
Improving Multikernel Adaptive Filtering with Selective Bia s
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Introduction and Problem Formulation
•Kernel adaptive filters (KAFs) are important tools to solve nonlinear

problems

•The input vector x(n) ∈ R
N is projected into a high dimension feature

space F as ϕ(x(n)), where a standard linear adaptive filter is employed

•Kernel trick : ϕ(x)Tϕ(x′) = κ(x,x′), where κ(·, ·) is a Mercer’s kernel
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KLMS applied for nonlinear system identification, where v(n) is a
measurement noise

•The filter output of the kernel least-mean-squares (KLMS) algorithm is
computed as

y(n) =ϕ(x(n))TΩ(n− 1) =

n−1
∑

i=1

µe(i)κ(x(n),x(i))

where e(i) = d(i)− y(i) and µ is a step size
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- QKLMS: Quantized KLMS , which is similar to the sparsified KLMS with novelty criterion

dis(x(n), C(n)) = min
1≤j≤Nc(n)

‖x(n)− x(cj)‖

If dis(x(n), C(n)) ≤ ε, keep the dictionary unchanged and update aj∗ as
aj∗(n) = aj∗(n− 1) + µe(n),
where
j∗ = arg min

1≤j≤Nc(n)
‖x(n)− x(cj)‖

Otherwise, include x(n) and aNc(n)+1(n) = µe(n) to the dictionary

- CC-KLMS: convex combination of two KLMS filters , in which the global

output is a convex combination of the outputs of two KLMS filters running in parallel

- MI-KLMS: multiple-input multikernel LMS , in which L KLMS filters in parallel are

adapted using a single error signal

- SI-KLMS: single-input multikernel LMS , where the kernel function is a convex
combination of kernels

•MI-KLMS generally outperforms SI-KLMS and may outperform the con-
vex combination of two KLMS filters

• If the parameters of one kernel component are poorly adjuste d, the
convex combination is able to select the best component filter and may
outperform SI-KLMS and MI-KLMS

We propose a scheme to improve the selection of kernel filters in MI-
KLMS , by multiplying the output of each kernel filter by an adaptive biasing
factor in [0, 1]

Proposed Scheme
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Robust MI-KLMS (R-MI-KLMS) with L = 2 KAFs applied to nonlinear
system identification

•An important difference between the MI-KLMS scheme and our proposal
is related to the error employed to adapt each kernel

•R-MI-KLMS permits to weight the output of each kernel activating
or deactivating the output of unnecessary kernels in the global filter
output

•We reinterpret the output of each branch of R-MI-KLMS as a convex
combination with a virtual kernel whose output is always zero, i.e.,

yb(n) =

L
∑

ℓ=1

λℓ(n)yℓ(n) =

L
∑

ℓ=1

λℓ(n)yℓ(n)+ [1−λℓ(n)] · 0

• Instead of adapting directly λℓ(n), we adapt an auxiliary parameter αℓ:

αℓ(n) = αℓ(n− 1) +
µαℓ

pℓ(n)
e(n)yℓ(n)λℓ(n)[1− λℓ(n)]

where µαℓ
is a step size and pℓ(n) = βpℓ(n − 1) + (1 − β)y2ℓ(n), with

0 ≪ β < 1

•λℓ(n) and αℓ(n) are related through a sigmoidal function

λℓ(n) = sgm[αℓ(n− 1)] =
1

1 + e−α(n−1)

•αℓ(n) has to be restricted to a range of [−α+, α+] to avoid the paralysis
of its updating
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Simulation Results
In all multikernel schemes, we consider

- the QKLMS algorithm due to its inherent advantages

- the Gaussian kernel function and L = 2 filters

The schemes were applied to nonlinear prediction and non-
linear system identification with an abrupt change in the
middle of the simulation, assuming the parameters:

Algorithm Parameters
QKLMS1 µ1=0.05, σ1, ε1=0.05

QKLMS2 µ2=0.5, σ2, ε2=0.5

CC-QKLMS α+=4, β=0.9, µα

SI-QKLMS1 µ=0.05, β1=β2=0.5, σ1, σ2, ε=0.05

SI-QKLMS2 µ=0.5, β1=β2=0.5, σ1, σ2, ε=0.5

MI-QKLMS µ1=0.05, µ2=0.5, σ1, σ2, ε1=0.05, ε2=0.5

R-MI-QKLMS µ1=0.05, µ2=0.5, σ1, σ2, ε1=0.05, ε2=0.5, µα1
, µα2

Nonlinear prediction 1©
Settings: σ1=0.1, σ2=1, µα=µα1

=µα2
=1.5

•CC-QKLMS performs as its best component filter

•SI-QKLMS1 outperforms SI-QKLMS2

•MI-QKLMS and its robust version present the same perfor-
mance and outperform other multiple kernel solutions

Nonlinear prediction 2©
Settings: σ1=0.2, σ2=100, µα=µα1

=µα2
=0.3

•σ2 = 100 does not lead to good results for a monokernel filter

•CC-QKLMS follows QKLMS1

•SI-QKLMS1 scheme presents a lower convergence rate than
that of the monokernel QKLMS1.

•For 1200< n < 5000, σ2 = 100 degrades the performance of
MI-QKLMS, which is avoided by R-MI-QKLMS

Nonlinear system identification 3©
Settings: σ1 = 1, σ2 = 0.1, µα=µα1

=µα2
=0.1

Gain of R-MI-QKLMS in relation to other schemes in terms of
steady-state EMSE (dB) for 2nd system

SNR CC-QKLMS SI-QKLMS1 SI-QKLMS2 MI-QKLMS
−25 10.5 9.4 23.9 20.7
−20 6.7 6.8 15.3 16.6
−15 3.3 3.2 11.4 13.4
−10 1.4 0.9 8.5 9.9
−5 0.6 0.5 6.3 8.4
0 0.4 0.4 4.5 5.2
5 0.1 0.3 2.2 3.5
10 0.1 0.5 1.6 2.8
15 0 0.2 0.5 1.6

•R-MI-QKLMS outperforms other multikernel schemes for the
considered range of SNR, especially for low SNRs

Nonlinear system identification 4©
Settings: σ1=1, σ2=0.1, µα=µα1

=µα2
=1

•CC-QKLMS performs as the best component filter

•SI-QKLMS2 outperforms SI-QKLMS1 in the identification of
the first system but for the second system, SI-QKLMS1 out-
performs SI-QKLMS2,

•MI-QKLMS presents a poor performance

•R-MI-QKLMS is able to minimize the degrading effects of
unnecessary kernels

Conclusions
The proposed scheme

- presents a computational cost slightly higher than that of MI-
QKLMS and

- can outperform other multikernel solutions when the set-
tings of one or more kernels are not appropriate and/or the
SNR is low
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