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Problem Formulation

 

1( )nw

2( )nw

( )y n  

1( )y n

2( )y n

�
( )n

1-� ( )n

( )u n 1
� -CMA

2
� -CMA

Combination 

Channel Equalizer 

/ 2T

( )u n
( )y n Decision 

device 

ˆ( � )da n −( )a n

y(n) = λ(n)y1(n) + [1 − λ(n)]y2(n)

wi (n + 1) = wi (n) + µiei (n)u(n), i = 1,2

ei (n) = [r − y2
i (n)]yi (n), i = 1,2

r , E{a4(n)}/E{a2(n)}
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Adaptations of the mixing parameter

Convex Combination [Arenas-Garćıa, Figueiras-Vidal, 2006]

λ(n) =
{

1 + e
−α(n)

}
−1

α(n + 1) = α(n) + µαeα(n)λ(n)[1 − λ(n)]

eα(n) =
[
r − y2(n)

]
y(n)[y1(n) − y2(n)]

In the affine combination λ(n) is not restricted to [0, 1]
[Bershad, Bermudez, Tourneret, 2008].

Affine Combination

λ(n + 1) = λ(n) + µλed(n)[y1(n) − y2(n)]

ed(n) = â(n − τd) − y(n)
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Tracking analysis

Random-walk model

wo(n + 1) = wo(n) + q(n)

Q = E{q(n)qT (n)}

EMSE (ζ11 or ζ22) and cross-EMSE (ζ12)

ζij ≈
µiµjσ

2
β
Tr(R) + Tr(Q)

γ̄(µi + µj) − µiµjTr(R)ξ
, i ,j = 1,2

Tr(·) : trace of a matrix

R = E{u(n)uT (n)}

σ2
β = E{a6(n) − r2a2(n)}

γ̄ = 3E{a2(n)} − r

ξ = r(3E{a2(n)} + r)
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Analytical models for the combination at the

steady-state

From the derivative of CM cost function, we obtain

Optimum mixing parameter: λ̄o(∞) , lim
n→∞

E{λ(n)} ≈
∆ζ2

∆ζ1 + ∆ζ2

Steady-state EMSE of the combination: ζ ≈ ζ12 +
∆ζ1∆ζ2

∆ζ1 + ∆ζ2

where ∆ζi , ζii − ζ12, i = 1,2.

Remarks

These expressions were first obtained in [Arenas-Garćıa,
Figueiras-Vidal, Sayed, 2006] for the convex combination
of two LMS filters.

In the affine combination, λ(n) and consequently λ̄o(∞)
are not restricted to the interval [0, 1].
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Theoretical results for the affine combination in a

stationary environment

Defining δ , µ2/µ1, with 0 < δ < 1, we obtain:

Optimum mixing parameter

λ̄o(∞) ≈
δ
[
2 − µ1Tr(R)ξ γ̄−1

]

2 (δ − 1)

To ensure the stability of µ1-CMA, 0 < µ1 < 2γ̄/(3Tr(R)ξ)
must be satisfied. Hence, λ̄o(∞) is always negative.

EMSE of the combination

ζ ≈
1

2

µ2σ
2
β
Tr(R)

(1 + δ)γ̄ − µ2Tr(R)ξ

For δ → 1, the affine combination provides a 3dB gain. In this
case, λ̄o(∞) → −∞.
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Understanding the mixing parameter

The overall steady-state error can be rewritten as

e(n) = e2(n)
︸ ︷︷ ︸

d(n)

+λ(n) γ(n)[w2(n) − w1(n)]Tu(n)
︸ ︷︷ ︸

−x(n)

where γ(n) = 3a2(n − τd) − r , d(n) is the signal to be
estimated and x(n) plays the role of input signal.

Assuming that wi , i = 1,2 vary slowly compared to λ, this
equation has a simple geometric interpretation:

 1w

2w

w

ow

(a) 

1w2
w

w

ow

(b) 
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Improving the EMSE reduction in a stationary

environment

 

 

µµµµ1- CMA 
with 

µµµµ2- CMA 

µµµµ3- CMA 
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µµµµ4- CMA 
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µ2 = δ1µ1, 0 ≪ δ1 < 1

µ4 = δ2µ3, 0 ≪ δ2 < 1

lim
(δ1,δ2)→(1,1)

ζ ≈
3

8
ζ11.

This represents an EMSE reduction of 4.26 dB
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Simulation Results - stationary case

µ1 ≈ µ2 ≈ µ3 ≈ µ4
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(a) Theoretical and experimental EMSE (b) Ensemble-average of

λ(n), λA1
(n), λA2

(n) and theoretical value of λ̄o(∞)
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Theoretical results for the affine combination in

nonstationary environments

The largest EMSE reduction occurs when ζ11 ≈ ζ22. This can
happen when

1) Tr(Q) ≈ µ1µ2σ
2
βTr(R)

ζ

ζ22
≈

1

2
+

2δ

(δ + 1)2
,

or

2) µ1 ≈ µ2

lim
δ→1

ζ =
ζ22

2
+

σ2
βTr(R)Tr(Q)

2γ̄2ζ22

In both cases, the EMSE reduction is limited by 3 dB
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Simulation Results - nonstationary case
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NSDii (∞) = ζii/ζo, i = 1,2, NSD(∞) = ζ/ζo, where ζo

is the optimum steady-state EMSE of a CMA equalizer.
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Combination of 2 CMAs with different

initializations

BPSK, Channel H(z) = [1 + 0,6z
−1]−1; SNR= 25 dB

w1(0) = [ 0,40 0,05 ]T and w2(0) = [ 0,40 −0,60 ]T
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Conclusions

Through the analysis and simulations, we observe that

When the component equalizers have close step-sizes, the
affine combination can provide an EMSE reduction of
3 dB.

In a nonstationary environment, the minimum steady-state
EMSE of the combination is equal to the steady-state
EMSE of a CMA equalizer with optimal step-size. Thus,
the affine combination can perform similarly to the convex
combination.

To avoid local minima, we combined two CMAs with
different initializations. There may exist situations where
the combined scheme avoids local minima. Comparing to
the convex combination, the affine combination may
present faster convergence and search a minimum more
efficiently.


