1. Introduction

Blind equalization algorithms with good conver-
gence and tracking properties and numerical ro-
bustness are desired to ensure the suitable pertor-
mance of communications systems. In this pa-
per, we present transient and steady-state analy-
ses for the dual-mode constant modulus algorithm
(DM-CMA), a version of CMA that avoids its well-
known divergence problem [1]. We show that DM-
CMA is able to avoid divergence without degrada-
tion of mean-square performance.

2. Problem formulation
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o Proposed in [1];
o y(n) =u'(n)w(n —1);

o e(n) = [T—yQ(;%)]y(n), — E{a;gm}, 5 =302 —r;
o en) =d(n) —y(n) = d(n)=z(n)y(n) =Ly (n);

o y(n) and d(n) are both estimates of a(n — 7,);

o The consistency between d(n) and y(n) will be en-
sured if they have the same sign = x(n) > 0;

o The nonlinearity of the “error” signal of CMA is
included in the factor x(n);

o If z(n) < 0 = outside region of interest (ROI)
d(n) < 0.
< W(n) — W(TL — 1) . 5+Hlf(n)||2[d(n)—y(n)]U.(TL).

3. Statistical models
Definitions
o unknown optimum coefficient vetor: w,(n);
o weight-error vector: w(n) = wy(n) — w(n);

o a priori error e,(n) = u'(n)w(n — 1);
o EMSE: ((n) = E{e(n)};

¢ autocorrelation matrix of the input: R=E{u(n)u’(n)};

o covariance matrix of the weight-error vector:
S = E{w(n)w'(n)}.
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Main assumptions

in a nonstationary environment, w, follows a ran-

dom walk model: w,(n) =w,(n — 1)+ q(n), q(n)
iid, Q=E{a(n)q'(n)};

the optimal solution achieves perfect equaliza-

tion, 1.e.

a(n—7y) =~ u' (n)wy(n—1) = y(n) ~ a(n—7y)—ey(n);

ef(n), k > 2 are sufficiently small to be disregar-

a

ded for n > 0, so that using ¥, ¢(n) can be ap-
proximated by

o) B0
e(n) ~ > a(n) =

where v(n)=3a*(n—7;) — r and B(n)=ra(n—74)—

a’(n—74) are i.i.d. random variables;

independence between the regressor vector u(n)
and the weight-vector w(n), which is widely used
in the literature.

Transient analysis

= ((n) =~ Tr(RS(n —1));
o Assuming that DM-CMA operates only inside
RO,

W(n) = a(n) = Wln = 1) - s

¢ Using

enu);

o Using and assuming that the impulse res-

ponse of the channel is long, we arrive at

=2
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where ay = |02(M —2)] e o (M=2)(M—4)]

¢ and 0% are constants that depend on HOS of a(n).

Steady-state analysis
Inside ROI

o Traditional method:

e ((00) can be obtained by calculating the trace of
both sides of (%) when n — oc;

e to arrive at an easy-to-compute expression, we
assume that 2Tr(RS(0c0)R) can be disregarded in
relation to Tr(R)Tr(RS(00)).

oy lofalTr(R) + 'y Te(Q)
2y0y — py oy Tr(R)

G(00) (4)

¢ Energy conservation:

e Using the energy-conservation arguments, the
EMSE can be obtained by calculating a recursion
for w(n).

(loo) = R ovoe + i THQ)
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Outside ROI

od(n)=0=e(n)=—yn),

o Since this mode of operation makes the algo-
rithm return to the ROI, the result obtained here
is a worst case analysis. Considering the energy-
conservation arguments, we arrive at
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4. Simulations

¢ Transmission of a 4-PAM signal;
o Channel h = [0.25 0.64 0.80 —0.55]';
o M = 20 coefficients, T'/2-FSE.
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Theoretical and experimental EMSE along the iterations for
DM-CMA; Q = 0; 500 independent runs.
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Theoretical and experimental steady-state EMSE for
DM-CMA; Q = 1079R; 50 independent runs.

5. Conclusions

o (W) shows a good agreement with simulations,
mainly for small step-sizes;

o (A) provides a reasonable estimate for the range
of step-sizes in which the probability of diver-
gence of NCMA is approximately zero;

o (A) is more accurate for larger step-sizes;

¢ () in conjunction with (A) or (A) give a range of
values for the steady-state EMSE of DM-CMA in
all possible situations.

[1] M. D. Miranda, M. T. M. Silva and V. H. Nascimento, “Avoiding di-
vergence in the constant modulus algorithm”. Proc. of ICASSP 2008.

A FAPESP




