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1. Introduction
Blind equalization algorithms with good conver-
gence and tracking properties and numerical ro-
bustness are desired to ensure the suitable perfor-
mance of communications systems. In this pa-
per, we present transient and steady-state analy-

ses for the dual-mode constant modulus algorithm
(DM-CMA), a version of CMA that avoids its well-

known divergence problem [1]. We show thatDM-

CMA is able to avoid divergencewithout degrada-
tion of mean-square performance.

2. Problem formulation

Schematic representation of a communications

system

Dual-mode CMA

Schematic representation of a DM-CMA equalizer

⋄ Proposed in [1];

⋄ y(n) = uT(n)w(n− 1);

⋄ e(n) = [r−y2(n)]y(n)
γ̄ , r = E{a4(n)}

σ2
a

, γ̄ = 3σ2
a − r;

⋄ e(n)=d(n)−y(n)⇒ d(n)=x(n)y(n)= 3σ2

a−y
2(n)

3σ2
a−r

y(n);

⋄ y(n) and d(n) are both estimates of a(n− τd);

⋄ The consistency between d(n) and y(n)will be en-

sured if they have the same sign⇒ x(n) > 0;

⋄ The nonlinearity of the “error” signal of CMA is

included in the factor x(n);

⋄ If x(n) < 0⇒ outside region of interest (ROI)

d(n)← 0.

⋄ w(n) = w(n− 1) + µ
δ+||u(n)||2[d(n)−y(n)]u(n).

3. Statistical models

Definitions

⋄ unknown optimum coefficient vetor: wo(n);

⋄ weight-error vector: w̃(n) = wo(n)−w(n);

⋄ a priori error ea(n) = uT(n)w̃(n− 1);

⋄ EMSE: ζ(n) = E{e2a(n)};

⋄ autocorrelationmatrix of the input: R=E{u(n)uT(n)};

⋄ covariance matrix of the weight-error vector:

S = E{w̃(n)w̃T(n)}.

Main assumptions

A1 in a nonstationary environment,wo follows a ran-

dom walk model: wo(n) = wo(n− 1) + q(n), q(n)

i.i.d., Q = E{q(n)qT(n)};

A2 the optimal solution achieves perfect equaliza-

tion, i.e.

a(n−τd) ≈ uT(n)wo(n−1)⇒ y(n) ≈ a(n−τd)−ea(n);

A3 eka(n), k > 2 are sufficiently small to be disregar-

ded for n ≥ 0, so that using A2 , e(n) can be ap-

proximated by

e(n) ≈
γ(n)

γ̄
ea(n) +

β(n)

γ̄

where γ(n)=3a2(n−τd) − r and β(n)= ra(n−τd)−

a3(n−τd) are i.i.d. random variables;

A4 independence between the regressor vector u(n)

and the weight-vector w̃(n), which is widely used

in the literature.

Transient analysis

⋄ Using A4 ⇒ ζ(n) ≈ Tr(RS(n− 1));

⋄ Assuming that DM-CMA operates only inside

ROI,

w̃(n)− q(n) = w̃(n− 1)−
µ

δ + ‖u(n)‖2
e(n)u(n);

⋄ Using A3 and assuming that the impulse res-

ponse of the channel is long, we arrive at

S(n)≈S(n−1)+
µ2ξα4

γ̄2
[2RS(n−1)R+RTr (RS(n−1))]

−µα2 [S(n−1)R+RS(n−1)]+
µ2σ2

β
α4

γ̄2
R+Q, (⋆)

whereα2 ,
[
σ2
u(M−2)

]−1
, α4 ,

[
σ4
u(M−2)(M−4)

]−1
,

ξ and σ2
β are constants that depend onHOS of a(n).

Steady-state analysis

Inside ROI

⋄ Traditional method:

• ζ(∞) can be obtained by calculating the trace of

both sides of (⋆) when n→∞;

• to arrive at an easy-to-compute expression, we

assume that 2Tr(RS(∞)R) can be disregarded in

relation to Tr(R)Tr(RS(∞)).

ζ(∞) ≈
µγ̄−1σ2

β
α4Tr(R) + µ−1γ̄Tr(Q)

2γ̄α2 − µγ̄−1ξα4Tr(R)
. (N)

⋄ Energy conservation:

• Using the energy-conservation arguments, the

EMSE can be obtained by calculating a recursion

for w̃(n).

ζ(∞) =
Tr(R)

[
µγ̄−1σ2

β
α2 + µ−1γ̄Tr(Q)

]

2γ̄ − µγ̄−1ξ
(N)

Outside ROI

⋄ d(n) = 0⇒ e(n) = −y(n);

⋄ Since this mode of operation makes the algo-

rithm return to the ROI, the result obtained here

is a worst case analysis. Considering the energy-

conservation arguments, we arrive at

ζ(∞) =
Tr(R)[µσ2

aα2 + µ−1Tr(Q)]

2− µ
. (⋆)

4. Simulations

⋄ Transmission of a 4-PAM signal;

⋄ Channel h = [0.25 0.64 0.80 −0.55]T ;

⋄ M = 20 coefficients, T/2-FSE.
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5. Conclusions

⋄ (⋆) shows a good agreement with simulations,

mainly for small step-sizes;

⋄ (N) provides a reasonable estimate for the range

of step-sizes in which the probability of diver-

gence of NCMA is approximately zero;

⋄ (N) is more accurate for larger step-sizes;

⋄ (⋆) in conjunction with (N) or (N) give a range of

values for the steady-state EMSE of DM-CMA in

all possible situations.
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