–112, 2018.

61 CARPENTIERO, M.; MATTA, V.; and SAYED, A. H. Adaptive diffusion with
compressed communication. In: PROC. 2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2022. P. 5672–5676.

62 CARPENTIERO, M.; MATTA, V.; and SAYED, A. H. Compressed distributed regression
over adaptive networks. In: PROC. 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2023. P. 1–5.

63 LOPES, C. G. and SAYED, A. H. Diffusion adaptive networks with changing topologies.
In: PROC. 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.
2008. P. 3285–3288

64 WERNER, S.; HUANG, Y.-F.; DE CAMPOS, M. L. R.; and KOIVUNEN, V. Distributed
parameter estimation with selective cooperation. In: PROC. 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing. 2009. P. 2849–2852.

65 TAKAHASHI, N. and YAMADA, I. Link probability control for probabilistic diffusion
least-mean squares over resource-constrained networks. In: PROC. 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing. 2010. P. 3518–3521.

66 RØRTVEIT, Ø. L.; HUSØY, J. H.; and SAYED, A. H. Diffusion LMS with communication
constraints. In: PROC. 2010 Conference Record of the Forty Fourth Asilomar Conference on
Signals, Systems and Computers. 2010. P. 1645–1649.

67 ZHAO, X. and SAYED, A. H. Single-link diffusion strategies over adaptive networks.
In: PROC. 2012 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2012. p. 3749–3752.

68 XU, S.; DE LAMARE, R. C.; and POOR, H. V. Adaptive link selection algorithms for
distributed estimation. EURASIP Journal on Advances in Signal Processing, v. 2015, n. 1,
p. 86, 2015.

References 165

69 ARABLOUEI, R.; WERNER, S.; DOĞANÇAY, K.; and HUANG, Y.-F. Analysis of a
reduced-communication diffusion LMS algorithm. Signal Processing, v. 117, p. 355–361,
2015.

70 CHEN, F. and SHAO, X. Broken-motifs diffusion LMS algorithm for reducing
communication load. Signal Processing, v. 133, p. 213–218, 2017.

71 RASTEGARNIA, A. Reduced-communication diffusion RLS for distributed estimation
over multi-agent networks. IEEE Transactions on Circuits and Systems II: Express Briefs,
v. 67, n. 1, p. 177–181, 2019.

72 ARROYO-VALLES, R.; MALEKI, S.; and LEUS, G. A censoring strategy for
decentralized estimation in energy-constrained adaptive diffusion networks. In: PROC. 2013
IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC).
2013. P. 155–159.

73 GHAREHSHIRAN, O. N.; KRISHNAMURTHY, V.; and YIN, G. Distributed energy-
aware diffusion least mean squares: Game-theoretic learning. IEEE Journal of Selected
Topics in Signal Processing, v. 7, n. 5, p. 821–836, 2013.

74 FERNANDEZ-BES, J.; ARROYO-VALLES, R.; ARENAS-GARCÍA, J., and CID-
SUEIRO, J. Censoring diffusion for harvesting WSNs. In: PROC. 2015 IEEE 6th International
Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).
2015. P. 237–240.

75 BERBERIDIS, D. K.; KEKATOS, V.; WANG, G.; and GIANNAKIS, G. B. Adaptive
censoring for large-scale regressions. In: PROC. 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). 2015. P. 5475–5479.

76 YU, C.-K.; VAN DER SCHAAR, M.; and SAYED, A. H. Information-sharing over
adaptive networks with self-interested agents. IEEE Transactions on Signal and Information
Processing over Networks, v. 1, n.1, p. 2–19, 2015.

77 WANG, Z.; YU, Z.; LING, Q.; BERBERIDIS, D. K.; and GIANNAKIS, G. B. Distributed
recursive least-squares with data-adaptive censoring. In: PROC. 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2017. P. 5860–5864.

78 WANG, Z.; YU, Z.; LING, Q.; BERBERIDIS, D. K.; and GIANNAKIS, G. B.
Decentralized RLS with data-adaptive censoring for regressions over large-scale networks.
IEEE Transactions on Signal Processing, v. 66, n. 6, p. 1634–1648, 2018.

79 YANG, L.; ZHU, H.; KANG, K.; LUO, X.; QIAN, H.; and YANG, Y. Distributed
censoring with energy constraint in wireless sensor networks. In: PROC. 2018 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2018. P.
6428–6432.

80 YANG, L.; ZHU, H.; WANG, H.; KANG, K.; and QIAN, H. Data censoring with network
lifetime constraint in wireless sensor networks. Digital Signal Processing, v. 92, p. 73–81,
2019.

81 TIGLEA, D. G.; CANDIDO, R.; and SILVA, M. T. M. A low-cost algorithm for adaptive
sampling and censoring in diffusion networks. IEEE Transactions on Signal Processing, v.
69, 58–72, 2020.

References 166

82 TIGLEA, D. G.; CANDIDO, R.; and SILVA, M. T. M. An adaptive algorithm for sampling
over diffusion networks with dynamic parameter tuning and change detection mechanisms.
Digital Signal Processing, v. 127 p. 103587, 2022.

83 XU, P.; WANG, Y.; CHEN, X.; and TIAN, Z. Coke: Communication-censored
decentralized kernel learning. Journal of Machine Learning Research, , v. 22, n. 196, p.
1–35, 2021.

84 TIGLEA, D. G.; CANDIDO, R.; AZPICUETA-RUIZ, L. A.; and SILVA, M. T. M.
Reducing the communication and computational cost of random Fourier features kernel LMS
in diffusion networks. In: PROC. 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2023. P. 1–5.

85 OSSEIRAN, A.; MONSERRAT, J. F.; and MARSCH, P. 5G mobile and wireless
communications technology. Cambridge University Press, 2016.

86 MIRAZ, M. H.; ALI, M.; EXCELL, P. S.; and PICKING, R. A review on internet of
things (IoT), internet of everything (IoE) and internet of nano things (IoNT). In: PROC. 2015
Internet Technologies and Applications (ITA). 2015. P. 219–224.

87 KUMAR, S. and RAZA, Z. Internet of things: possibilities and challenges. Fog
Computing: Breakthroughs in Research and Practice, p. 1–24, 2018.

88 TOMKOS, I.; KLONIDIS, D.; PIKASIS, E.; and THEODORIDIS, S. Toward the 6G
network era: opportunities and challenges. IT Professional, v. 22, n. 1, p. 34–38, 2020.

89 GIORDANI, M.; POLESE, M.; MEZZAVILLA, M.; RANGAN, S.; and ZORZI, M.
Toward 6G networks: use cases and technologies. IEEE Communications Magazine, v. 58,
n. 3, p. 55–61, 2020.

90 BANAFAA, M; SHAYEA, I.; DIN, J.; AZMI, M. H.; ALASHBI, A.; DARADKEH, Y.
I.; and ALHAMMADI, A. 6G Mobile communication technology: requirements, targets,
applications, challenges, advantages, and opportunities. Alexandria Engineering Journal, v.
64, p. 245–274, 2023.

91 CHAFII, M.; BARIAH, L.; MUHAIDAT, S.; and DEBBAH, M. Twelve scientific
challenges for 6G: rethinking the foundations of communications theory. IEEE
Communications Surveys & Tutorials, v. 25, n. 2, p. 868–904, 2023.

92 ZHOU, D.; SHENG, M.; LI, J.; and HAN, Z. Aerospace integrated networks innovation
for empowering 6G: a survey and future challenges. IEEE Communications Surveys &
Tutorials, v. 25, n. 2, p. 975–1019, 2023.

93 LATRÉ, B.; BRAEM, B.; MOERMAN, I.; BLONDIA, C.; and DEMEESTER, P. A
survey on wireless body area networks. Wireless networks, v. 17, n. 1, p. 1–18, 2011.

94 NEGRA, R.; JEMILI, I.; and BELGHITH, A. Wireless body area networks: Applications
and technologies. Procedia Computer Science, v. 83, p. 1274–1281, 2016.

95 TOBÓN, D. P.; FALK, T. H.; and MAIER, M. Context awareness in WBANs: a survey
on medical and non-medical applications. IEEE Wireless Communications, v. 20, n. 4, p.
30–37, 2013.

References 167

96 BERTRAND, A. Distributed signal processing for wireless EEG sensor networks. IEEE
Transactions on neural systems and rehabilitation engineering, 23(6):923–935, 2015.

97 ABBASI, A. Z.; ISLAM, N.; SHAIKH, Z. A.; et al. A review of wireless sensors and
networks’ applications in agriculture. Computer Standards & Interfaces, v. 36, n. 2, p.
263–270, 2014.

98 PLATA-CHAVES, J.; BERTRAND, A.; MOONEN, M.; THEODORIDIS, S.; and
ZOUBIR, A. M. Heterogeneous and multitask wireless sensor networks–algorithms,
applications, and challenges. IEEE Journal of Selected Topics in Signal Processing, v. 11,
n. 3, p. 450–465, 2017.

99 FEITOSA, A. E.; NASCIMENTO, V. H.; and LOPES, C. G. Low complexity distributed
estimation for IoT sensor networks. In: PROC. 2021 IEEE Statistical Signal Processing
Workshop (SSP). 2021. P. 136–140.

100 COELHO, R. M.; LOPES, C. G.; and FERRO, H. F. Adaptive IIR diffusion networks for
IoT applications. In: PROC. 2021 IEEE Statistical Signal Processing Workshop (SSP). 2021.
P. 141–145.

101 POTTIE, G. J. Wireless sensor networks. In: PROC. 1998 Information Theory Workshop
(Cat. No. 98EX131). 1998. P. 139–140.

102 HAARTSEN, J. C. The Bluetooth radio system. IEEE Personal Communications, v. 7,
n. 1, p. 28–36, 2000.

103 CROW, B. P.; WIDJAJA, I.; KIM, J. G.; and SAKAI, P. T. IEEE 802.11 wireless local
area networks. IEEE Communications Magazine, v. 35, n. 9, p. 116–126, 1997.

104 LANSFORD, J.; STEPHENS, A.; and NEVO, R. Wi-fi (802.11 b) and Bluetooth:
enabling coexistence. IEEE Network, v. 15, n. 5, p. 20–27, 2001.

105 BRITISH BROADCASTING CORPORATION. First 3G mobiles launched in Japan.
Available: <http://news.bbc.co.uk/2/hi/business/1572372.stm>, May, 2024.

106 BULT, K.; BURSTEIN, A.; CHANG, D.; DONG, M.; FIELDING, M.; KRUGLICK,
E.; HO, J.; LIN, F., LIN, T.-H.; KAISER, W. J.; et al. Low power systems for wireless
microsensors. In: PROC. 1996 International Symposium on Low Power Electronics and
Design. 1996. P. 17–21.

107 DONG, M. J.; YUNG, K. G.; and KAISER, W. J. Low power signal processing
architectures for network microsensors. In: PROC. 1997 International Symposium on Low
Power Electronics and Design. 1997. P. 173–177.

108 LIN, T.-H.; SANCHEZ, H.; ROFOUGARAN, R.; and KAISER, W. J. CMOS front end
components for micropower RF wireless systems. In: PROC. 1998 international symposium
on Low power electronics and design. 1998. P. 11–15.

109 POTTIE, G. J. and KAISER, W. J. Wireless integrated network sensors. Communica-
tions of the ACM, v. 43, n. 5, p. 51–58, 2000.

110 ESTRIN, D.; GIROD, L.; POTTIE, G. J.; and SRIVASTAVA, M. Instrumenting the
world with wireless sensor networks. In: PROC. 2001 IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP). 2001. v. 4, p. 2033–2036. IEEE, 2001.

http://news.bbc.co.uk/2/hi/business/1572372.stm

References 168

111 RABAEY, J. M.; AMMER, M. J.; DA SILVA, J. L.; PATEL, D.; and ROUNDY, S.
Picoradio supports ad hoc ultra-low power wireless networking. Computer, v. 33, n. 7, p.
42–48, 2000.

112 ERGEN, S. C. Zigbee/IEEE 802.15. 4 summary. UC Berkeley, September, v. 10, n. 17,
p. 11, 2004.

113 CARLSON, D.; SHAMSI, M.; SCHNAARE, T.; DAUGHERTY, D.; POTTER, J.;
NIXON, M.; et al. IEC 62591 WirelessHART® system engineering guide. Revision 3.0 ed.:
Emerson Process Management, 2012.

114 SEXTON, D. SP100. 11a overview. DOE Award DE-FC36-02GO14001, GE Global
Research, Research Triangle Park, NC, 2007.

115 CULLER, D.; CHAKRABARTI, S.; and INFUSION, I. P. 6LoWPAN: Incorporating
IEEE 802.15. 4 into the IP architecture. White paper, 2009.

116 PREDD, J. B.; KULKARNI, S. B.; and POOR, H. V. Distributed learning in wireless
sensor networks. IEEE Signal Processing Magazine, v. 23, n. 4, p. 56–69, 2006.

117 LOPES, C. G. and SAYED, A. H. Distributed processing over adaptive networks. In:
PROC. Adaptive Sensor Array Processing Workshop, MIT Lincoln Laboratory. 2006. P. 1–5.

118 TUGNAIT, J. K.; LIU, H.; GONG, G.; and LI, T. Editorial. EURASIP Journal on
Wireless Communications and Networking, v. 2004, n. 1, 2004.

119 STROGATZ, S. H. Exploring complex networks. Nature, v. 410, n. 6825, p. 268–276,
2001.

120 BRODER, A.; KUMAR, R.; MAGHOUL, F.; RAGHAVAN, P.; RAJAGOPALAN,
S.; STATA, R.; TOMKINS, A.; and WIENER, J. Graph structure in the web. Computer
networks, v. 33, p. 309–320, 2000.

121 FALOUTSOS, M.; FALOUTSOS, P.; and FALOUTSOS, C. On power-law relationships
of the internet topology. ACM SIGCOMM Computer Communication Review, v. 29, n. 4,
p. 251–262, 1999.

122 DIMENSIONS PUBLICATIONS ANALYTICAL VIEWS. Dimensions [online].
<https://ap.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&sea
rch_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&y
ear_from=1990&year_to=2023>. Accessed on 05/18/2024.; MAY 2024.

123 SCHIZAS, I. D.; RIBEIRO, A.; and GIANNAKIS, G. B. Consensus in ad hoc WSNs
with noisy links–part I: Distributed estimation of deterministic signals. IEEE Transactions on
Signal Processing, v. 56, n. 1, p. 350–364, 2007.

124 SCHIZAS, I. D.; GIANNAKIS, G. B.; ROUMELIOTIS, S. I.; and RIBEIRO, A.
Consensus in ad hoc WSNs with noisy links – part II: Distributed estimation and smoothing of
random signals. IEEE Transactions on Signal Processing, v. 56, n. 4, p. 1650–1666, 2008.

125 SAYED, A. H. Adaptive Filters. John Wiley & Sons, NJ, 2008.

126 HAYKIN, S. Adaptive Filter Theory. Pearson, Upper Saddle River, 5th edition, 2014.

https://ap.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&year_from=1990&year_to=2023
https://ap.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&year_from=1990&year_to=2023
https://ap.dimensions.ai/analytics/publication/overview/timeline?search_mode=content&search_text=wireless%20sensor%20networks&search_type=kws&search_field=text_search&year_from=1990&year_to=2023

References 169

127 DI LORENZO, P.; BARBAROSSA, S.; and SAYED, A. H. Decentralized resource
assignment in cognitive networks based on swarming mechanisms over random graphs. IEEE
Transactions on Signal Processing, v. 60, n. 7, p. 3755–3769, 2012.

128 INTANAGONWIWAT, C.; GOVINDAN, R.; ESTRIN, D.; HEIDEMANN, J.; and
SILVA, F. Directed diffusion for wireless sensor networking. IEEE/ACM Transactions on
Networking, v. 11, n. 1, p. 2–16, 2003.

129 ALANYALI, M.; VENKATESH, S.; SAVAS, O.; and AERON, S. Distributed Bayesian
hypothesis testing in sensor networks. In: PROC. 2004 American control conference. 2004. v.
6, P. 5369–5374.

130 DELOUILLE, V.; NEELAMANI, R.; and BARANIUK, R. Robust distributed estimation
in sensor networks using the embedded polygons algorithm. In: PROC. 3rd International
Symposium on Information Processing in Sensor Networks (IPSN). 2004. P. 405–413.

131 LUO, Z.-Q. An isotropic universal decentralized estimation scheme for a bandwidth
constrained ad hoc sensor network. IEEE Journal on Selected Areas in Communications, v.
23, n. 4, p. 735–744, 2005.

132 DEGROOT, M. H. Reaching a consensus. Journal of the American Statistical
Association, v. 69, n. 345, p. 118–121, 1974.

133 BERGER, R. L. A necessary and sufficient condition for reaching a consensus using
DeGroot’s method. Journal of the American Statistical Association, v. 76, n. 374, p.
415–418, 1981.

134 ARORA, S. and BARAK, B. Computational complexity: a modern approach.
Cambridge University Press, 2009.

135 JOHANSSON, B.; KEVICZKY, T.; JOHANSSON, M.; JOHANSSON, K. H.
Subgradient methods and consensus algorithms for solving convex optimization problems. In:
PROC. 2008 IEEE Conference on Decision and Control. 2008. P. 4185–4190

136 SCHIZAS, I. D.; MATEOS, G.; and GIANNAKIS, G. B. Distributed LMS for
consensus-based in-network adaptive processing. IEEE Transactions on Signal Processing,
v. 57, n. 6, p. 2365–2382, 2009.

137 DIMAKIS, A. G.; KAR, S.; MOURA, J. M. F.; RABBAT, M. G.; and SCAGLIONE, A.
Gossip algorithms for distributed signal processing. Proceedings of the IEEE, v. 98, n. 11, p.
1847–1864, 2010.

138 LOPES, C. G. and SAYED, A. H. Diffusion least-mean squares over adaptive networks.
In: PROC. 2007 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2007. v. 3, P. 917–920.

139 TU, S.-Y. and SAYED, A. H. Diffusion strategies outperform consensus strategies for
distributed estimation over adaptive networks. IEEE Transactions on Signal Processing, v.
60, n. 12, p. 6217–6234, 2012.

140 ABDOLEE, R. and CHAMPAGNE, B. Distributed blind adaptive algorithms based on
constant modulus for wireless sensor networks. In: PROC. 2010 International Conference on
Wireless and Mobile Communications. 2010. P. 303–308.

References 170

141 BOGDANOVIĆ, N., PLATA-CHAVES, J.; and BERBERIDIS, K. Distributed
incremental-based LMS for node-specific adaptive parameter estimation. IEEE Transactions
on Signal Processing, v. 62, n. 20, p. 5382–5397, 2014.

142 LU, L. and ZHAO, H. Diffusion leaky LMS algorithm: Analysis and implementation.
Signal Processing, v. 140, p. 77–86, 2017.

143 YU, H. and XIA, X. Adaptive consensus of multi-agents in networks with jointly
connected topologies. Automatica, v. 48, n. 8, p. 1783–1790, 2012.

144 XIAO, F. and CHEN, T. Adaptive consensus in leader-following networks of
heterogeneous linear systems. IEEE Transactions on Control of Network Systems, v. 5, n.
3, p. 1169–1176, 2017.

145 ZHANG, H.; ZHOU, X.; WANG, Z.; YAN, H.; and SUN, J. Adaptive consensus-based
distributed target tracking with dynamic cluster in sensor networks. IEEE Transactions on
cybernetics, v. 59, n. 5, p. 1580–1591, 2018.

146 ZHAO, X. and SAYED, A. H. Asynchronous adaptation and learning over networks –
part I: Modeling and stability analysis. IEEE Transactions on Signal Processing, v. 63, n. 4,
p. 811–826, 2014.

147 ZHAO, X. and SAYED, A. H. Asynchronous adaptation and learning over networks
– part II: Performance analysis. IEEE Transactions on Signal Processing, v. 63, n. 4, p.
827–842, 2014.

148 ZHAO, X. and SAYED, A. H. Asynchronous adaptation and learning over networks
– part III: Comparison analysis. IEEE Transactions on Signal Processing, v. 63, n. 4, p.
843–858, 2014.

149 LIU, W.; PRÍNCIPE, J. C.; and HAYKIN, S. Kernel adaptive filtering: a
comprehensive introduction, volume 57. John Wiley & Sons, 2011.

150 ENGEL, Y.; MANNOR, S.; and MEIR, R. The kernel recursive least-squares algorithm.
IEEE Transactions on Signal Processing, v. 52, n. 8, p. 2275–2285, 2004.

151 RICHARD, C.; BERMUDEZ, J. C. M.; and HONEINE, P. Online prediction of time
series data with kernels. IEEE Transactions on Signal Processing, v. 57, n. 3, p. 1058–1067,
2008.

152 SIMIĆ, S. N. and SASTRY, S. Distributed environmental monitoring using random
sensor networks. In Information Processing in Sensor Networks, p. 582–592. Springer,
2003.

153 LI, X.; SHI, Q.; XIAO, S.; DUAN, S; and CHEN, F. A robust diffusion minimum kernel
risk-sensitive loss algorithm over multitask sensor networks. Sensors, v. 19, n. 10, p. 2339,
2019.

154 NASSIF, R.; RICHARD, C.; FERRARI, A.; and SAYED, A. H. Multitask diffusion
adaptation over asynchronous networks. IEEE Transactions on Signal Processing, v. 64, n.
11, p. 2835–2850, 2016.

155 DJURIĆ, P. M. Editorial. IEEE Transactions on Signal and Information Processing
over Networks, v. 1, n. 1, p. 1–1, 2015.

References 171

156 O’DEA, S. Number of smartphones sold to end users worldwide from 2007 to 2021 (in
million units). Statista [online]. <https://www.statista.com/statistics/263437/global-smartphon
e-sales-to-end-users-since-2007/>. Accessed on 11/29/2024; May 2024.

157 PERRIN, A. Social media usage. Pew Research Center, v. 125, p. 52–68, 2015.

158 MANYIKA, J.; CHUI, M.; BROWN, B.; BUGHIN, J.; DOBBS, R.; ROXBURGH,
C.; BYERS, A. H.; et al. Big data: The next frontier for innovation, competition, and
productivity. McKinsey Global Institute, 2011.

159 ZWOLENSKI, M. and WEATHERILL, L. The digital universe: Rich data and the
increasing value of the internet of things. Journal of Telecommunications and the Digital
Economy, v. 2, n. 3, p. 47, 2014.

160 SANDRYHAILA, A. and MOURA, J. M. F. Discrete signal processing on graphs. IEEE
Transactions on Signal Processing, v. 61, n. 7, p. 1644–1656, 2013.

161 DI LORENZO, P.; BARBAROSSA, S.; BANELLI, P.; and SARDELLITTI, S.
Adaptive least mean squares estimation of graph signals. IEEE Transactions on Signal and
Information Processing over Networks, v. 2, n. 4, p. 555–568, 2016.

162 SHUMAN, D. I.; NARANG, S. K.; FROSSARD, P.; ORTEGA, A.; and VAN-
DERGHEYNST, P. The emerging field of signal processing on graphs: Extending
high-dimensional data analysis to networks and other irregular domains. IEEE Signal
Processing Magazine, v. 30, n. 3, p. 83–98, 2013.

163 ORTEGA, A.; FROSSARD, P.; KOVAČEVIĆ, J.; MOURA, J. M. F., and
VANDERGHEYNST, P. Graph signal processing: Overview, challenges, and applications.
Proceedings of the IEEE, v. 106, n. 5, p. 808–828, 2018.

164 DONG, X.; THANOU, D.; RABBAT, M.; and FROSSARD, P. Learning graphs from
data: A signal representation perspective. IEEE Signal Processing Magazine, v. 36, n. 3, p.
44–63, 2019.

165 GIANNAKIS, G. B.; Yanning Shen, and Georgios Vasileios Karanikolas. Topology
identification and learning over graphs: Accounting for nonlinearities and dynamics.
Proceedings of the IEEE, v. 106, n. 5, p. 787–807, 2018.

166 SANDRYHAILA, A. and MOURA, J. M. F. Big data analysis with signal processing
on graphs: Representation and processing of massive data sets with irregular structure. IEEE
Signal Processing Magazine, v. 31, n. 5, p. 80–90, 2014.

167 MOURA, J. M. F. Chapter 8 - Graph Signal Processing. In DJURIĆ P. M. and
RICHARD, C. (Ed.). Cooperative and Graph Signal Processing, p. 239–259. Academic
Press, 2018.

168 LIU, B.; DING, Z.; and LV, C. Distributed training for multi-layer neural networks by
consensus. IEEE Transactions on neural networks and learning systems, v. 31, n. 5, p.
1771–1778, 2019.

169 LIU, B. and DING, Z. Distributed heuristic adaptive neural networks with variance
reduction in switching graphs. IEEE Transactions on Cybernetics, v. 51, n. 7, p. 3836–3844,
2019.

https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/

References 172

170 VLASKI, S. and SAYED, A. H. Competing adaptive networks. In: PROC. 2021 IEEE
Statistical Signal Processing Workshop (SSP). 2021. P. 71–75.

171 WANG, Z.; PAVAN, F. R. M.; and SAYED, A. H. Decentralized GAN training through
diffusion learning. In: PROC. 2022 IEEE 32nd International Workshop on Machine Learning
for Signal Processing (MLSP). 2022. P. 1–6.

172 RIEKE, N.; HANCOX, J.; LI, W.; MILLETARI, F.; ROTH, H. R.; ALBARQOUNI, S.;
BAKAS, S.; GALTIER, M. N.; LANDMAN, B. A.; MAIER-HEIN, K.; et al. The future of
digital health with federated learning. NPJ Digital Medicine, v. 3, 1, p. 1–7, 2020.

173 VLASKI, S. and SAYED, A. H. Distributed learning in non-convex environments–part I:
Agreement at a linear rate. IEEE Transactions on Signal Processing, v. 69, p. 1242–1256,
2021.

174 VLASKI, S. and SAYED, A. H. Distributed learning in non-convex environments–part
II: Polynomial escape from saddle-points. IEEE Transactions on Signal Processing, v. 69, p.
1257–1270, 2021.

175 KONEČNỲ, J.; McMAHAN, H. B.; YU, F. X.; RICHTÁRIK, P.; SURESH, A. T.; and
BACON, D. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

176 KONEČNỲ, J.; McMAHAN, H. B.; RAMAGE, D.; and RICHTÁRIK, P. Federated
optimization: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016.

177 LI, T.; SAHU, A. K.; TALWALKAR, A.; and SMITH, V. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, v. 37, n. 3, p. 50–60,
2020.

178 NIKNAM, S.; DHILLON, H. S.; and REED, J. H. Federated learning for wireless
communications: Motivation, opportunities, and challenges. IEEE Communications
Magazine, v. 58, n. 6, p. 46–51, 2020.

179 BONAWITZ, K.; EICHNER, H.; GRIESKAMP, W.; HUBA, D.; INGERMAN, A.;
IVANOV, V.; KIDDON, C.; KONEČNỲ, J.; MAZZOCCHI, S.; McMAHAN, B.; et al.
Towards federated learning at scale: System design. Proceedings of Machine Learning and
Systems, v. 1, p. 374–388, 2019.

180 BERTRAND, A.; MOONEN, M.; and SAYED, A. H. Diffusion bias-compensated RLS
estimation over adaptive networks. IEEE Transactions on Signal Processing, v. 58, n. 11, p.
5212–5224, 2011.

181 ARABLOUEI, R.; DOĞANÇAY, K.; WERNER, S.; and HUAN, Y.-F. Adaptive
distributed estimation based on recursive least-squares and partial diffusion. IEEE
Transactions on Signal Processing, v. 62, n. 14, p. 3510–3522, 2014.

182 LIU, Z.; LIU, Y.; and LI, C. Distributed sparse recursive least-squares over networks.
IEEE Transactions on Signal Processing, v. 62, n. 6, p. 1386–1395, 2014.

183 BAQI, S. A.; ZERGUINE, A.; and BIN SAEED, M. O. Diffusion normalized least
mean squares over wireless sensor networks. In: PROC. 2013 International Wireless
Communications and Mobile Computing Conference (IWCMC). 2013. P. 1454–1457.

References 173

184 JUNG, S. M.; SEO, J.-H.; and PARK, P. G. A variable step-size diffusion normalized
least-mean-square algorithm with a combination method based on mean-square deviation.
Circuits, Systems, and Signal Processing, v. 34, n. 10, p. 3291–3304, 2015.

185 LI, L. and CHAMBERS, J. A. Distributed adaptive estimation based on the APA
algorithm over diffusion networks with changing topology. In: PROC. 2009 IEEE/SP
Workshop on Statistical Signal Processing (SSP). 2009. P. 757–760.

186 ABADI, M. S. E. and SHAFIEE, M. S. Distributed estimation over an adaptive diffusion
network based on the family of affine projection algorithms. IEEE Transactions on Signal
and Information Processing over Networks, v. 5, n. 2, p. 234–247, 2018.

187 CHOUVARDAS, S.; SLAVAKIS, K.; and THEODORIDIS, S. Adaptive robust
distributed learning in diffusion sensor networks. IEEE Transactions on Signal Processing,
v. 59, n. 10, p. 4692–4707, 2011.

188 RABBAT, M. and NOWAK, R. Distributed optimization in sensor networks. In: Proc.
3rd International Symposium on Information Processing in Sensor Networks (IPSN). 2004. P.
20–27.

189 LI, Z. and GUAN, S. Diffusion normalized Huber adaptive filtering algorithm. Journal
of the Franklin Institute, v. 255, n. 8, p. 3812–3825, 2018.

190 YU, Y.; ZHAO, H.; WANG, W. and LU, L. Robust diffusion Huber-based normalized
least mean square algorithm with adjustable thresholds. Circuits, Systems, and Signal
Processing, v. 39, n. 4, p. 2065–2093, 2020.

191 MARKOVSKY, I. and VAN HUFFEL, S. Overview of total least-squares methods.
Signal Processing, v. 87, n. 10, p. 2283–2302, 2007.

192 ARABLOUEI, R.; WERNER, S.; and DOĞANÇAY, K. Diffusion-based distributed
adaptive estimation utilizing gradient-descent total least-squares. In: PROC. 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing. 2013. P. 5308–5312.

193 LI, C.; HUANG, S.; LIU, Y.; and LIU, Y. Distributed TLS over multitask networks with
adaptive intertask cooperation. IEEE Transactions on Aerospace and Electronic Systems,
v. 52, n. 6, p. 3036–3052, 2016.

194 WANG, Z.; JIA, L.; and YANG, Z. Multi-task total least-squares adaptation over
networks. In: PROC. 2018 Chinese Control Conference (CCC). 2018. P. 4300–4304.

195 LI, L.; ZHAO, H.; and LV, S. Diffusion recursive total least square algorithm over
adaptive networks and performance analysis. Signal Processing, v. 182, p. 107954, 2021.

196 ZHAO, H.; CHEN, Y.; and LV, S. Robust diffusion total least mean m-estimate adaptive
filtering algorithm and its performance analysis. IEEE Transactions on Circuits and Systems
II: Express Briefs, v. 69, n. 2, p. 654–658, 2022.

197 MODALAVALASA, S.; SAHOO, U. K.; SAHOO, A. S.; and BARAHA, S. A review
of robust distributed estimation strategies over wireless sensor networks. Signal Processing,
v. 188, p. 108150, 2021.

References 174

198 SOBRON, I.; DINIZ, P. S. R.; MARTINS, W. A.; and VELEZ, M. Energy Detection
Technique for Adaptive Spectrum Sensing. IEEE Transactions on Communications, v. 63,
n. 3, p. 617–627, 2015.

199 MATTA, V.; BRACA, P.; MARANO, S.; and SAYED, A. H. Diffusion-based adaptive
distributed detection: Steady-state performance in the slow adaptation regime. IEEE
Transactions on Information Theory, v. 62, n. 8, p. 4710–4732, 2016.

200 MATTA, V.; BRACA, P.; MARANO, S.; and SAYED, A. H. Distributed detection over
adaptive networks: Refined asymptotics and the role of connectivity. IEEE Transactions on
Signal and Information Processing over Networks, v. 2, n. 4, p. 442–460, 2016.

201 AL-SAYED, S.; PLATA-CHAVES, J.; MUMA, M.; MOONEN, M.; and Abdelhak M
Zoubir. Node-specific diffusion LMS-based distributed detection over adaptive networks.
IEEE Transactions on Signal Processing, v. 66, n. 3, p. 682–697, 2017.

202 FEITOSA, A. E.; NASCIMENTO, V. H.; and LOPES, C. G. Adaptive detection in
distributed networks using maximum likelihood detector. IEEE Signal Processing Letters,
v. 25, n. 7, p. 974–978, 2018.

203 LIU, Y.; LI, C.; and ZHANG, Z. Diffusion sparse least-mean squares over networks.
IEEE Transactions on Signal Processing, v. 60, n. 8, p. 4480–4485, 2012.

204 CHOUVARDAS, S.; SLAVAKIS, K.; KOPSINIS, Y.; and THEODORIDIS, S. A
sparsity promoting adaptive algorithm for distributed learning. IEEE Transactions on Signal
Processing, v. 60, n. 10, p. 5412–5425, 2012.

205 DI LORENZO, P. and SAYED, A. H. Sparse distributed learning based on diffusion
adaptation. IEEE Transactions on signal processing, v. 61, n. 6, p. 1419–1433, 2012.

206 DI LORENZO, P. Diffusion adaptation strategies for distributed estimation over Gaussian
Markov random fields. IEEE Transactions on Signal Processing, v. 62, n. 21, p. 5748–5760,
2014.

207 DINIZ, P. S. R.; YAZDANPANAH, H; and LIMA, M. V. S. Feature LMS Algorithms.
In: PROC. 2018 IEEE International Conference on Acoustics, Speech and Signal Processing.
2018. P. 4144–4148.

208 YING, B.; YUAN, K.; and SAYED, A. H. Supervised learning under distributed features.
IEEE Transactions on Signal Processing, v. 67, n. 4, p. 977–992, 2019.

209 LIU, Y.; ZHANG, X.; KANG, Y.; LI, L.; CHEN, T.; HONG, M.; and YANG, Q.
FedBCD: A communication-efficient collaborative learning framework for distributed features.
IEEE Transactions on Signal Processing, 70:4277–4290, 2022.

210 MUSLUOGLU, C. A.; and BERTRAND, A. A unified algorithmic framework for
distributed adaptive signal and feature fusion problems – part I: Algorithm derivation. IEEE
Transactions on Signal Processing, v. 71, p. 1863–1878, 2023.

211 BLONDEL, V. D.; HENDRICKX, J. M.; OLSHEVSKY, A.; and TSITSIKLIS, J. N.
Convergence in multiagent coordination, consensus, and flocking. In: PROC. of IEEE
Conference on Decision and Control European Control Conference. 2005. P. 2996–3000; 2005.

References 175

212 METROPOLIS, N.; ROSENBLUTH, A. W.; ROSENBLUTH, M.; TELLER, A. H.;
and TELLER, E. Equation of state calculations by fast computing machines. The journal of
chemical physics, v. 21, n. 6, p. 1087–1092, 1953.

213 HASTINGS, W. K. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, v. 57, p.97-109, 1970.

214 ZHAO, X. and SAYED, A. H. Performance limits for distributed estimation over LMS
adaptive networks. IEEE Transactions on Signal Processing, v. 60, n. 10, p. 5107–5124,
2012.

215 TU, S.-Y. and SAYED, A. H. Optimal combination rules for adaptation and learning
over networks. In: PROC. 2011 IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing (CAMSAP). 2011. P. 317–320.

216 ZHAO, X.; TU, S.-Y.; and SAYED, A. H. Diffusion adaptation over networks under
imperfect information exchange and non-stationary data. IEEE Transactions on Signal
Processing, v. 60, n. 7, p. 3460–3475, 2012.

217 YU, C.-K. and SAYED, A. H. A strategy for adjusting combination weights over
adaptive networks. In: PROC. 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). 2013. P. 4579–4583.

218 BOYD, S.; DIACONIS, P.; and XIAO, L. Fastest mixing Markov chain on a graph.
SIAM review, v. 46, n. 4, p. 667–689, 2004.

219 TAKAHASHI, N.; YAMADA, I.; and SAYED, A. H. Diffusion least-mean squares with
adaptive combiners: Formulation and performance analysis. IEEE Transactions on Signal
Processing, v. 58, n. 9, p. 4795–4810, 2010.

220 FERNANDEZ-BES, J.; ARENAS-GARCÍA, J.; and SAYED, A. H. Adjustment of
combination weights over adaptive diffusion networks. In: PROC. 2014 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014. P. 6409–6413.

221 FERNANDEZ-BES, J.; AZPICUETA-RUIZ, L. A.; ARENAS-GARCÍA, J., and SILVA,
M. T. M. Distributed estimation in diffusion networks using affine least-squares combiners.
Digital Signal Processing, v. 36, p. 1–14, 2015.

222 NAKAI, A. and HAYASHI, K. An adaptive combination rule for diffusion LMS based on
consensus propagation. In: PROC. 2018 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 2018. P. 3839–3843.

223 FERNANDEZ-BES, J.; ARENAS-GARCÍA, J.; SILVA, M. T. M.; and AZPICUETA-
RUIZ, L. A. Adaptive diffusion schemes for heterogeneous networks. IEEE Transactions on
Signal Processing, v. 65, n. 21, p. 5661–5674, 2017.

224 MOALLEMI, C. C. and VAN ROY, B. Consensus propagation. IEEE Transactions on
Information Theory, v. 52, n. 11, p. 4753–4766, 2006.

225 ABDOLEE, R. and VAKILIAN, V. An iterative scheme for computing combination
weights in diffusion wireless networks. IEEE Wireless Communications Letters, v. 6, n. 4,
p. 510–513, 2017.

References 176

226 LOPES, C. G.; CHAMON, L. F. O.; and NASCIMENTO, V. H. Towards spatially
universal adaptive diffusion networks. In: PROC. 2014 IEEE Global Conference on Signal and
Information Processing (GlobalSIP). 2014. P. 803–807.

227 SEO, J. H.; JUNG, S. M.; and PARK, P. G. A diffusion subband adaptive filtering
algorithm for distributed estimation using variable step size and new combination method
based on the msd. Digital Signal Processing, v. 48, p. 361–369, 2016.

228 ERGINBAS, Y. E.; VLASKI, S.; and SAYED, A. H. Gramian-based adaptive
combination policies for diffusion learning over networks. In PROC. 2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). 2021. P. 5215–5219.

229 ERGEN, M. and VARAIYA, P. Decomposition of energy consumption in IEEE 802.11.
In PROC. 2007 IEEE International Conference on Communications. 2007. P. 403–408.

230 FEENEY L. M. and NILSSON, M. Investigating the energy consumption of a wireless
network interface in an ad hoc networking environment. In: PROC. IEEE Conference on
Computer Communications (INFOCOM). 2001. v. 3, p. 1548–1557.

231 ALISTARCH, D.; GRUBIC, D.; LI, J.; TOMIOKA, R.; and VOJNOVIC, M. QSGD:
Communication-efficient SGD via gradient quantization and encoding. Proc. Advances in
neural information processing systems, p. 1548–1557, 2017.

232 STICH, S. U.; CORDONNIER, J.-B.; and JAGGI, M. Sparsified SGD with memory.
Proc. Advances in Neural Information Processing Systems, 2018, p. 1709–1720.

233 NASSIF, R.; VLASKI, S.; RICHARD, C.; CHEN, J.; and SAYED, A. H. Multitask
learning over graphs: An approach for distributed, streaming machine learning. IEEE Signal
Processing Magazine, v. 37, n. 3, 14–25, 2020.

234 SCARDAPANE, S.; CHEN, J.; and RICHARD, C. Adaptation and learning over
networks for nonlinear system modeling. In COMMINIELLO, D. and PRÍNCIPE, J. C.
(Ed.). Adaptive learning methods for nonlinear system modeling, chapter 10, p. 223–242.
Butterworth-Heineman, 2018.

235 SCHOLKOPF, B. and SOMLA, A. J. Learning with Kernels: support vector
machines, regularization, optimization, and beyond. MIT Press, Cambridge, 2002.

236 STEINWART, I. and CHRISTMANN, A. Support vector machines. Springer Science
& Business Media, 2008.

237 SHIN, B.-S.; PAUL, H.; YUKAWA, M.; and DEKORSY, A. Distributed nonlinear
regression using in-network processing with multiple Gaussian kernels. In PROC. 2017
IEEE International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC). 2017. P. 1–5.

238 HONG, S. and CHAE, J. Distributed online learning with multiple kernels. IEEE
Transactions on neural networks and learning systems, v. 34, n. 3, p. 1263–1277, 2021.

239 SHIN, B.-S.; YUKAWA, M.; CAVALCANTE, R. L. G.; and DEKORSY, A. A hybrid
dictionary approach for distributed kernel adaptive filtering in diffusion networks. In: PROC.
2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2018. P. 3414–3418.

References 177

240 BOUBOULIS, P.; POUGKAKIOTIS, S.; and THEODORIDIS, S. Efficient KLMS and
KRLS algorithms: A random Fourier feature perspective. In: PROC. 2016 IEEE Statistical
Signal Processing Workshop (SSP). 2016. P. 1–5.

241 DONG, X.; THANOU, D.; TONI, L.; BRONSTEIN, M.; and FROSSARD, P. Graph
signal processing for machine learning: A review and new perspectives. IEEE Signal
Processing Magazine, v. 37, n. 6, p. 117–127, 2020.

242 LATOUCHE, P. and ROSSI, F. Graphs in machine learning: an introduction. In: PROC.
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine
Learning (ESANN). 2015. P. 207–218.

243 BONDY, J. A. and MURTY, U. S. R. Graph Theory With Applications. Macmillan
Press Ltd, 1976.

244 HUA, F.; NASSIF, R.; RICHARD, C.; WANG, H.; and SAYED, A. H. Online distributed
learning over graphs with multitask graph-filter models. IEEE Transactions on Signal and
Information Processing over Networks, v. 6, p. 63–77, 2020.

245 ALINAGHI, A.; WEISS, S.; STANKOVIC, V.; and PROUDLER, I. Graph filter design
for distributed network processing: a comparison between adaptive algorithms. In: PROC.
2021 Sensor Signal Processing for Defence Conference (SSPD). 2021. P. 1–5.

246 GOGINENI, V. C.; ELIAS, V. R. M.; MARTINS, W. A.; and WERNER, S. Graph
diffusion kernel LMS using random Fourier features. In: PROC. 2020 Asilomar Conference
on Signals, Systems, and Computers. 2020. P. 1528–1532.

247 ELIAS, V. R. M.; GOGINENI, V. C.; MARTINS, W. A.; and WERNER, S. Kernel
regression over graphs using random Fourier features. IEEE Transactions on Signal
Processing, v. 70, p. 936–949, 2022.

248 Historical temperature dataset. Available: https://portal.inmet.gov.br/ (in Portuguese).
Data used in the simulations also available at: https://github.com/dgtiglea/Daily-Average-
Temperature-Brazilian-Stations, Sep. 2020.

249 PERRAUDIN, N.; PARATTE, J.; SHUMAN, D. I. Shuman; KALOFOLIAS, V.;
VANDERGHEYNST, P.; and HAMMOND, D. K. GSPBOX: A toolbox for signal processing
on graphs. arXiv, preprint:1408.5781, 2014.

250 LOPES, C. G.; NASCIMENTO, V. H.; and CHAMON, L. F. O. Distributed universal
adaptive networks. IEEE Transactions on Signal Processing, v. 71, p. 1817–1832, 2023.

251 HOU, X.; ZHAO, H.; LONG, X. Graph diffusion kernel maximum correntropy
criterion over sensor network and its performance analysis. IEEE Sensors Journal, v. 23, p.
14583–13591, 2023.

252 XIONG, K. and WANG, S. The online random Fourier features conjugate gradient
algorithm. IEEE Signal Processing Letters, v. 26, n. 5, p. 740–744, 2019.

253 BUENO, A. A. and SILVA, M. T. M. Gram-Schmidt-based sparsification for kernel
dictionary. IEEE Signal Processing Letters, v. 27, p. 1130–1134, 2020.

References 178

254 LI, Z; TON, J.-F.; OGLIC, D.; and SEJDINOVIC, D. Towards a unified analysis of
random Fourier features. In: PROC. International Conference on Machine Learning. 2019. P.
3905–3914.

255 BACCIU, D.; ERRICA, F.; MICHELI, A.; and PODDA, M. A gentle introduction to
deep learning for graphs. Neural Networks, v. 129, p. 203–221, 2020.

256 WEI, X.; YU, R.; and SUN, J. View-GCN: View-based graph convolutional network
for 3d shape analysis. In: PROC. IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2020. P. 1850–1859.

257 XIE, Y.; YU, Z.; ZHANG, J.; WANG, Z.; and JI, S. Self-supervised learning of graph
neural networks: A unified review. IEEE Transactions on pattern analysis and machine
intelligence, v. 45, n. 2, p. 2412–2429, 2022.

258 TIGLEA, D. G.; CANDIDO, R.; and SILVA, M. T. M. An adaptive sampling technique
for graph diffusion LMS algorithm. In: PROC. 2019 European Signal Processing Conference
(EUSIPCO). 2019. P. 1–5.

259 TIGLEA, D. G.; CANDIDO, R.; and SILVA, M. T. M. A sampling algorithm for
diffusion networks. In: PROC. 2020 European Signal Processing Conference (EUSIPCO).
2021. P. 2175–2179.

260 TIGLEA, D. G. A low-cost adaptive algorithm for sampling and censoring in
diffusion networks. Master’s thesis, University of São Paulo, São Paulo, Brazil, Available at
<https://www.teses.usp.br/teses/disponiveis/3/3142/tde-20012021-154434/pt-br.php> 2020.
(in Portuguese).

261 TIGLEA, D. G.; CANDIDO, R.; and SILVA, M. T. M. A sampling algorithm for
multitask adaptive diffusion networks. In: Anais do Simpósio Brasileiro de Telecomunicações
(SBrT’2023). 2023. P. 1–5 (in Portuguese).

262 GARCÍA, J. A.; AZPICUETA-RUIZ, L. A.; SILVA, M. T. M.; NASCIMENTO, V. H.;
and SAYED, A. H. Combinations of adaptive filters: Performance and convergence properties.
IEEE Signal Processing Magazine, v. 33, n. 1, p. 120–140, 2016.

263 LÁZARO-GREDILLA, M.; AZPICUETA-RUIZ, L. A.; FIGUEIRAS-VIDAL, A. R.;
and GARCÍA, J. A. Adaptively biasing the weights of adaptive filters. IEEE Transactions on
Signal Processing, v. 58, n. 7, p. 3890–3895, Jul. 2010.

264 FERNANDEZ-BES, J.; ARENAS-GARCÍA, J.; SILVA, M. T. M.; and AZPICUETA-
RUIZ, L. A. Adaptive diffusion schemes for heterogeneous networks. IEEE Transactions on
Signal Processing, v. 65, p. 5661–5674, 2017.

265 STRUTZ, T. Estimation of measurement-noise variance for variable-step-size NLMS
filters. In PROC. 2019 2European Signal Processing Conference (EUSIPCO). 2019. P. 1–5.

266 CHEN, S.; VARMA, R.; SANDRYHAILA, A.; and KOVAČEVIĆ, J. Discrete signal
processing on graphs: Sampling theory. IEEE Transactions on Signal Processing, v. 63, n.
24, p. 6510–6523, 2015.

267 TISTSVERO, M.; BARBAROSSA, S.; and DI LORENZO, P. Signals on graphs:
Uncertainty principle and sampling. IEEE Transactions on Signal Processing, v. 64, n. 18, p.
4845–4860, 2016.

https://www.teses.usp.br/teses/disponiveis/3/3142/tde-20012021-154434/pt-br.php

References 179

268 ZHENG, Z.; LIU, Z.; and HUANG, M. Diffusion least mean square/fourth algorithm for
distributed estimation. Signal Processing, v. 134, n. 268–274, 2017.

269 KWONG, R. H. and JOHNSTON, E. W. A variable step size LMS algorithm. IEEE
Transactions on Signal Processing, v. 40, p. 1633–1642, Jul. 1992.

270 ABOULNASR, T. and MAYYAS, K. A robust variable step-size LMS-type algorithm:
analysis and simulations. IEEE Transactions on signal processing, v. 45, n. 3, p. 631–639,
1997.

271 BENESTY, J.; REY, H.; VEGA, L. R.; and TRESSENS, S. A nonparametric VSS NLMS
algorithm. IEEE Signal Processing Letters, v. 13, n. 10, p. 581–584, 2006.

272 HUANG, H.-C.; and LEE, J. A new variable step-size NLMS algorithm and its
performance analysis. IEEE Transactions on Signal Processing, v. 60, n. 4, p. 2055–2060,
2011.

273 ZHU, Y.-G.; LI, Y.-G.; GUAN, S.-Y.; and CHEN, Q.-S. A novel variable step-size
NLMS algorithm and its analysis. Procedia Engineering, v. 29, p. 1181–1185, 2012.

274 HAMIDIA, M. and AMROUCHE, A. Improved variable step-size NLMS adaptive
filtering algorithm for acoustic echo cancellation. Digital Signal Processing, v. 49, p. 44–55,
2016.

275 BERSHAD, N. J. and BERMUDEZ, J. C. M. A switched variable step size NLMS
adaptive filter. Digital Signal Processing, v. 101, p. 102730, 2020.

276 TIGLEA, D. G.; CANDIDO, R.; and SILVA, M. T. M. A variable step size adaptive
algorithm with simple parameter selection. IEEE Signal Processing Letters, v. 29, p.
1774–1778, 2022.

277 TU, S.-Y. and SAYED, A. H. On the influence of informed agents on learning
and adaptation over networks. IEEE Transactions on Signal Processing, v. 61, n. 6, p.
1339–1356, 2012.

278 SAYED, A. H.; TU, S.-Y.; and CHEN, J. Online learning and adaptation over networks:
More information is not necessarily better. In: PROC. 2013 Information Theory and
Applications Workshop (ITA). 2013. P. 1–8.

279 SAYED, A. H.; TU, S.-Y.; CHEN, J.; ZHAO, X.; and TOWFIC, Z. J. Diffusion strategies
for adaptation and learning over networks: an examination of distributed strategies and network
behavior. IEEE Signal Processing Magazine, v. 30, n. 3, 155–171, 2013.

280 NASCIMENTO, V. H. and SILVA, M. T. M. Adaptive filters. In CHELLAPA, R. and
THEODORIDIS, S. (Ed.). Academic Press Library in Signal Processing: Signal Processing
Theory and Machine Learning, v. 1, chapter 12, p. 619–761. Academic Press, Chennai,
2014.

281 MEYER, C. D. Matrix analysis and applied linear algebra, volume 2. Siam, 2000.

282 LEE, J.-W.; KONG, J. T.; SONG, W.-J.; and KIM, S. E. Data-reserved periodic diffusion
LMS with low communication cost over networks. IEEE Access, v. 6, p. 54636–54650, 2018.

283 LASSERRE, J. B. A trace inequality for matrix product. IEEE Transactions on
Automatic Control, v. 40, n. 8, p. 1500–1501, 1995.

180

APPENDIX A -- ESTIMATION OF THE DUTY CYCLE OF THE SAMPLING IN THE

AS-DNLMS ALGORITHM

In order to estimate upper or lower bounds for η̆k, we must understand under which circum-

stances node k remains sampled for the greatest (or lowest) number of iterations in the mean.

This can be achieved by estimating the maximum and minimum values Etαkpnqu and Et∆αkpnqu
can assume in the mean during steady state when node k is sampled (i.e., ζk � 1). Performing

the same analysis for ζk � 0, we can determine upper and lower bounds for ηk. For simplicity,

we assume in our calculations that (3.18) is satisfied, although the final result is generalized in

Section 3.1.4 for all β¡0.

Firstly, let us assume that at the iteration n, αkpnq is negative but approximately zero, which

we denote by αkpnq�0�. In this case, taking expectations from both sides of (3.9) yields

Etαkpn�1q|αkpnq�0�u�µζϕ10
¸
iPNk

cikEtε2
i pnqu, (A.1)

Thus, at n� 1 the sampling of node k resumes and, recalling (3.18), from that iteration onward,

αk begins to decrease until it becomes negative again, meaning that (A.1) yields the maximum

value αk can assume in the mean in steady state. Moreover, assuming (3.21), (A.1) yields a

different value for each node k that lies in

µζϕ
1
0σ

2
min ¤ Etαs.s.

kmax
u ¤ µζϕ10σ2

max, (A.2)

where Etαs.s.
kmax
u denotes the maximum value αkpnq can assume in the mean in steady state. Anal-

ogously, we now assume that at a certain iteration n, αkpnq is positive but approximately zero,

which we denote by αkpnq � 0�. Making this replacement in (3.9) and taking expectations, we

obtain

Etαkpn�1q|αkpnq�0�u�µζϕ10E

$&%¸
iPNk

cikε
2
i pnq�β

,.-. (A.3)

Considering (3.18), we conclude from (A.3) that Etαkpn�1q|αkpnq � 0�u 0, meaning that

node k ceases to be sampled at iteration n�1 and, therefore, from that iteration onward, αk

begins to increase until it becomes negative again. Thus, (A.3) provides the minimum value αk

can assume in the mean during steady state, which lies in the range

µζϕ
1
0pσ2

min � βq ¤ Etαs.s.
kmin
u ¤ µζϕ10pσ2

max � βq, (A.4)

181

where Etαs.s.
kmin
u denotes the minimum value αkpnq can assume in the mean in steady state, k �

1, � � � ,V .

Since Etαkpnqu keeps oscillating around the point Etαkpnqu � 0 during steady state, we

replace ϕ1rαkpnqs in (3.12) by its first-order Taylor expansion around αkpnq � 0, which is simply

equal to the constant ϕ10. Thus, when node k is being sampled (ζk � 1), subtracting αkpnq from

both sides of (3.12) and taking expectations yields

�µζϕ10pβ�σ2
minq¤Et∆αkpnqu¤�µζϕ10pβ�σ2

maxq 0. (A.5)

Analogously, when the node is not sampled (ζk � 0),

µζϕ
1
0σ

2
min¤Et∆αkpnqu¤µζϕ10σ2

max. (A.6)

From a certain iteration n0 onward, we consider the model

Etαkpn0 � ηkqu�Etαkpn0qu � ηkEt∆αkpnqu. (A.7)

In order to estimate an upper bound η̆max for η̆k, we assume that Etαkpn0qu � Etαs.s.
kmax
u and

calculate the expected number of iterations required for Etαkpnqu to fall below zero in the

scenario where the node is sampled for the maximum number of iterations. This occurs if

Etαkpn0qu � µζϕ10σ2
max, which is the upper bound for Etαs.s.

kmax
u, and Et∆αkpnqu � �µζϕ10pβ �

σ2
maxq, which is the least negative variation for Et∆αkpnqu according to (A.5). Making η̆k� η̆max,

setting Etαkpn0 � η̆maxqu � 0 in (A.7), and taking into account the fact that the node must be

sampled at least once during each cycle, after some algebra we obtain (3.22). Analogously,

using (A.7) for the lower bound η̆k� η̆min, we get (3.23).

For ηk, we replace η̆k in (A.7) by ηk and consider that at the iteration n0, Etαkpn0qu �
Etαs.s.

kmin
u. Thus, the upper bound ηmax for ηk can be obtained by setting Etαkpn0qu � µζϕ10σ2

min,

which is the lower bound for Etαs.s.
kmin
u, and Et∆αkpnqu�µζϕ10σ2

min, which is the minimum value

for Et∆αkpnqu according to (A.6). Thus, (3.24) is obtained. Finally, as an estimate for the lower

bound ηmin of ηk, we get (3.25).

182

APPENDIX B -- ESTIMATION OF THE DUTY CYCLE OF THE SAMPLING IN THE

DTAS-DNLMS AND DTRAS-DNLMS ALGORITHMS

In order to estimate η̆k and ηk, we must study the behavior of αk once the algorithm achieves

the steady state in terms of MSE. For simplicity, we assume static and deterministic weights

tciku and the statistical independence between ϕ1kpnq and the terms between brackets in (3.41).

Simulation results suggest that this approximation is reasonable. Since αk¥0 and ζk�1 when

node k is sampled, taking expectations from both sides of (3.41) in this case yields

Etαkpn�1q|αkpnq¥0u� Etαkpnqu � µζEtϕ1kpnqu
��¸

iPNk

cikEtε2
i pnqu�γEtpσ2

Nk
pnqu

�� . (B.1)

In contrast, since αk 0 and ζk � 0 when node k is not sampled, we conclude from (3.41) that,

in this case,

Etαkpn�1q|αkpnq 0u � Etαkpnqu � µζEtϕ1kpnqu �
¸
iPNk

cikEtε2
i pnqu. (B.2)

Since αk keeps oscillating around the point αk � 0 in steady state, we replace ϕ1k in (B.1)

and (B.2) with its first-order Taylor expansion around αk � 0, which is equal to the constant

ϕ10. Assuming that Etε2
i pnqu �σ2

vi
and making these replacements in (B.1) and (B.2), we then

obtain

Etαkpn � 1q|αkpnq¥0u�Etαkpnqu�µζϕ10σ2
Nk
p1�γq (B.3)

and

Etαkpn � 1q|αkpnq 0u�Etαkpnqu�µζϕ10σ2
Nk
. (B.4)

Defining ∆αkpnq � αkpn � 1q � αkpnq, we get

Et∆αkpnq|αkpnq¥0u � �µζϕ10σ2
Nk
pγ�1q, (B.5)

where we have rearranged the expression since 1 � γ 0, and

Et∆αkpnq|αkpnq 0u � µζϕ10σ2
Nk
. (B.6)

Analyzing (B.3) to (B.6), it is possible to determine the minimum and maximum values that αk

can assume in the mean during steady state. Let us consider that, at a certain iteration n, αk is

positive but very close to zero. Denoting this situation by αkpnq � 0�, we conclude from (B.3)

183

and (B.5) that

Etαkpn � 1q|αkpnq�0�u��µζϕ10σ2
Nk
pγ�1q. (B.7)

Thus, we observe that αkpn � 1q 0. On the other hand, from (B.6) we conclude that

Et∆αkpn � 1qu ¡ 0, meaning that αk will begin to increase in the following iteration.

Hence, (B.7) provides the minimum value that αk can achieve in the mean during steady state,

i.e. Etαs.s.
kmin
u��µζϕ10σ2

Nk
pγ�1q.

Analogously, if we assume that at a certain iteration n, αk is negative but close to zero,

which we denote by αkpnq � 0�, we obtain from (B.4) and (B.6) that

Etαs.s.
kmax
u�Etαkpn � 1q|αkpnq�0�u� µζϕ10σ2

Nk
(B.8)

is the maximum value αk can assume in the mean during steady state.

Hence, in order to estimate the expected number sηk of iterations per cycle in which node k

is sampled, we can divide Etαs.s.
kmax
u by the absolute value of Et∆αkpnq|αkpnq ¥ 0u, which will

provide the number of iterations needed for Etαku to become negative after achieving its peak

value. Using (B.5), we thus obtain

η̆k �
µζϕ

1
0σ

2
Nk

µζϕ
1
0σ

2
Nk
pγ�1q �

1
γ � 1

. (B.9)

In order to obtain ηk, we follow an analogous procedure for Etαs.s.
kmin
u. Taking (B.6) into

account, we arrive at

ηk �
µζϕ

1
0σ

2
Nk
pγ�1q

µζϕ
1
0σ

2
Nk

� γ � 1. (B.10)

However, taking into account the fact that η̆k and ηk represent a certain number of iterations, we

should expect them to be natural numbers. Since we are interested in the maximum value that

η̆k can assume, we replace it by its ceiling. Analogously, since we seek the minimum value that

ηk can assume, we replace it by its floor. Moreover, taking into account that η̆k and ηk should be

greater than or equal to one, we arrive at (3.53) and (3.54).

184

APPENDIX C -- OBTAINING χ FROM pχ

Analyzing (3.58) and using the definition of cumulative distribution function, we conclude

that, for x ¡ 1,

FXpxq � a3 �
» x

1

a4b
2πa2

2

exp

�
�pϱ�a1q2

2a2
2

�
dϱ. (C.1)

If we denote the pdf of a Normal random variable with mean a1 and standard deviation a2 by

gXpxq, i.e.,

gXpxq � 1b
2πa2

2

exp

�
�px�a1q2

2a2
2

�
, (C.2)

and its cdf by

GXpxq �
» x

�8

1b
2πa2

2

exp

�
�pϱ�a1q2

2a2
2

�
dϱ, (C.3)

we may recast (C.1) as

FXpxq � a3 � a4
�
GXpxq �GXp1q

�
. (C.4)

Since limxÑ8 FXpxq � 1, we can write a4 in terms of a1, a2 and a3. Analyzing (C.4) for

xÑ8, we get 1 � a3 � a4
�
1 �GXp1q

�
, from which we conclude that

a4 � 1 � a3

1 �GXp1q . (C.5)

Thus, (C.1) can be recast as

FXpxq � a3 � 1 � a3

1 �GXp1q
�
GXpxq �GXp1q

�
. (C.6)

Finally, since GXpxq � 1
2

��1�erf

�
x�a1

a2

?
2

���, where erfp�q denotes the error function, we

may recast (C.6) as

FXpxq � a3 � p1 � a3q
1 � erf

�
1�a1

a2
?

2

	�erf

�
x � a1

a2

?
2

�
� erf

�
1 � a1

a2

?
2

��
. (C.7)

185

Replacing (C.7) in (3.59) and making x � χ, we finally get

erf

�
χ�a1

a2

?
2

�
¡ 1�pχ�a3

1�a3

��1�erf

�
1�a1

a2

?
2

����erf

�
1�a1

a2

?
2

�
� pχ

1�a3
�erf

�
1�a1

a2

?
2

�
� 1�pχ�a3

1�a3
.

(C.8)

It should be noted that if

pχ
1�a3

�erf

�
1�a1

a2

?
2

�
� 1�pχ�a3

1�a3
�

1 � a3 � pχerfc
�

1�a1

a2
?

2

	
1 � a3

¤ �1, (C.9)

where erfc denotes the complementary error function, any value of χ satisfies (C.8). Moreover,

there is always a solution to (C.8). The only case in which this would not happen is if

1 � a3 � pχerfc
�

1�a1

a2
?

2

	
1 � a3

¡ 1, (C.10)

i.e.,

pχerfc

�
1 � a1

a2

?
2

�
 0, (C.11)

which is impossible since pχ ¥ 0 and erfcpxq ¡ 0, @x. Thus, assuming that (C.9) does not

hold, (3.60) can be straightforwardly obtained from (C.8). If (C.9) does hold, then any choice

for χ is equally fitting.

186

APPENDIX D -- OBTAINING THE RECURSION FOR ξkkpnq

Taking the expectations from both sides of (4.13), we get

Et}rwkpnq}2u � ξkkpnq �
¸
iPNk

¸
jPNk

cikc jk x̆ jipnq, (D.1)

where we have defined

x̆ jipnq≜E
"!
rIM�µ jζ jpnqu jpnquT

j pnqsrw jpn�1q � µ jζ jpnqu jpnqv jpnq
)T

�
!
rIM�µiζipnquipnquT

i pnqsrwipn�1q � µiζipnquipnqvipnq
)*
.

(D.2)

The analysis of (D.2) can be broken down into two cases: i) when j � i, and ii) when j , i.

In the first situation, using A2 and A4, and observing that Etζipnqu � Etζ2
i pnqu � pζi , we can

write

x̆iipnq � EtrwT
i pn�1qrwipn�1qu � 2µi pζiEtrwT

i pn�1quipnquT
i pnqrwipn�1qu

� µ2
i pζiEtrwT

i pn�1quipnquT
i pnquipnquT

i pnqrwipn�1qu � µ2
i pζiσ

2
vi

EtuT
i pnquipnqu.

(D.3)

Using Assumptions A1 and A3, and following similar procedures to those used in the anal-

ysis of the MSD of the LMS algorithm, we may write (see pages 803–807 of [280])

EtrwT
i pn�1quipnquT

i pnqrwipn�1qu � σ2
ui
ξiipn � 1q (D.4)

and

EtrwT
i pn�1quipnquT

i pnquipnquT
i pnqrwipn�1qu � σ4

ui
pM � 2qξiipn � 1q. (D.5)

Thus, (D.3) can be recast as

x̆iipnq�τiiξiipn � 1q � µ2
i pζi Mσ

2
ui
σ2

vi
, (D.6)

with τii defined as in (4.15). Let us now analyze the case in which j , i. To make this distinction

clearer, we shall replace the index i by ℓ in this case. From A4, we can observe that

Etζ jpnqζℓpnqu � Etζ jpnquEtζℓpnqu � pζ j pζℓ . (D.7)

187

Using (D.7), A2 and A4, we can rewrite (D.2) for ℓ , j as

x̆ jℓpnq � EtrwT
j pn�1qrwℓpn�1qu � µ j pζ jEtrwT

j pn�1qu jpnquT
j pnqrwℓpn�1qu

� µℓpℓEtrwT
j pn�1quℓpnquT

ℓ pnqrwℓpn�1qu
� µ jµℓpζ j pζℓEtrwT

j pn�1qu jpnquT
j pnquℓpnquT

ℓ pnqrwℓpn�1qu

(D.8)

Using A1, A4, and A5, from (D.8) we can write

EtrwT
j pn�1qu jpnquT

j pnqrwℓpn�1qu � EtrwT
j pn�1quipnquT

i pnqrwℓpn�1qu
� σ2

u j
ξ jℓpn � 1q

(D.9)

for any pair of nodes ℓ and j, ℓ , j. Furthermore, we notice that in the fourth-order moment

that appears in (D.3) is not present in (D.8), and that we may write

EtrwT
j pn�1qu jpnquT

j pnquℓpnquT
ℓ pnqrwℓpn�1qu � σ2

u j
σ2

uℓξ jℓpn � 1q. (D.10)

Therefore, with τ jℓ defined as in (4.15), we can write

x̆ jℓpnq�τ jℓξ jℓpn � 1q, (D.11)

Thus, replacing (D.6) and (D.11) in (D.1) leads to (4.14).

As evidenced by (4.14) and (D.11), we also need to obtain a recursion for EtrwT
j pn�1qrwℓpn�

1qu, for j , ℓ, in order to analyze the evolution of the MSD of each node. Firstly, we should

notice that we can rewrite rwT
j pnqrwℓpnq as a function of the local estimates, i.e.

rwT
j pnqrwℓpnq � ¸

sPNℓ

¸
rPN j

csℓcr jrψT
r pnqrψspnq. (D.12)

Replacing (4.9) in (D.12) and taking the expectations from both sides, we arrive at

ξ jℓpnq �
¸
sPNℓ

¸
rPN j

csℓcr j x̆rspnq. (D.13)

Similarly to what we did for (D.1), the analysis of (D.13) can be broken down into two cases:

when s � r � t, and when s , r. In the first case, we have that ct j , 0 and ctℓ , 0 only if the

node t is in N j XNℓ. Thus, following an analogous procedure, we can write

ξttpnq�µ2
t pζt Mσ

2
ut
σ2

vt
� τttξttpn � 1q. (D.14)

188

For s , r, we can write

ξrspnq�τrsξrspn � 1q (D.15)

Thus, replacing (D.14) and (D.15) in (D.13), we finally obtain (4.16).

189

APPENDIX E -- ON THE MATRIX Γ

We begin by noting that (4.16) can be recast as

ξ jℓpnq �
V̧

r�1

V̧

s�1

cr jcsℓrpτb � τaqδrs � τasξrspn � 1q � µ2 pζMσ2
u

V̧

z�1

cz jczℓσ
2
vz
, (E.1)

for any arbitrary j and ℓ, by simply changing the order in which the elements are added, where

δrs is the Kronecker delta, i.e.,

δrs �
"

1, if r � s, 0, otherwise . (E.2)

Thus, if r � s, ξrrpn � 1q, which corresponds to the MSD of node r, is multiplied by τb and by

cr jcrℓ. In contrast, if r , s, ξrspn� 1q corresponds to the trace of the covariance matrix betweenrwrpn � 1q and rwspn � 1q, and is multiplied by τa and by cr jcsℓ. Thus, if we examine the vector

ξpnq in (4.6), we notice that it consists of V elements between each pair of consecutive MSD’s

in the vector, and VpV � 1q elements related to cross-terms.

Thus, we conclude that the matrix Γ that appears in (4.17) is a matrix that has V columns

filled with τb, and between each pair of consecutive columns, there are V columns filled with τa.

These columns are multiplied element-wise by the corresponding combination weights. As an

example, let us consider a network formed by only two connected nodes. In this case, we have

Γ �

���������
τbc2

11 τac21c11 τac11c21 τbc2
21

τbc12c11 τac22c11 τac12c21 τbc22c21

τbc11c12 τac21c12 τac11c22 τbc21c22

τbc2
12 τac22c12 τac12c22 τbc2

22

��������� . (E.3)

We should notice that there are V � 2 columns that are related to the MSD’s, and, in

between them, we have also two columns, which are related to the covariances. If we focus on

the combination weights, we can see that the matrix Γ carries information from pCTq b pCTq�
pC b CqT, where the equality follows from the properties of the Kronecker product. It also

carries information from τa and τb. Hence, we can see Γ as the element-wise multiplication of

two matrices, as in (4.21): C, which is related to the combination weights as in (3.40), and Ω,

which is related to τb and τa as in (4.36).

190

APPENDIX F -- ON THE UPPER BOUND FOR THE NMSD FOR A GIVEN pζ

For compactness of notation, let us introduce the quantity

κ ≜ bTrIV2 � τaCs�1σ. (F.1)

Replacing κ in Eq. (4.56), we thus obtain

NMSDτap8q�
µ2 pζMσ2

uκ

V
. (F.2)

Since κ is a scalar, and the trace of a scalar is the scalar itself, we can write

κ � Trpκq � Tr
!

bTrIV2 � τaCs�1σ
)
. (F.3)

The cyclic property of the trace operator states that we can write TrpM1M2M3q � TrpM2M3M1q
for any arbitrary matrices M1, M2 and M3 of appropriate dimensions. Applying this property

twice to (F.3), we can rewrite κ as

κ � Tr
!
σbTrIV2 � τaCs�1

)
. (F.4)

Defining Σ ≜ σbT as in (4.59) and G ≜ rIV2 � τaCs�1, (F.4) can be recast more compactly

as

κ � TrpΣGq. (F.5)

At this point, it is worth noting that, if C is symmetric, so is the matrix IV2 � τaC. Since

the inverse of a symmetric matrix is also symmetric, this means that, in this case, G is also

symmetric. Since C � pC b CqT, the matrix C is symmetric if, and only if, C is symmetric.

This is guaranteed to occur if the Metropolis rule is adopted, regardless of the network topology,

for example [1]. In the adaptive diffusion networks, rules for the selection of the combination

weights that lead to a symmetric matrix C regardless of the topology are sometimes referred

to as “doubly stochastic policies” [1]. Besides the Metropolis rule, another example of doubly

stochastic policy is the Laplacian rule, which corresponds to Rule 4) of Table 1. If we adopt

the Uniform rule instead, this is not guaranteed, since it is not a doubly stochastic policy [1].

Nonetheless, the matrix C may still be symmetric, depending on the network topology.

On the other hand, the matrix Σ is not symmetric, and in general is not positive semi-

191

definite. Nonetheless, it has been shown in [283] that, for a real N � N matrix M1, and for a

real symmetric N � N matrix M2, we may write

Ņ

i�1

λip sM1qλN�i�1pM2q ¤ TrpM1M2q ¤
Ņ

i�1

λip sM1qλipM2q, (F.6)

where λip�q denotes the i-th largest eigenvalue, and sM1 ≜
1
2

�
M1 � MT

1

�
. We remark that, with

this notation, we have that λ1p�q ¥ λ2p�q ¥ � � � ¥ λNp�q. In other words, λ1p�q represents the

greatest eigenvalue of its argument, i.e., λ1p�q � λmaxp�q, and λNp�q denotes the smallest one,

i.e., λNp�q � λminp�q.

In our context, if C is symmetric, we can replace M2 with G in (F.6), and sM1 with

sΣ ≜ 1
2

�
Σ� ΣT

	
as in (4.58). Doing so, we straightforwardly obtain

V2¸
i�1

λipsΣqλV2�i�1pGq ¤ TrpΣGq ¤
V2¸
i�1

λipsΣqλipGq, (F.7)

Focusing on the upper bound, we remark that we can write

κ � TrpΣGq ¤
V2¸
i�1

λipsΣqλipGq ¤
V2¸
i�1

|λipsΣqλipGq|. (F.8)

At this point, it would be useful to estimate λmaxpGq. To do so, we begin by noticing that

C is a right-stochastic matrix. As mentioned in Sec. 4.1, one property of such matrices is that

their spectral radius is equal to one [211, 281]. Moreover, at least one of their eigenvalues

is necessarily equal to 1. As a result, we know for sure that λmaxpCq � 1. Thus, we have

that ρpCq � 1, and therefore λipCq P r�1,1s for i � 1, 2, � � � ,V2. Thus, we conclude that

λipτaCq P r�τa,τas, λipI � τaCq P r1 � τa,1 � τas, and, consequently,

λipGq P
�

1
1 � τa ,

1
1 � τa

�
(F.9)

for i � 1, � � � ,V2, where we used the fact that, if a certain invertible matrix M has an eigenvalue

of λ with an associated eigenvector v, then

M1v � λv Ñ M�1
1 M1v � λM�1

1 v. (F.10)

192

Since M�1
1 M1 � I, we thus conclude that

v � λM�1
1 v Ñ M�1

1 v � 1
λ

v, (F.11)

i.e.,
1
λ

is the eigenvalue of M�1
1 associated with the eigenvector v.

Proceeding with our analysis, since λmaxpCq � 1, we conclude from (F.9) that

λmaxpGq � 1
1 � τa . (F.12)

We should notice that, since τa � p1 � µpζσ2
uq2, if we select

0 µ 2
pM � 2qσ2

u
,

which is a condition for the stability of the diffusion networks (see Eq. (30) of the previously

submitted manuscript or Eq. (25) of the resubmitted one), then 0 ¤ τa ¤ 1, with τa � 1 only if

pζ � 0. Thus, for pζ ¡ 0, we observe from (F.12) that λmaxpGq ¡ 0. Moreover, we also notice

that, since

�1 ¤ λminpCq ¤ 1, (F.13)

we have that
1

1 � τa ¤ λminpGq ¤ 1
1 � τa . (F.14)

Since
1

1 � τa ¡ 0, (F.15)

we thus conclude that

0 λminpGq ¤ λmaxpGq � 1
1 � τa . (F.16)

From (F.8) and (F.16), we notice that we can write

κ ¤
V2¸
i�1

|λipsΣqλipGq| ¤ λmaxpGq
V2¸
i�1

|λipsΣq|. (F.17)

Thus, we obtain

κ ¤ 1
1 � τa

V2¸
i�1

|λipsΣq|, (F.18)

193

which, using (4.30), can be recast as

κ ¤ 1
µpζσ2

up2 � µpζσ2
uq

V2¸
i�1

|λipsΣq|. (F.19)

Thus, from (F.2) and (F.19), we observe, after some algebraic manipulations, that

NMSDτap8q ¤
µM

2 � µpζσ2
u
�
°V2

i�1 |λipsΣq|
V

. (F.20)

We should notice that bT and σ do not depend on pζ at all. Therefore, the same can be said

about λipsΣq. Hence, we can clearly observe from (4.57) that the upper bound for the NMSD

decreases as we reduce pζ . As long as C is symmetric, this occurs regardless of the network

topology, whose information lies in the λipsΣq. It is important to notice that (4.57) only holds

for pζ ¡ 0. If we selected pζ � 0, we would have τa � 1 and therefore would not be able to

calculate λmaxpGq � 1
1 � τa . We remark that pζ � 0 corresponds to a situation in which the

algorithm never updates its initial estimates, and is not a case of practical interest.

194

APPENDIX G -- NETWORK PERFORMANCE WITH A KV TOPOLOGY

Firstly, it is useful to note that

rIV2 � τaCs�1 �
8̧

ni�0

pτaCqni � IV2 �
8̧

ni�1

pτaCqni . (G.1)

At this point, one useful property of the matrix CKV �
1

V2 1V2�V2 is that C2
KV
� CKV . Thus, we

have that

rIV2 � τaCKV s�1 � IV2 � τa
p1 � τaqV2 1V2�V2 . (G.2)

Multiplying (G.2) from the left by bT leads to

bTrIV2 � τaCKV s�1 � bT � τa
p1 � τaqV 1T

V2 , (G.3)

By applying the inverse vec operator to the right-hand side of (G.3), we obtain

vec�1

"
bT� τa

p1 � τaqV 1V2

*
�IV� τa

p1 � τaqV 1V�V . (G.4)

Thus, using (4.7), (G.3), and (G.4), and introducing ξ ≜ bTrIV2 � τaCKV s�1vectCRvCTu for

compactness, we can write

ξ�Tr

#�
IV� τa

p1 � τaqV 1V�V

�
1

V2 1V�VRv1V�V

+

� 1
V2

�
1 � τa

1 � τa

Trt1V�VRv1V�Vu,

(G.5)

where we used the fact that CKV � CT
KV
� 1

V 1V�V and that 12
V�V � V1V�V . Furthermore, since

TrtM1M2M3u�TrtM2M3M1u for any arbitrary matrices M1, M2 and M3, we get

Trt1V�VRv1V�Vu � VTrtRv1V�Vu � V
V̧

k�1

σ2
vk
, (G.6)

where we took advantage from the fact that Rv is a diagonal matrix. Thus, we obtain

ξ � 1
V2

�
1 � τa

1 � τa

� V �

V̧

k�1

σ2
vk
� 1

1 � τa

°V
k�1 σ

2
vk

V
. (G.7)

Finally, replacing (G.7) in (4.56) leads to (4.60).

