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Abstract Many communication systems based on the synchronization of cha-
otic systems have been proposed as an alternative spread spectrum modulation
that improves the level of privacy in data transmission. However, due to the
lack of robustness of complete chaotic synchronization, even minor channel
impairments are enough to hinder communication. In this paper, we propose
a communication system that includes an adaptive equalizer and a switching
scheme to alter between a chaos-based modulation and a conventional one,
depending on the communication channel conditions. Simulation results show
that the switching and equalization algorithms can successfully recover the
transmitted sequence in different nonideal scenarios.

Keywords Analysis and Control of Nonlinear Dynamical Systems with Prac-
tical Applications · Chaos and Global Nonlinear Dynamics · Synchronization
in Nonlinear Systems.

1 Introduction

In a digital chaos-based communication system (CBCS), each bit of informa-
tion is transmitted using a different fragment of a chaotic signal [1–3]. Thus,
it differs fundamentally from the conventional digital communication systems,
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where each symbol is associated with a constant and predefined waveform.
Although CBCSs may have interesting features, like improvement in secu-
rity [4, 5], they also pose practical challenges since the conventional optimal
receiver is not directly available [6].

CBCSs have been studied for at least 25 years [7, 8]. Many interesting
and innovative communication schemes based on chaos synchronization were
proposed [2,4,9] exploring the properties of chaotic signals, i.e. aperiodicity and
sensitive dependence on initial conditions (SDIC) [10]. However, they seldom
surpassed the frontier between theoretical or laboratory setup to practical or
commercial environments [5]. This mainly occurs due to the sensitivity of the
chaotic synchronization to channel imperfections [11, 12].

A particularly interesting discrete-time CBCS was proposed in [13]. It is
based on the one by Wu and Chua [14], in which the message is fed back into
the chaotic signal generator (CSG). It can be considered a simplified model of
the optical system implemented in practice by Argyris et al. [5]. It was shown
in [13] that under some design conditions, the message is perfectly recovered
in an ideal channel. However, this CBCS presents poor performance in terms
of bit error rate when channel imperfections are present. Besides, there is no
guarantee that the transmitted signals are still chaotic.

In [15], we proposed a channel equalization scheme for this CBCS consider-
ing the Ikeda map [16] as CSG and the product between message and chaotic
signal as encoding. Despite the reasonable performance in different channels,
the question whether the transmitted signals were truly chaotic was not tack-
led. In fact, we have shown afterwards that the CBCS presented in [15] does
not always produce chaotic signals [17]. In [18], instead of using the Ikeda map,
we proposed another CBCS using the Hénon map [19] and the same encoding.
In this case, the transmitted signals are easily shown to be chaotic. However,
the performance of this system is still far from that of a conventional system
without chaos.

In order to obtain better bit error rates than before, we propose two inno-
vations:

a) a new encoding and corresponding equalization scheme for the CBCS of
[18]. This encoding ensures the generation of chaotic signals for a range of
parameters and presents higher immunity to intersymbol interference (ISI)
and noise, when compared to the encoding of [18], thus providing lower bit
error rates for the same convergence rate.

b) inspired by many conventional protocols, like IEEE 802.11 (Wi-Fi) [20],
that uses modulation and coding techniques that can adapt to the channel
state, we propose an algorithm to switch between chaos-based communi-
cation and conventional. The switching is triggered based on a threshold
applied to the mean square error.

The paper is organized as follows. In Sec. 2, we review the CBCS of [18].
In Sec. 3, the new encoding function is presented, followed by the equalization
algorithm in Sec. 4. In Sec. 5, we present the algorithm to switch between con-
ventional and chaos-based communications. Sec. 6 contains some numerical
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simulations in different scenarios. Finally, we draft conclusions and perspec-
tives in Sec. 7.

2 Problem Formulation

Figure 1 shows the CBCS under consideration [15, 18]. In the scheme, which
is a discrete-time lowpass equivalent for the communication system, a binary
message m(n) ∈ {−1, +1} is encoded by using the first component of the
master state vector x(n), via a encoding function s(n) = c (x1(n),m(n)), so
that m(n) can be recovered using the inverse function with respect to m(n),
i.e., m(n) = c−1 (x1(n), s(n)). Then, the signal s(n) is fed back into the CSG
and transmitted through a communication channel, whose model is constituted
by a transfer function H(z) and additive white Gaussian noise (AWGN). We
assume an M -tap adaptive equalizer, with input regressor vector r(n) and
output ŝ(n)=rT (n)w(n− 1), where (·)T indicates transposition and w(n−1)
is the equalizer weight vector. The equalizer must mitigate the ISI introduced
by the channel and recover the encoded signal s(n) with an unavoidable delay
of ∆ samples.
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Fig. 1 Chaos-based communication system with an equalizer.

If transmitter and receiver identically synchronize [21], i.e., if x̂(n)→ x(n),
then using the output of the equalizer and the estimate of x1(n), m(n) can be
decoded via

m̂(n) , c−1 (x̂1(n), ŝ(n))→ m(n), (1)

where x̂1(n) is the first component of the slave state vector x̂(n). Thus, the
estimation error e(n) = m(n − ∆) − m̂(n) can be used as an equalization
criterion. Once identical synchronization between master-slave is obtained,
m(n) can be used to transmit information between the two systems, being
m̂(n) the decoded binary message. We assume that there is a training sequence
{m(n−∆)}, known in advance at the receiver. In this case, the equalizer works
in the training (T) mode and updates its coefficients in a supervised manner,
using the estimation error in conjunction with an adaptive algorithm. If we
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intend to transmit information using m(n), the receiver will not have access to
{m(n−∆)} and this sequence will be replaced by the output of the decision
device [6,22]. In this case, the equalizer works in the so-called decision-directed

(DD) mode.
In this paper, the Hénon map [19] is used in both CSGs of Figure 1. There-

fore, the equations governing the global dynamical system can be written as

x(n+ 1) = Ax(n) + b+ f (s(n)) , (2)

x̂(n+ 1) = Ax̂(n) + b+ f (ŝ(n)) , (3)

where x(n) , [x1(n) x2(n)]
T

, x̂(n) , [x̂1(n) x̂2(n)]
T

,

A=

[
0 1
β 0

]
,b=

[
1
0

]
, f (s(n))=

[
−αs2(n)

0

]
, (4)

being α and β real constant parameters of the map.
In [13] it was shown that, under ideal channel conditions, i.e., when r(n)≡

s(n) and the equalizer is an identity system, identical synchronization between
master and slave is obtained if all the eigenvalues ofA are inside the unit circle.
Since the eigenvalues of A are ±

√
β, we conclude that for |β| < 1, master

and slave identically synchronize under ideal conditions. Therefore, from (1),
m̂(n)→ m(n).

3 Message encoding

In [15, 18] the product

s(n) = x1(n)m(n) (5)

was employed as an encoding function. However, the obtained performance in
nonideal channels was far from that of a conventional modulation. Therefore,
it is of interest to find other encodings that could provide better performance
and generate chaotic signals.

In [23] the linear combination

s(n) = (1− η)x1(n) + ηm(n), (6)

was proposed where 0 < η ≤ 1 is a parameter that controls the strength of the
chaotic signal x1(n) with respect to the message m(n). It was shown that the
chaos synchronization can be more robust for higher values of η. However, it
was not checked if the transmitted signals were in fact chaotic.

To tackle this point, consider a more general form of (6), i.e.,

s(n) = η1x1(n) + η2m(n) (7)

where {η1, η2} ⊂ [0, 1]. Figure 2 shows the maximum Lyapunov exponent
λ [10] obtained in the transmitter as a function of η1 and η2 considering a
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random equiprobable binary m(n) ∈ {−1, 1}. This Lyapunov exponent was
obtained using the method described in Sec. 5.2 of [10], considering m(n)
as a variable parameter. The region where λ is negative, i.e., the generated
signals are not chaotic, is shown in gray. The colored region indicates the area
where the generated signals are chaotic (λ > 0, i.e., the signals present SDIC).
For the values of η1 and η2 in the white area of the figure, the transmitter
diverged and it was not possible to calculate λ. The dashed line η1 + η2 = 1
represents the parameter space associated with the encoding (6), with η = η2.
Therefore, (6) generates chaotic signals only when η is small and s(n) ≈ x1(n).
However, in this case, the CBCS does not present a reasonable performance
under AWGN [23].
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Fig. 2 Maximum Lyapunov exponent λ obtained when using (7) as a function of η1 and
η2. The gray area indicates a negative value. The white area indicates divergence of the
transmitter.

As a way to increase the parameter space where chaotic signals are gener-
ated, we propose the encoding function

s(n) = η1x1(n)− η2 [m(n) + 1] sign [η1x1(n)] , (8)

where sign[·] is the signal function. The idea behind (8) is to decrease the
disturbance on x1(n) caused by the message. In this case, if m(n) = −1,
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s(n) = η1x1(n) and if m(n) = 1 a constant with signal opposite to x1(n) is
added to it. The corresponding decoding function is given by

m̂(n) =
η1x̂1(n)− ŝ(n)

η2sign[η1x̂1(n)]
− 1. (9)

Figure 3 is analogous to Figure 2 for the encoding (8). As can be seen, using
(8) it is possible to obtain a larger set of parameter η1 and η2 that generates
chaotic signals. Besides, as will be shown in Sec. 6, it is possible to find values
for η1 and η2 in the colored region that give good equalization performance.
Specifically, we consider η1=0.9 and η2=0.3.
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Fig. 3 Maximum Lyapunov exponent λ obtained when using (8) as a function of η1 and
η2.

4 Equalization Algorithm

To obtain a stochastic gradient algorithm to adapt the equalizer in the scheme
of Figure 1, we define the instantaneous cost-function

Ĵ(n) = e2(n) = [m(n−∆)− m̂(n)]
2
.
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Computing the gradient of Ĵ(n) with respect to the coefficient vectorw(n−1),
we obtain

∇wĴ(n) = 2e(n)
∂e(n)

∂w(n− 1)
= −2e(n) ∂m̂(n)

∂w(n− 1)
. (10)

Since the output of the equalizer is ŝ(n) = rT (n)w(n−1), the recovery message
(9) can be rewritten as

m̂(n) =
η1x̂1(n)− rT (n)w(n− 1)

η2sign[η1x̂1(n)]
− 1. (11)

Assuming that x̂1(n) does not depend on w(n− 1), we get1

∇wĴ(n) = 2
e(n)

η2sign[η1x̂1(n)]
r(n). (12)

Thus, the update equation of the chaotic2 least mean-square (cLMS+) algo-
rithm for the encoding (8) is given by

w(n) = w(n− 1)− µ
e(n)

η2sign[η1x̂1(n)]
r(n). (13)

To obtain a normalized version of cLMS+, we first define the a posteriori

error as

ep(n) = m(n−∆)− η1x̂1(n)− rT (n)w(n)

η2sign[η1x̂1(n)]
+ 1. (14)

Using (13), ep(n) can be rewritten as

ep(n) = e(n)

[
1− µ(n)

‖r(n)‖2
η22(n)

]
. (15)

To enforce ep(n) = 0 at each iteration n, we must select

µ(n) =
η22(n)

‖r(n)‖2 . (16)

Introducing a fixed step-size µ̃ to control the rate of convergence and a regular-
ization factor δ to prevent division by zero in µ(n), and replacing the resulting

1 In fact, x̂1(n) depends on w(n− 1). However, considering this dependence, we need to
use some other assumptions to derive the equalization algorithm. Furthermore, the resulting
algorithm is more complicated and the achievable performance is similar to that of the
algorithm derived here.

2 We use the term chaotic for the algorithms derived here only for distinguishing them
from the original versions of LMS and normalized LMS (NLMS) algorithms (see, e.g., [22]).
The use of this term does not imply a chaotic behavior of the algorithms. The subscript
+ is used here to distinguish this algorithm from that of [18], which uses the product as
encoding function and thus, denoted with the subscript ×.



8 Renato Candido et al.

step size in (13), we obtain the update equation of the chaotic normalized LMS
(cNLMS+) algorithm, i.e.,

w(n)=w(n−1)− µ̃η2sign[η1x̂1(n)]

δ + ‖r(n)‖2 e(n)r(n). (17)

We should notice that an error in the sign of η1x̂1(n) only causes an error in
the decoded message when m(n) = 1. In this case, replacing m̂(n) = 1 in (9),
we obtain

sign[η1x̂1(n)] =
η1x̂1(n)− ŝ(n)

2 η2
. (18)

Thus, replacing (18) with the opposite sign in (9), the recovered message would
be

m̂(n) =
−2 [η1x̂1(n)− ŝ(n)]

η1x̂1(n)− ŝ(n)
− 1 = −3. (19)

Therefore, we can identify when an error occurs in the estimate of sign[η1x̂1(n)]
by using the estimate of the message, which should be equal to 1, but is
decoded as −3. To circumvent this problem, when m̂(n) is decoded in the
interval −3.5 < m̂(n) < −2.5, we make m̂(n)← m̂(n) + 4.

In order to ensure the stability of the algorithm and to avoid wrong es-
timates when x̂1(n) is too large, we introduce a bound for x̂1(n), i.e., if
|x̂1(n)| > X , we simply make x̂1(n) ← Xsign[x̂1(n)], where X is a positive
constant. We do not observe performance degradation in different simulation
scenarios, when we used X = 100. The proposed algorithm is summarized in
Table 1.

4.1 Stability conditions

Using (11), the update equation of cNLMS+ can be rewritten as

w(n) =

[
I− µ̃

δ + ‖r(n)‖2 r(n)r
T (n)

]
w(n− 1)

− µ̃ η2 sign[η1x̂1(n)]m(n−∆)
r(n)

δ + ‖r(n)‖2

+ µ̃ η1x̂1(n)
r(n)

δ + ‖r(n)‖2

− µ̃ η2sign[η1x̂1(n)]
r(n)

δ + ‖r(n)‖2 . (20)

where I is the identity matrix with dimensions M ×M . The matrix between
brackets has M − 1 eigenvalues equal to one and one eigenvalue equal to [22]

λ1 = 1− µ̃
rT (n)r(n)

δ + ‖r(n)‖2 .



A new encoding and switching scheme for chaos-based communication 9

Table 1 Summary of cNLMS+ for the Hénon map.

Initialize the algorithm by setting:
w(−1) = 0, x̂(0) = [ 0, 1 − 0, 1 ]T

A =

[
0 1
β 0

]
, b =

[
1
0

]

α, β: parameters of Hénon map; 0 < µ̃ < 2

δ: small positive constant; X: large positive constant
η1 e η2: parameters of the decoding function

For n = 0, 1, 2, 3 . . . , compute:
ŝ(n) = rT (n)w(n− 1)

if |x̂1(n)| > X

x̂1(n)← Xsign[ x̂1(n) ]
end

m̂(n) =
η1x̂1(n) − ŝ(n)

η2sign[η1x̂1(n)]
− 1

e(n) = m(n−∆)− m̂(n)

if −3.5 < m̂(n) < −2.5

m̂(n)← m̂(n) + 4
end

w(n)=w(n−1)−
µ̃η2sign[η1x̂1(n)]

δ + ‖r(n)‖2
e(n)r(n)

x̂(n+ 1) = Ax̂(n) + b+

[
−αŝ2(n)

0

]

end

Noticing that

0 ≤ rT (n)r(n)

δ + ‖r(n)‖2 < 1,

and for ‖r(n)‖2 ≫ δ, rT (n)r(n)/(δ + ‖r(n)‖2) ≈ 1, in order to ensure |λ1| < 1,
we must choose µ̃ in the interval

0 < µ̃ < 2. (21)

The norms of the second, third, and fourth terms on the right side of (20)
are bounded, i.e.,

0 ≤ µ̃ η2 |sign[η1x̂1(n)]| |m(n−∆)| ‖r(n)‖
δ + ‖r(n)‖2 ≤ µ̃ η2

√
δ

2δ
<∞, (22)

0 ≤ µ̃ η1 |x̂1(n)|
‖r(n)‖

δ + ‖r(n)‖2 ≤ µ̃ η1 X

√
δ

2δ
<∞, (23)

and

0 ≤ µ̃ η2 |sign[η1x̂1(n)]|
‖r(n)‖

δ + ‖r(n)‖2 ≤ µ̃ η2

√
δ

2δ
<∞. (24)

Therefore, using (deterministic) exponential stability results for the LMS
algorithm [24], we conclude that cNLMS+ is stable in a robust sense if µ̃ is
chosen in the interval (21).
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5 Switching Algorithm

Although the chaos-based communication systems may provide some interest-
ing features such as security, it is well-known that they are much more sensi-
tive to imperfections in the communication channel than conventional systems
such as binary phase-shift keying (BPSK) [6, 11]. In this section, we present
a scheme that allows the communication system to switch from chaos-based
operation and conventional BPSK operation [6] based on the communication
channel conditions.

To control the operation mode of the system, we introduce the parameters
γ1(n) and γ2(n) in the encoding function (8), making

s(n) = γ1(n) {η1x1(n)− η2 [m(n) + 1] sign [η1x1(n)]}+ γ2(n)m(n). (25)

This way, when γ1(n) = 1 and γ2(n) = 0, (25) falls back to (8) and the
system works just like the previously presented chaos-based communication
system. However, when γ1(n) = 0 and γ2(n) = 1, s(n) = m(n) and, assuming
m(n) ∈ {+1,−1}, a BPSK system is obtained.

To decode the message considering (25) and assuming γ1(n) and γ2(n) are
known at the receiver,

m̂(n) =
γ1(n) {η1x̂1(n)− η2sign[η1x̂1(n)]} − ŝ(n)

γ1(n)η2sign[η1x̂1(n)]− γ2(n)
. (26)

Following the steps presented in Section 4, it is possible to obtain the
equalizer coefficient update equation, given by

w(n)=w(n−1)− µ̃ {γ1(n)η2sign[η1x̂1(n)]− γ2(n)}
δ + ‖r(n)‖2 e(n)r(n). (27)

As it can be noticed, when γ1(n) = 1 and γ2(n) = 0, (27) falls back to (17) and
when γ1(n) = 0 and γ2(n) = 1, the conventional NLMS algorithm is obtained.

When using BPSK, to maintain the mean power of s(n) equal to the power
of the chaotic signal, γ2(n) is adjusted. Since the mean power of s(n) is ap-
proximately equal to 0.415 when chaos is used (γ1(n) = 1 and γ2(n) = 0), con-
sidering m(n) ∈ {+1,−1}, it is possible to obtain the same power for BPSK
using γ1(n) = 0 and γ2(n) =

√
0.415. This is the equivalent of a conventional

BPSK system with an attenuation factor of γ2(n).
To make the system practical for transmitting an actual message, besides

switching between the chaotic regime and BPSK, we also consider the switch-
ing between the training (T) mode and the decision-directed (DD) mode. In
this way, the system may operate in four different modes, listed in Table 2.

Table 2 Operation modes of the switching algorithm.

Number Modulation Training or decision-directed

1 BPSK T
2 Chaotic T
3 Chaotic DD
4 BPSK DD



A new encoding and switching scheme for chaos-based communication 11

The overall communication system with the switching scheme is depicted
in Figure 4. For each block of L samples, the switching is triggered based on
thresholds applied to the estimate of the mean square error (MSE), i.e.,

MSE(n0) =
1

L

n0+L−1∑

k=n0

e2(k),

with n0 = 0, L, 2L, · · · , accordingly to the flowchart shown in Figure 5. The
switching algorithm prioritize the use of the chaotic regime whenever possible
and falls back to BPSK when the communication channel condition is poor.

A B C

D

DD T

channelTX RX
ChaoticChaotic

estimator

decision
device

MSE

equalizer

γ2 1/γ2

z−∆

m(n)
m̂(n)

m(n−∆)

e(n)

Fig. 4 Communication system with an equalizer and a switching scheme between conven-
tional and chaos-based communication.

Fig. 5 Flowchart of the switching scheme between operation modes. Tsh1 . . . Tsh5 are MSE
thresholds that trigger the switching between the operation modes.

6 Numerical Simulations

In all simulations, we consider the communication system using the Hénon
map with parameters α = 1.4 and β = 0.3. The state vectors were initialized
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with x(0) = 0 and x̂(0) = [ 0.1 − 0.1 ]T , respectively. Other initializations
also allow equally good results in terms of synchronization when the equalizer
mitigates reasonably well the ISI. Furthermore, we assume the transmission of
a binary message m(n) ∈ {−1, +1} and equalizers initialized as w(−1) = 0.
At first, we show some numerical results to compare the scheme proposed in
Section 4, (without the switching algorithm and considering only the training
mode) with that of [18], where the encoding function is given by (5) and a
similar NLMS algorithm, denoted here as cNLMS×, was used to update the
equalizer.

We first assume that the encoded sequence s(n) is initially transmitted
through Channel 1 with transfer function

H1(z) =− 0.005 + 0.009z−1 − 0.024z−2 + 0.850z−3

− 0.218z−4 + 0.050z−5 − 0.016z−6,

which is changed abruptly at n = 100×103 to Channel 2 with transfer function

H2(z) =− 0.004 + 0.030z−1 − 0.104z−2 + 0.520z−3

+ 0.273z−4 − 0.074z−5 + 0.020z−6

in the absence of noise [18, 25]. Figs. 6-(a) and (b) show the evolution of the
coefficients through the iterations for cNLMS× and cNLMS+ respectively. For
both channels and both algorithms, we considered equalizers with M = 12
coefficients and a delay of ∆ = 7 samples. We have adjusted the step sizes of
the cNLMS× and cNLMS+ algorithms in order to obtain a convergence rate
approximately equal for both algorithms. As it can be noticed, in both cases
and both channels, the equalizers converge to the Wiener solution indicated by
the dashed lines. In Figure 6-(c), we consider the bit error rate (BER) as a per-
formance measure to compare the results provided by cNLMS× and cNLMS+.
For each point shown in this figure, we assumed an equalizer with fixed coeffi-
cients given by the values shown in Figs. 6-(a) and (b) and measured the BER
of the systems after the transmission of 105 samples of a binary message. We
can observe that, for Channel 1, both systems, using (5) or (8) provide simi-
lar results in terms of BER after the convergence of the equalizers. However,
after the abrupt channel variation (for Channel 2), the system that encodes
the message using (8) performs better than the system that uses (5). This
indicates that the system that uses (8) to encode the message may be more
robust to ISI than the system that uses (5). Despite the interesting features
of chaos-based operation, we can notice it is more susceptible to ISI than a
conventional communication system, since we have a considerable level of BER
even in the absence of noise. Hence, it is interesting to consider a switching
scheme to allow communication even when the channel condition is poor.

Assuming the transmission of the encoded sequence through Channel 3
with transfer function

H3(z) = 0.25 + z−1 + 0.25z−2, (28)



A new encoding and switching scheme for chaos-based communication 13
a
)

C
o
effi

ci
en

ts
(5

)

0 20 40 60 80 100 120 140 160 180 200

-0.5

0

0.5

1

1.5

b
)

C
o
effi

ci
en

ts
(8

)

0 20 40 60 80 100 120 140 160 180 200

-0.5

0

0.5

1

1.5

iterations (×103)

c)
B

E
R

Encoding with (5)
Encoding with (8)

0 20 40 60 80 100 120 140 160 180 200

10−4
10−3
10−2
10−1
100

Fig. 6 Average of the M = 12 coefficients of (a) cNLMS× (µ̃ = 0.01, δ = 10−5, ε = 0.1,
X=100), (b) cNLMS+ (µ̃=0.02, δ=10−2, ε=0.1, X=100) and Wiener solution (dashed
lines); (c) Bit error rate considering the equalizer coefficients are fixed for cNLMS× and
cNLMS+; abrupt variation from Channel 1 to Channel 2 at n = 100 × 103 in the absence
of noise.

we obtained BER curves as a function of signal-to-noise ratio (SNR), shown
in Figure 7. As a performance reference to equalization in a dispersive and
noisy scenario, considering that the message is encoded with (8), we included
the BER curves obtained for the non-dispersive AWGN channel for the system
shown in Figure 1 but without the equalizer. For comparison, we also included
the curves obtained with Wiener’s solution considering that the message is
encoded with (5) and assuming a conventional system, without chaos. We
can observe that the BER obtained by the system that uses (8) to encode
the message and the cNMLS+ algorithm is inferior than the optimal solution
obtained with the system that uses (5) for SNRs from 30 dB to 60 dB. For
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lower SNRs, ranging from 0 dB to 30 dB, the BER curves obtained using
(8) or (5) to encode the message are similar. It is worth to notice that, for
SNRs ranging from 20 dB to 60 dB, cNMLS+ does not achieve the optimum
performance, which is close to the one obtained for the non-dispersive AWGN
channel. This is due to the step-size of the cNMLS+ algorithm. It is possible
to obtain results closer to the optimum solution using a smaller step-size but
this would lead to a lower convergence rate.

SNR (dB)

B
E

R

No equalizer - AWGN - Encoding with (8)

No equalizer - Channel 3

Wiener - Encoding with (8)

cNLMS+

Wiener - Encoding with (5)

Wiener - Standard System without chaos

0 10 20 30 40 50 60
10−6
10−5
10−4
10−3
10−2
10−1
100

Fig. 7 Bit error rate as a function of SNR for the non-dispersive AWGN channel and for
Channel 3; cNLMS+ (µ̃=0.02; δ=10−5), Wiener solution using (8), Wiener solution using
(5) and Wiener solution for the standard system with M = 21;∆ = 11.

Finally, we show an example to illustrate the switching scheme proposed
in Section 5. We first assume that the encoded sequence s(n) is initially trans-
mitted through Channel 1, which is changed abruptly at n = 150 × 103 to
Channel 2 and changed back to Channel 1 at n = 300 × 103, in the absence
of noise [18, 25]. Figure 8 shows the errors in the recovered message (a), the
squared error (b), and the operation mode of the communication system (c),
according to Table 2. The switching is performed at each L = 2000 iterations
based on the flowchart shown in Figure 5 with thresholds Tsh1 = −30dB,
Tsh2 = −40dB, Tsh3 = −30dB, Tsh4 = −20dB, and Tsh5 = −35dB. For the
first iterations, under Channel 1, we can observe that the system switches to
chaotic modulation in decision-directed mode (number 3), after a brief tran-
sient. During this transient, there are some wrong estimations of m(n) but
after the switching algorithm stabilizes in State 3, the message is recovered.
After the abrupt variation to Channel 2 at n = 150 × 103, the algorithm
switches to BPSK modulation in decision-directed mode (State 4), after a
transient period. This is due to the fact that Channel 2 inserts more ISI than
Channel 1, hindering the utilization of the chaotic modulation, as we can no-
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tice by the squared error level. When the communication channel is changed
back to Channel 1, at n = 300× 103, the algorithm switches back to chaotic
modulation in decision-directed mode (State 3), after a transient period.
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Fig. 8 (a) Errors in the recovered message, (b) squared error, and (c) operarion mode ac-
cording to Table 2 along iterations. Communication system using the Hénon map, cNLMS+
(µ̃ = 0.01; δ = 10−2) and the switching scheme described in Section 5. Abrupt variation
from Channel 1 to Channel 2 at n = 150 × 103 and from Channel 2 back to Channel 1 at
n = 300× 103; M = 12;∆ = 7.
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7 Conclusions

In this paper, we proposed a new encoding function that ensures the generation
of chaotic signals and a supervised equalization scheme based on the NLMS
algorithm for recovering a binary sequence in a CBCS. Moreover, we proposed
an adaptive scheme that switches between the chaos-based communication
system and the conventional one based on thresholds applied to the MSE.
Simulations show that the proposed encoding and equalization algorithm out-
performs the scheme of [18] in terms of BER for the same convergence rate and
the switching scheme can successfully recover the transmitted sequence, using
the CBCS or a conventional one, depending on the communication channel
conditions.
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