

- problems

$$y(n) = \varphi(\mathbf{x}(n))^{\mathrm{T}} \mathbf{\Omega}(n-1) = \sum_{i=1}^{n-1} \mu e(i) \kappa(\mathbf{x}(n), \mathbf{x}(n)) = \sum_{i=1}^{n-1} \mu e(i) \kappa(\mathbf{x}(n)) = \sum_{i=1}^{n-1} \mu e(i) \kappa(\mathbf{x}(n)) = \sum_{i$$

Improving Multikernel Adaptive Filtering with Selective Bias Magno T. M. Silva, Renato Candido Jerónimo Arenas-García, Luis A. Azpicueta-Ruiz {magno, renatocan}@lps.usp.br {jarenas, azpicueta}@tsc.uc3m.es Universidade de São Paulo, Brazil Universidad Carlos III de Madrid, Spain

Robust MI-KLMS (R-MI-KLMS) with L = 2 KAFs applied to nonlinear system identification

- is related to the error employed to adapt each kernel
- output

$$y_b(n) = \sum_{\ell=1}^{L} \lambda_\ell(n) y_\ell(n) = \sum_{\ell=1}^{L} \lambda_\ell(n) y_\ell(n) + [1 - \lambda_\ell(n)] \cdot 0$$

$$\alpha_{\ell}(n) = \alpha_{\ell}(n-1) + \frac{\mu_{\alpha_{\ell}}}{p_{\ell}(n)}e(n)y_{\ell}(n)\lambda_{\ell}(n)[1-\lambda_{\ell}(n)]$$

is a step size and $n_{\ell}(n) = \beta n_{\ell}(n-1) + (1-\beta)u^2(n)$ with

where $\mu_{\alpha_{\ell}}$ is a step size and $p_{\ell}(n) = \beta p_{\ell}(n-1) + (1-\beta)y_{\ell}(n)$, with $0 \ll \beta < 1$

• $\lambda_{\ell}(n)$ and $\alpha_{\ell}(n)$ are related through a sigmoidal function

 $\lambda_{\ell}(n) = \operatorname{sgm}[\alpha_{\ell}(n-1)] = \frac{1}{1 + e^{-\alpha(n-1)}}$

of its updating

 $e_2(n)=d(n)-[y_2(n)+\lambda_1(n)y_1(n)]$

• An important difference between the MI-KLMS scheme and our proposal

• R-MI-KLMS permits to weight the output of each kernel activating or deactivating the output of unnecessary kernels in the global filter

• We reinterpret the output of each branch of R-MI-KLMS as a convex combination with a virtual kernel whose output is always zero, i.e.,

• Instead of adapting directly $\lambda_{\ell}(n)$, we adapt an auxiliary parameter α_{ℓ} :

• $\alpha_{\ell}(n)$ has to be restricted to a range of $[-\alpha^+, \alpha^+]$ to avoid the paralysis

Universidad Carlos III de Madrid

Simulation Results

In all multikernel schemes, we consider

- the **QKLMS** algorithm due to its inherent advantages

- the **Gaussian kernel** function and L = 2 filters

The schemes were applied to **nonlinear prediction** and **non**linear system identification with an abrupt change in the middle of the simulation, assuming the parameters:

Algorithm	Parameters
$QKLMS_1$	$\mu_1 = 0.05$, σ_1 , $\varepsilon_1 = 0.05$
$QKLMS_2$	$\mu_2 = 0.5, \sigma_2, \varepsilon_2 = 0.5$
CC-QKLMS	$\alpha^{+} = 4, \beta = 0.9, \mu_{\alpha}$
$SI-QKLMS_1$	$\mu = 0.05, \beta_1 = \beta_2 = 0.5, \sigma_1, \sigma_2, \varepsilon = 0.05$
$SI-QKLMS_2$	$\mu = 0.5, \beta_1 = \beta_2 = 0.5, \sigma_1, \sigma_2, \varepsilon = 0.5$
MI-QKLMS	$\mu_1 = 0.05$, $\mu_2 = 0.5$, σ_1 , σ_2 , $\varepsilon_1 = 0.05$,
R-MI-QKLMS	$\mu_1 = 0.05, \mu_2 = 0.5, \sigma_1, \sigma_2, \varepsilon_1 = 0.05,$

- SI-QKLMS₁ outperforms SI-QKLMS₂
- MI-QKLMS and its robust version present the same performance and outperform other multiple kernel solutions

- $\sigma_2 = 100$ does not lead to good results for a monokernel filter
- CC-QKLMS follows QKLMS₁
- SI-QKLMS₁ scheme presents a lower convergence rate than that of the monokernel QKLMS₁.
- For 1200 < n < 5000, $\sigma_2 = 100$ degrades the performance of MI-QKLMS, which is avoided by R-MI-QKLMS

Nonlinear system identification Settings: $\sigma_1 = 1$, $\sigma_2 = 0.1$, $\mu_{\alpha} = \mu_{\alpha_1} = \mu_{\alpha_2} = 0.1$

Gain of R-MI-QKLMS in relation to other schemes in terms of steady-state EMSE (dB) for 2nd system

SNR	CC-QKLMS	$SI-QKLMS_1$	SI-QKLMS ₂	MI-QKLMS
-25	10.5	9.4	23.9	20.7
-20	6.7	6.8	15.3	16.6
-15	3.3	3.2	11.4	13.4
-10	1.4	0.9	8.5	9.9
-5	0.6	0.5	6.3	8.4
0	0.4	0.4	4.5	5.2
5	0.1	0.3	2.2	3.5
10	0.1	0.5	1.6	2.8
15	0	0.2	0.5	1.6

• R-MI-QKLMS outperforms other multikernel schemes for the considered range of SNR, especially for low SNRs

3

- performs SI-QKLMS₂,
- MI-QKLMS presents a poor performance
- unnecessary kernels

Conclusions

The proposed scheme

- QKLMS and
- SNR is low

References

- on Neural Networks and Learning Systems, vol. 25, no. 2, pp. 265–277, Feb. 2014.
- ing the weights of adaptive filters," IEEE TSP, vol. 58, pp. 3890–3895, Jul. 2010.

• SI-QKLMS₂ outperforms SI-QKLMS₁ in the identification of the first system but for the second system, SI-QKLMS₁ out-

• R-MI-QKLMS is able to minimize the degrading effects of

-presents a computational cost slightly higher than that of MI-

- can outperform other multikernel solutions when the settings of one or more kernels are not appropriate and/or the

- B. Chen, S. Zhao, P. Zhu, and J. C. Principe, "Quantized kernel least mean square algorithm," IEEE Transactions on Neural Networks and Learning Systems, vol. 23, pp. 22–32, Jan 2012.

- M. Yukawa, "Multikernel adaptive filtering," IEEE TSP, vol. 60, no. 9, pp. 4672–4682, Sep. 2012.

- F. A. Tobar, S. Y. Kung, and D. P. Mandic, "Multikernel least mean square algorithm," *IEEE Transactions*

- M. Lazaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia, "Adaptively bias-