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Introduction and Problem Formulation

e Kernel adaptive filters (KAFs) are important tools to solve nonlinear
problems

e The input vector x(n) € RY is projected into a high dimension feature
space F as p(x(n)), where a standard linear adaptive filter is employed

e Kernel trick : p(x)"p(x') = k(x,x’), where k(-, -) is a Mercer’s kernel
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KLMS applied for nonlinear system identification, where v(n) is a
measurement noise

e The filter output of the kernel least-mean-squares (KLMS) algorithm is
computed as

where e(i) = d(z) — y(¢) and p is a step size
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Approaches

- QK_LMSZ Quantized KLMS , which is similar to the sparsified KLMS with novelty criterion
dis(x(n),C(n)) = min [jx(n)—x(c;)|

1<j<N.(n)
If dis(x(n), C(n)) < ¢, keep the dictionary unchanged and update a ;. as
aj(n) = a;(n —1) + pe(n),
where

J* = arg1§2£<n) x(n) — x(c))|

Otherwise, include x(n) and ay, ,)+1(n) = pe(n) to the dictionary

Sparsification

Techniques

SI-KLMS

- CC-KLMS: convex combination of two KLMS filters

output is a convex combination of the outputs of two KLMS filters running in parallel

, In which the global

- MI-KLMS: multiple-input multikernel LMS

adapted using a single error signal

- SI-KLMS: single-input multikernel LMS

combination of kernels

, In which L KLMS filters in parallel are

, where the kernel function is a convex

e MI-KLMS generally outperforms SI-KLMS and may outperform the con-
vex combination of two KLMS filters

e If the parameters of one kernel component are poorly adjuste d, the
convex combination is able to select the best component filter and may
outperform SI-KLMS and MI-KLMS

We propose a scheme to improve the selection of kernel filters in Ml-
KLMS, by multiplying the output of each kernel filter by an adaptive biasing
factor in |0, 1]

Proposed Scheme
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Robust MI-KLMS (R-MI-KLMS) with L = 2 KAFs applied to nonlinear
system identification

g \4 y(n)

e An important difference between the MI-KLMS scheme and our proposal
IS related to the error employed to adapt each kernel

e R-MI-KLMS permits to weight the output of each kernel activating
or deactivating the output of unnecessary kernels in the global filter
output

e We reinterpret the output of each branch of R-MI-KLMS as a convex
combination with a virtual kernel whose output is always zero, I.e.,
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ys(n) =) Me(n)ye(n) = A(n)ye(n) +[1 = Ae(n)] -0
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e Instead of adapting directly \/(n), we adapt an auxiliary parameter «:

Hay
pe(n)

ay(n) = oy(n — 1) e(n)ye(n)Ae(n)[1 — Ae(n)]

where u,, is a step size and py(n) = Bpin — 1) + (1 — B)y7(n), with
K pB<l1
e \/(n) and ay(n) are related through a sigmoidal function

1
1+ e—a(n—1)

A(n) = sgmlay(n — 1)] =

e oy(n) has to be restricted to a range of |—a™, a™| to avoid the paralysis
of its updating
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Simulation Results

In all multikernel schemes, we consider
-the QKLMS algorithm due to its inherent advantages
-the Gaussian kernel function and L = 2 filters

The schemes were applied to nonlinear prediction and non-
linear system identification  with an abrupt change In the
middle of the simulation, assuming the parameters:

Algorithm Parameters

QKLM81 u120.05, 01, 8120.05

QKLMSQ /LQZO.5, 09, 8220.5

CC-QKLMS o =4, =0.9, .,

S'-QKLM81 /L:OO5, 51:6220.5, 01, 09, e=0.00

SI'QKLMSQ /L:O.E), 51:6220.5, 01, 09, €=0.5

Ml-QKLMS [L1:O.O5, ,UQZO.5, 01, 09, 8120.05, 8220.5

R-MI-QKLMS 11, =0.05, 115=0.5, 01, 09, £1=0.05, £9=0.5, {10, flar,

Nonlinear prediction (D)
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e CC-QKLMS performs as its best component filter
e S|-QKLMS; outperforms SI-QKLMS,

o MI-QKLMS and its robust version present the same perfor-
mance and outperform other multiple kernel solutions
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Nonlinear prediction
Settings: 01=0.2, 09=100, pto= b, = fta,=0.3
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¢ 0, = 100 does not lead to good results for a monokernel filter

e CC-QKLMS follows QKLMS;,

e SI-QKLMS; scheme presents a lower convergence rate than

that of the monokernel QKLMS;.

e For 1200 < n < 5000, o9 = 100 degrades the performance of
MI-QKLMS, which is avoided by R-MI-QKLMS

Nonlinear system identification
Settings: oy =1, 0o = 0.1, pta= b, = fa,=0.1
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Galn of R-MI-QKLMS in relation to other schemes in terms of
steady-state EM SE (dB) for 2" system

SNR CC-QKLMS/SI-QKLMS, SI-QKLMS, MI-QKLMS
~25 105 9.4 23.9 20.7
—20 6.7 6.8 15.3 16.6
15 3.3 3.2 11.4 13.4
~10 1.4 0.9 8.5 9.9

—5 0.6 0.5 6.3 8.4

0 0.4 0.4 4.5 5.2

5 0.1 0.3 2.2 3.5

10 0.1 0.5 1.6 2.8

15 0 0.2 0.5 1.6

¢ R-MI-QKLMS outperforms other multikernel schemes for the
considered range of SNR, especially for low SNRs

Nonlinear system identification (4)
Settings: o1=1,09=0.1, i = o, = far, = 1
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e CC-QKLMS performs as the best component filter

¢ SI-QKLMS; outperforms SI-QKLMS; In the identification of
the first system but for the second system, SI-QKLMS; out-
performs SI-QKLMS,,

e MI-QKLMS presents a poor performance
e R-MI-QKLMS Is able to minimize the degrading effects of

unnecessary kernels
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Conclusions

The proposed scheme

- presents a computational cost slightly higher than that of MI-
QKLMS and

- can outperform other multikernel solutions when the set-
tings of one or more kernels are not appropriate and/or the
SNR Is low
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