

A statistical analysis of the dual-mode CMA

Renato Candido renatocan@lps.usp.br Magno T. M. Silva magno@lps.usp.br

Maria D. Miranda maria@lcs.poli.usp.br Vítor H. Nascimento vitor@lps.usp.br

University of São Paulo, Brazil

1. Introduction

Blind equalization algorithms with good convergence and tracking properties and numerical robustness are desired to ensure the suitable performance of communications systems. In this paper, we present transient and steady-state analyses for the dual-mode constant modulus algorithm (DM-CMA), a version of CMA that avoids its well**known divergence problem** [1]. We show that **DM**-CMA is able to avoid divergence without degradation of mean-square performance.

Main assumptions

- A1 in a nonstationary environment, \mathbf{w}_0 follows a random walk model: $\mathbf{w}_{o}(n) = \mathbf{w}_{o}(n-1) + \mathbf{q}(n)$, $\mathbf{q}(n)$ i.i.d., $\mathbf{Q} = E\{\mathbf{q}(n)\mathbf{q}^{T}(n)\};$
- A2 the optimal solution achieves perfect equalization, i.e.

 $a(n-\tau_d) \approx \mathbf{u}^{\mathrm{T}}(n) \mathbf{w}_{\mathrm{o}}(n-1) \Rightarrow y(n) \approx a(n-\tau_d) - e_a(n);$

A3 $e_a^k(n)$, k > 2 are sufficiently small to be disregarded for $n \ge 0$, so that using A2, e(n) can be approximated by

 $\zeta(\infty) = \frac{\text{Tr}(\mathbf{R})[\mu\sigma_a^2\alpha_2 + \mu^{-1}\text{Tr}(\mathbf{Q})]}{2-\mu}$ (\bigstar)

4. Simulations

♦ Transmission of a 4-PAM signal; ♦ Channel $\mathbf{h} = [0.25 \ 0.64 \ 0.80 \ -0.55]^T$;

 $\diamond M = 20$ coefficients, T/2-FSE.

2. Problem formulation

Schematic representation of a communications

system

Dual-mode CMA

 $e(n) \approx \frac{\gamma(n)}{\bar{\gamma}} e_a(n) + \frac{\beta(n)}{\bar{\gamma}}$

where $\gamma(n) = 3a^2(n - \tau_d) - r$ and $\beta(n) = ra(n - \tau_d) - r$ $a^{3}(n-\tau_{d})$ are i.i.d. random variables;

A independence between the regressor vector $\mathbf{u}(n)$ and the weight-vector $\widetilde{\mathbf{w}}(n)$, which is widely used in the literature.

Transient analysis

 \diamond Using $A4 \Rightarrow \zeta(n) \approx Tr(\mathbf{RS}(n-1));$ ♦ Assuming that DM-CMA operates only inside ROI,

 $\widetilde{\mathbf{w}}(n) - \mathbf{q}(n) = \widetilde{\mathbf{w}}(n-1) - \frac{\mu}{\delta + \|\mathbf{u}(n)\|^2} e(n) \mathbf{u}(n);$

 \diamond Using A3 and assuming that the impulse response of the channel is long, we arrive at

$$\begin{split} \mathbf{S}(n) &\approx \mathbf{S}(n-1) + \frac{\mu^2 \xi \alpha_4}{\bar{\gamma}^2} \left[2\mathbf{R}\mathbf{S}(n-1)\mathbf{R} + \mathbf{R}\mathrm{Tr}\left(\mathbf{R}\mathbf{S}(n-1)\right) \right] \\ &- \mu \alpha_2 \left[\mathbf{S}(n-1)\mathbf{R} + \mathbf{R}\mathbf{S}(n-1) \right] + \frac{\mu^2 \sigma_\beta^2 \alpha_4}{\bar{\gamma}^2} \mathbf{R} + \mathbf{Q}, \quad (\bigstar) \end{split}$$

Theoretical and experimental EMSE along the iterations for DM-CMA; Q = 0; 500 independent runs.

Schematic representation of a DM-CMA equalizer

♦ Proposed in [1]; $\diamond y(n) = \mathbf{u}^{\mathrm{T}}(n)\mathbf{w}(n-1);$ $\diamond e(n) = rac{[r-y^2(n)]y(n)}{\bar{\gamma}}, \ r = rac{\mathrm{E}\{a^4(n)\}}{\sigma_a^2}, \ \bar{\gamma} = 3\sigma_a^2 - r;$ $\diamond e(n) = d(n) - y(n) \Rightarrow d(n) = x(n)y(n) = \frac{3\sigma_a^2 - y^2(n)}{3\sigma^2 - r}y(n);$

- $\diamond y(n)$ and d(n) are both estimates of $a(n \tau_d)$;
- \diamond The consistency between d(n) and y(n) will be ensured if they have the same sign $\Rightarrow x(n) > 0$;
- ♦ The nonlinearity of the "error" signal of CMA is included in the factor x(n);
- ♦ If x(n) < 0 ⇒ outside region of interest (ROI)

 $d(n) \leftarrow 0.$

 $\diamond \mathbf{w}(n) = \mathbf{w}(n-1) + \frac{\mu}{\delta + ||\mathbf{u}(n)||^2} [d(n) - y(n)] \mathbf{u}(n).$

3. Statistical models

where $\alpha_2 \triangleq \left[\sigma_u^2(M-2)\right]^{-1}$, $\alpha_4 \triangleq \left[\sigma_u^4(M-2)(M-4)\right]^{-1}$, ξ and σ_{β}^2 are constants that depend on HOS of a(n).

Steady-state analysis

Inside ROI

♦ Traditional method:

- $\zeta(\infty)$ can be obtained by calculating the trace of both sides of (\bigstar) when $n \to \infty$;
- to arrive at an easy-to-compute expression, we assume that $2\text{Tr}(\mathbf{RS}(\infty)\mathbf{R})$ can be disregarded in relation to $Tr(\mathbf{R})Tr(\mathbf{RS}(\infty))$.

$$\zeta(\infty) \approx \frac{\mu \bar{\gamma}^{-1} \sigma_{\beta}^2 \alpha_4 \operatorname{Tr}(\mathbf{R}) + \mu^{-1} \bar{\gamma} \operatorname{Tr}(\mathbf{Q})}{2 \bar{\gamma} \alpha_2 - \mu \bar{\gamma}^{-1} \xi \alpha_4 \operatorname{Tr}(\mathbf{R})}. \qquad (\blacktriangle)$$

♦ Energy conservation:

• Using the energy-conservation arguments, the EMSE can be obtained by calculating a recursion for $\widetilde{\mathbf{w}}(n)$.

Theoretical and experimental steady-state EMSE for DM-CMA; $\mathbf{Q} = 10^{-6} \mathbf{R}$; 50 independent runs.

5. Conclusions

- \diamond (\bigstar) shows a **good agreement** with simulations, mainly for **small step-sizes**;
- \diamond (\blacktriangle) provides a reasonable estimate for the range of step-sizes in which the probability of diver-

Definitions

 \diamond unknown optimum coefficient vetor: $\mathbf{w}_{o}(n)$; \diamond weight-error vector: $\widetilde{\mathbf{w}}(n) = \mathbf{w}_{o}(n) - \mathbf{w}(n);$ $\diamond a \ priori \ error \ e_a(n) = \mathbf{u}^{\mathrm{T}}(n) \widetilde{\mathbf{w}}(n-1);$ \diamond EMSE: $\zeta(n) = \mathbb{E}\{e_a^2(n)\};$ \diamond autocorrelation matrix of the input: $\mathbf{R} = \mathrm{E}\{\mathbf{u}(n)\mathbf{u}^{T}(n)\};$

♦ covariance matrix of the weight-error vector: $\mathbf{S} = \mathrm{E}\{\widetilde{\mathbf{w}}(n)\widetilde{\mathbf{w}}^{\mathrm{T}}(n)\}.$

 $\zeta(\infty) = \frac{\operatorname{Tr}(\mathbf{R}) \left[\mu \bar{\gamma}^{-1} \sigma_{\beta}^{2} \alpha_{2} + \mu^{-1} \bar{\gamma} \operatorname{Tr}(\mathbf{Q}) \right]}{2 \bar{\gamma} - \mu \bar{\gamma}^{-1} \xi}$

Outside ROI

 $\diamond \ d(n) = 0 \Rightarrow e(n) = -y(n);$

♦ Since this mode of operation makes the algorithm return to the ROI, the result obtained here is a worst case analysis. Considering the energyconservation arguments, we arrive at

ESCOLA POLITÉCNICA

gence of NCMA is approximately zero;

 \diamond (\blacktriangle) is more accurate for **larger step-sizes**;

 \diamond (\bigstar) in conjunction with (\blacktriangle) or (\blacktriangle) give a range of values for the steady-state EMSE of DM-CMA in all possible situations.

[1] M. D. Miranda, M. T. M. Silva and V. H. Nascimento, "Avoiding divergence in the constant modulus algorithm". Proc. of ICASSP 2008.

