
An Adaptive Algorithm for Sampling over Diffusion Networks with
Dynamic Parameter Tuning and Change Detection Mechanisms

Daniel Gilio Tiglea˚, Renato Candido, Magno T. M. Silva

Escola Politécnica, University of São Paulo, São Paulo, Brazil

Abstract

Recently, we proposed a sampling algorithm for diffusion networks that locally adapts the number of nodes

sampled according to the estimation error. Thus, it reduces the computational cost associated with the

learning task when the error is low in magnitude, e.g., during steady state, and maintains the sampling of

the nodes otherwise, which enables fast convergence during the transient. However, its performance depends

crucially on the choice of the parameter responsible for penalizing the sampling, which is a function of the

variance of the measurement noise across the network. Inappropriate choices affect the tracking capability of

the algorithm. In this paper, we propose a different solution, which automatically adjusts its own parameters

based on the noise power estimation. Although its computational cost is slightly increased, this modification

removes the need for a priori knowledge of the noise variance across the network, and increases its robustness

to the presence of noisy nodes in the network. Furthermore, by implementing an adaptive reset system for the

sampling mechanism, we are able to significantly improve the tracking capability of the original algorithm.

Keywords: Diffusion networks, distributed estimation, adaptive filtering, sampling, censoring.

1. Introduction

Adaptive diffusion networks have consolidated themselves in the literature as an effective tool for dis-

tributed parameter estimation and signal processing. Since they dismiss the need for a central process-

ing unit, they present better scalability, autonomy, and flexibility in comparison with centralized ap-

proaches [1–7]. Thus, they have been recognized as effective solutions in many applications, such as target

localization and tracking [8], spectrum sensing in mobile networks [9, 10], collaborative beamforming [11],

modeling of biological systems [12], internet of things (IoT) applications [13], among others [1–7].

Adaptive networks consist of a set of connected nodes that are capable of sensing and processing data, as

well as communicating with their nearby peers, i.e., their neighbors. The collective goal of the network is to

˚Corresponding author.
Email addresses: dtiglea@lps.usp.br (Daniel Gilio Tiglea), renatocan@lps.usp.br (Renato Candido),

magno.silva@usp.br (Magno T. M. Silva)

Preprint submitted to Digital Signal Processing May 5, 2022

estimate a parameter vector of interest in a distributed way [1–7, 14–16]. To achieve this, each node usually

collects the data available locally and computes its local estimate in what is called the adaptation step. Then,

the nodes cooperate with their neighbors to reach a global estimate of the vector of interest. This, in its turn,

is usually called the combination step. The order in which these steps are performed enables two possible

schemes: the Adapt-Then-Combine (ATC) and Combine-Then-Adapt (CTA) strategies [1–7, 14–16].

However, in certain distributed applications, measuring and processing the data at every node and every

time instant can be costly, even prohibitively so. Hence, some sort of mechanism may be required to decrease

the number of updates and/or measurements [17, 18]. In this context, sampling only a subset of nodes at each

iteration can significantly reduce the computational and memory burdens associated with the learning task,

but may also affect algorithm performance. Moreover, in order to make these distributed solutions feasible

for most applications, it is often necessary to reduce the amount of information sent across the network to

reduce energy consumption, as is the case of wireless sensor networks [19–21]. Thus, several solutions have

been proposed to reduce the energy consumption associated with the communication between nodes. Some

reduce the amount of information sent in each transmission [22–28], whereas others shut links off according

to selective communication policies [19, 29–35]. Finally, there is a group of solutions known as censoring

techniques. They seek to cut the transmission from certain nodes to any of their neighbors [20, 21, 36–42],

hence allowing censored nodes to turn their transmitters off. This saves energy and reduces the amount of

information used in the processing [21, 37].

Recently, we proposed a sampling algorithm for adaptive diffusion networks and graph adaptive filtering

that can also be used as a censoring technique [43]. It changes the number of sampled nodes based on

the squared error in the neighborhood of each node. Thus, the number of sampled nodes decreases when

the error is low in magnitude, allowing for fast convergence in the transient and a significant reduction in

the computational cost and/or energy consumption in steady state. It has attained success in temperature

estimation problems using real-world data as well as synthetic computer simulations [43]. However, the

proper selection of one of its parameters depends crucially on the knowledge of the largest noise power in

the network, which may not be known beforehand.

Moreover, one of the main limitations of the mechanism proposed in [43] lies in its tracking capability.

Since the sampling of the nodes does not cease permanently, it can detect changes in the environment. How-

ever, under certain circumstances, its performance is noticeably affected in comparison with the case where

all nodes remain sampled. It was shown in [43] that the proposed algorithm could respond satisfactorily to

abrupt changes in the environment, but further experiments showed that this is not always the case. To

illustrate this, in Sec. 1.1 we provide some simulation results that exemplify some of the main weaknesses of

the algorithm of [43] and help us motivate the additional mechanisms proposed in this work. Further, the

main contributions of this paper and its organization are outlined in Secs. 1.2 and 1.3, respectively.

2

1.1. Introductory Simulations

We show in Fig. 1 simulation results obtained with the diffuse Normalized Least-Mean-Squares (dNLMS)

algorithm [1–3] and with the algorithm proposed in [43], named as Adaptive-Sampling dNLMS (AS-dNLMS),

in a system identification problem. We consider Scenario 1 described in Sec. 8, and both algorithms were

implemented in an ATC configuration over a network consisting of 25 nodes. For comparison, we included

the results of the original dNLMS algorithm with all 25 nodes sampled, and with a sampling technique in

which Vs “5 nodes are randomly selected for sampling at each iteration. At the middle of each experiment,

we abruptly modify the system to be identified in such a way that the Signal-to-Noise Ratio (SNR) drops.

In Fig. 1(a) we present the Network Mean-Square Deviation (NMSD), a performance indicator that will be

detailed in Sec. 8, whereas Figs. 1(b) and (c) depict the number of nodes sampled, and of multiplications

per iteration, respectively.

From Fig. 1(a), we observe that the random sampling leads to a slower convergence rate that the original

dNLMS algorithm. This is reasonable since the random sampling reduces the rate at which information is

fed into the algorithm, which is crucial during the transient. On the other hand, before the abrupt change

in the environment, AS-dNLMS preserves the convergence rate of dNLMS, since it maintains the sampling

of every node until it achieves the steady state in terms of NMSD. From Figs. 1(b) and (c), we see that

AS-dNLMS samples on average two nodes per iteration during steady state, which leads to a significant

reduction in the computational cost in comparison with dNLMS. It is also interesting to note that the

sampling of less nodes leads to a slight decrease in steady-state NMSD. AS-dNLMS and dNLMS with Vs “5

respectively achieve steady-state NMSD levels of 2.8 dB and 2 dB lower than that of dNLMS with all nodes

sampled. One possible interpretation for this is that although the adaptation step is important for the

convergence during the transient and for detecting changes in the environment, in steady state it introduces

noise into the network, which the combination step tends to remove [43, 44]. Thus, by reducing the sampling

rate during steady state, there may be a slight reduction in NMSD. However, after the abrupt change, the

convergence rate of AS-dNLMS becomes slower than that of the dNLMS with Vs “5. As can be seen from

Fig. 1(b), AS-dNLMS does slightly increase the number of nodes sampled per iteration after the change in

the environment, but this increase is too slight to improve the convergence rate.

This problem can be aggravated when one of the nodes of the network is much noisier than the others.

In this scenario, it may be challenging to select the parameters of the AS-dNLMS algorithm, since their

choice depends on the largest noise variance in the network. An example is depicted in Fig. 2, in which we

set the parameters of the algorithm using the same rules that were employed in the simulations of Fig. 1.

However, in comparison with the scenario considered in Fig. 1, the noise power at the noisiest node was

multiplied by ten. Thus, the noise variance at this node is between 10 and 100 times greater than the noise

power in the remainder of the network. Comparing Figs. 1 and 2, we can see that the convergence rate

of AS-dNLMS after the abrupt change is even more severely hampered. This is because the largest noise

3

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0
(a

)
N

M
S

D
(d

B
)

dNLMS (Vs=25) dNLMS (Vs=5) AS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 1: Comparison between dNLMS with Vs nodes randomly sampled per iteration and AS-dNLMS (β“1.9, µs “0.0045).

(a) NMSD along the iterations, (b) number of nodes sampled, and (c) multiplications per iteration.

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25) dNLMS (Vs=5) AS-dNLMS (β=3.8σ2
max)

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 2: Comparison between dNLMS with Vs nodes randomly sampled per iteration and AS-dNLMS (β “19, µs “0.0045)

in Scenario 2 described in Sec. 8, in which one of the nodes is much noisier than the others. (a) NMSD curves, and (b) number

of nodes sampled per iteration.

variance in this scenario is much greater than the average noise power. Thus, the selection of the parameters

of the algorithm requires a deeper knowledge of the noise variance profile of the nodes, which further hinders

the applicability of AS-dNLMS.

1.2. Main Contributions of the Paper

To tackle the issues illustrated by the simulations of Sec. 1.1, we propose in this paper several modifi-

cations to the AS-dNLMS algorithm that directly address all of its main limitations. The algorithm thus

4

derived extends our previous work in numerous ways:

1. Instead of using global parameters for the entire network, we allow each node to have its own local set of

parameters, which enables the algorithm to cope with diversity in the network, e.g., due to significant

variations in the measurement noise power from one node to the other, as in the simulations of Fig. 2.

2. The proposed algorithm estimates the noise variance in each node and modifies their local parameters

accordingly in an online and distributed manner, thus eliminating the need for a priori knowledge of

the noise variance in the network.

3. The proposed algorithm incorporates a change-detection device that allows for the resetting of the

sampling mechanism, drastically improving the tracking capability of the algorithm.

4. Theoretical results are derived for the proposed algorithm, enabling a well-informed selection of its

parameters. Unlike what was observed for the AS-dNLMS in [43], the theoretical upper bound for the

expected number of nodes sampled per iteration by the proposed algorithm does not depend on the

greatest noise variance in the network.

Simulation results show the good performance of the proposed solution in different scenarios. In partic-

ular, it is shown that the proposed algorithm is more robust to the presence of noisy nodes in the network.

Furthermore, in a scenario where the optimal system varies over time following a random-walk model, it is

shown that it can present a significant improvement in performance in comparison with AS-dNLMS.

1.3. Organization of the Paper and Notation

The paper is organized as follows. In Sec. 2, we revisit the ATC AS-dNLMS algorithm [43]. In Sec. 3,

the adaptive sampling algorithm with dynamic parameter tuning is derived, and in Sec. 4, we conduct a

theoretical analysis to aid the selection of the fixed parameters of the algorithm. In Sec. 5, we propose a reset

system for the sampling mechanism in order to improve the tracking capability of the algorithm. Finally,

simulation results are shown in Sec. 8 and Sec. 9 closes the paper with the conclusions. For simplicity, we

focus only on the ATC strategy, but our results can be straightforwardly extended to CTA as well.

Notation. We use normal fonts for scalars and boldface letters for vectors. Moreover, p¨qT denotes trans-

position, Et¨u the mathematical expectation, expp¨q the exponential function, | ¨ | the cardinality of a set,

Trr¨s the trace of a matrix, Prr¨s the probability of an event, and ∥¨∥ the Euclidean norm.

2. Revisiting the ATC AS-dNLMS Algorithm

Let us consider a network of V nodes with a preset topology, such as the one of Fig. 3, which will be

used in the simulations throughout this paper. Two nodes are considered neighbors if they can exchange

5

information, and we denote by Nk the neighborhood of node k, including k itself. An example is shown

in Fig. 3, which depicts a network randomly generated according to the Erdös-Renyi model with V “ 25

nodes [15]. In this case, the neighborhood of node 1 corresponds to the set of nodes t1, 11, 21, 24u, which

are highlighted in red for ease of visualization, and the average number of neighbors per node is 7.

Furthermore, as illustrated in Fig. 3, we consider that each node k has access at each time instant n to

an input signal ukpnq and to a reference signal

dkpnq “ uT
kpnqwo ` vkpnq, (1)

where ukpnq “ rukpnq ukpn´1q ¨ ¨ ¨ ukpn´M`1qsT is an M -length regressor vector, wo is the optimal system,

and vkpnq is the measurement noise at node k, which is assumed to be independent and identically distributed

(iid), zero-mean with variance σ2
vk

and independent from any other signal. The objective of the network is to

obtain an estimate of wo in a distributed manner by solving minw
řV

k“1 Etrdkpnq ´ uT
kpnqws2u [1–3, 19, 20].

Figure 3: Example of an adaptive diffusion network and its inputs. The neighborhood of node 1 is highlighted in red.

Many adaptive algorithms were proposed for this, with the ATC dNLMS being one of the most widely

used [1–3]. Based on it, in [43] we proposed the ATC AS-dNLMS algorithm. Thus, the adaptation and

combination steps of ATC AS-dNLMS are respectively given by

$

&

%

ψkpn ` 1q“wkpnq`sskpnqµkpnqukpnqekpnq

wkpn ` 1q“
ř

jPNk
cjkψjpn ` 1q,

(2a)

(2b)

where sskpnqPt0,1u is a sampling variable and ψk and wk represent respectively the local and combined

estimates of wo at node k. Furthermore,

ekpnq “ dkpnq ´ uT
kpnqwkpnq, (3)

6

is the estimation error and µkpnq “ rµk{rδ`}ukpnq}2s is a normalized step size with 0ă rµk ă 2 and a small

regularization factor δ ą 0 [1]. Lastly, tcjku are combination weights satisfying cjk ě 0,
ř

jPNk
cjk “ 1, and

cjk “ 0 if j R Nk [2, 3]. Possible choices for tcjku include the Uniform, Metropolis, and Relative Degree

rules [1], as well as the Adaptive Combination Weights (ACW) algorithm [45]. In particular, ACW aims

to assign greater weights to the least noisy nodes, and is obtained by solving an optimization problem in

regards to tcjku. To avoid division by zero, in this paper we adopt a regularized version of it, which can be

summarized as [43, 45]

cjkpnq“
rδc`pσ2

jkpnqs´1

ř

ℓPNk
rδc`pσ2

ℓkpnqs´1
if j PNk or 0, otherwise, (4)

where δc ą0 is a small constant and σ2
jk is updated as

pσ2
jkpnq“p1´νkqpσ2

jkpn´1q`νk∥ψjpn`1q´wkpnq∥2, (5)

with νk ą 0 for k“1, ¨ ¨ ¨ ,V .

The difference between dNLMS and AS-dNLMS resides in the inclusion of the sampling variable sskpnq

in the correction term of (2a). Whenever sskpnq “ 1, dkpnq is sampled and ekpnq is computed as in (3).

In contrast, if sskpnq “ 0, dkpnq is not sampled, uT
kpnqwkpnq, ekpnq and µkpnq are not computed, and

ψkpn`1q“wkpnq.

Based on convex combinations of adaptive filters [46], instead of directly adapting sskpnq, we introduce

an auxiliary variable αkpnq P r´α`,α`s such that sskpnq“0 for ϕrαkpnqsă0.5 and sskpnq“1 otherwise, with

ϕr¨s given by [47]

ϕrαkpnqs fi
sgmrαkpnqs ´ sgmr´α`s

sgmrα`s ´ sgmr´α`s
, (6)

where sgmrxs “ r1` expp´xqs´1 is a sigmoidal function. In the literature, α` “ 4 is usually adopted [47].

It is interesting to notice that ϕrα`s “ 1, ϕr0s “ 0.5, and ϕr´α`s “ 0. For the compactness of notation, we

henceforth write ϕrαkpnqs as ϕkpnq. Thus, sskpnq is related to αkpnq by

sskpnq “

$

’

&

’

%

1, if αkpnq ě 0,

0, otherwise
. (7)

We then introduce the following cost function [43]:

Jαk
pnq“ϕkpnqβs̄kpnq`

“

1´ϕkpnq
‰

ř

iPNk
cikpnqe2i pnq, (8)

where β ą0 is a parameter introduced to control how much the sampling of the nodes is penalized. When

the error is high in magnitude (e.g., during transient), Jαk
pnq is minimized by making ϕkpnq closer to one,

leading to the sampling of node k. The same holds when node k is not being sampled (s̄k “0), which ensures

that the sampling eventually resumes. In contrast, when node k is being sampled (s̄k “1) and the error is

7

small in magnitude, Jαk
pnq is minimized by making ϕkpnq closer to zero, and the algorithm stops sampling

node k [43].

AS-dNLMS is then obtained by taking the derivative of (8) with respect to αkpnq. Since we may not

have access to eipnq at every iteration due to the lack of sampling, we replace eipnq by its latest measurement

εipnq, given by εipnq “ ssipnqeipnq`r1´ssipnqsεipn´1q. We thus get the following stochastic gradient descent

rule [43]:

αkpn`1q“αkpnq`µsϕ
1
kpnq

”

ř

iPNk
cikpnqε2i pnq´βsskpnq

ı

, (9)

where µs ą 0 is a step size and [47]

ϕ1
kpnq“

dϕrαkpnqs

dαkpnq
“

sgmrαkpnqst1´sgmrαkpnqsu

sgmrα`s´sgmr´α`s
. (10)

Eqs. (2) and (9) are the core of AS-dNLMS. It preserves the convergence rate of dNLMS but features

a much lower computational cost in steady state, although there is a slight increase during transient [43].

The algorithm requires that every sampled node i is required to transmit ε2i pnq “ e2i pnq to its neighbors.

Nonetheless, this information can be sent bundled with the local estimates ψi so as to not increase the

number of transmissions. In the censoring version of the algorithm, named adaptive-sampling-and-censoring

diffusion NLMS (ASC-dNLMS), the adaptation step (2a) is simply skipped when the node is not sampled.

Thus, neither ψk nor εk changes. Assuming the nodes can store past data from their neighbors, this allows

us to cut the number of transmissions.

The parameter β plays a crucial role in the behavior of AS-dNLMS, strongly influencing the expected

number of sampled nodes. For the sampling of node k to cease, αk must decrease over the iterations until it

becomes negative. Thus, the term between brackets in (9) must be negative in steady state when sskpnq“1.

Assuming the statistical independence between this term and ϕ1
kpnq, and that the combination weights are

static and deterministic, we conclude that we must have

β ą E
!

ř

iPNk
cikε

2
i pnq

)

. (11)

Assuming that

Etε2i pnqu«σ2
vi (12)

for i“1, ¨ ¨ ¨ , V in steady state, and considering the worst-case scenario, we get that

β ą σ2
max fi max

i
σ2
vi (13)

is a sufficient (but not necessary) condition to reduce the number of sampled nodes in steady state [43].

Even with a proper choice for β, it is beneficial to select µs adequately, since it affects the rate at which

the nodes cease to be sampled. Adopting a linear model for ϕ1
kpnq for αk P r0, α`s, it is possible to show

8

that, if we wish that the sampling of the nodes ceases in at most ∆n iterations after AS-dNLMS achieves

steady-state, we must choose [43]

µs ą
α`

pβ ´ σ2
maxqpϕ1

0 ´ ϕ1
α` q

»

—

–

˜

ϕ1
o

ϕ1
α`

¸
1

∆n

´ 1

fi

ffi

fl

, (14)

where ϕ1
0 and ϕ1

α` are constants that respectively denote the value of ϕ1 evaluated at αk “ 0 and αk “ α`.

From (13) we see that the proper selection of β depends on the knowledge of the largest noise variance

in the network, σ2
max. Thus, the choice of this parameter becomes difficult if σ2

max is not known beforehand.

This is aggravated by the fact that large values for β can harm the tracking capability of AS-dNLMS, as

shown in Fig. 1 and other simulation results of [43]. Moreover, if the largest noise variance in the network

is much greater than the average noise variance, i.e., one of the nodes is much noisier than the others, the

condition established by (13) can lead to inappropriately high values for β, as seen in the simulations of

Fig. 2. Thus, it may be desirable to adopt different βk and µk for each node k, depending on its own

characteristics, which is done in the sequel.

3. Dynamic Tuning of the Parameters

In order to enable the dynamic tuning of the parameters in a local fashion, we now allow each node

k to have a local parameter βk. Thus, replacing β by βk in (11) and maintaining the assumption that

Etε2i pnqu « σ2
vi in steady state, we conclude that βk ą

ř

iPNk
cikσ

2
vi fi σ2

Nk
is a necessary and sufficient

condition in order to stop the sampling of node k at some point in steady state. Assuming that each node

k can calculate an estimate pσ2
vk

pnq of σ2
vk

in an online manner and that they can exchange such estimates

with their neighbors, we can write

βkpnq “ γ
ř

iPNk
cikpσ2

vipnq fi γpσ2
Nk

pnq, (15)

where γą1 is a parameter that the designer must choose. Thus, (9) can be recast as

αkpn ` 1q “ αkpnq ` µsϕ
1
kpnq ˆ

”

ř

iPNk
cikpnqε2i pnq ´ γpσ2

Nk
pnqsskpnq

ı

. (16)

In this paper we consider the algorithm proposed in [48] for adaptive noise power estimation. It presents

a faster convergence rate than other methods, and can cope with changes in the environment, so long as

vkpnq is wide-sense stationary for k “ 1, ¨ ¨ ¨ ,V [48]. This is an important trait, because it mitigates the

impact of the convergence of the noise power estimation on the sampling mechanism. Since some aspects

of this algorithm will serve as the basis for the proposed change-detection mechanism as well as the noise

power estimator, we summarize its operation in the following.

9

The algorithm of [48] uses information from e2kpnq at every iteration to estimate the noise variance at

node k. Thus, whenever node k is sampled, three low-pass filters with different forgetting factors ζf , ζm and

ζf are employed to calculate our estimate:

θ2fkpnq “ ζfθ
2
fk

pn ´ 1q ` p1 ´ ζf qe2kpnq,

θ2mk
pnq “ ζmθ2mk

pn ´ 1q ` p1 ´ ζmqe2kpnq,

θ2skpnq “ ζsθ
2
sk

pn ´ 1q ` p1 ´ ζsqe2kpnq.

(17)

(18)

(19)

On the other hand, when node k is not sampled, θ2fk , θ
2
mk

and θ2sk are kept fixed. In [48], the following choices

are suggested for the forgetting factors: ζf “1´ 1
5M , ζm “1´ 1

15M , and ζs “1´ 1
45M . Since ζf ąζm ąζs, θ

2
fk

converges quickly, which enables it to swiftly respond to changes. However, this estimate is more noticeably

affected by fluctuations in e2kpnq. In contrast, θ2sk provides a smoother and more accurate estimate in steady

state, but takes longer to converge and to detect changes in the environment. In its turn, θ2mk
shows an

intermediate behavior [48]. If no change in the environment has been detected recently, i.e., the algorithm

is in “normal mode”, an intermediate estimate θ2vk is calculated as [48]

θ2vkpnq“ζfθ
2
vk

pn ´ 1q ` p1 ´ ζf qθ2mink
, (20)

where

θ2mink
fi mintθ2fkpnq, θ2mk

pnq, θ2skpnqu. (21)

Regardless of the current mode, the consolidated estimate pσ2
vk

pnq is obtained by [48]

pσ2
vk

pnq “ mintθ2vkpnq, θ2fkpnqu. (22)

The mechanism of [48] enters “change mode”, i.e., it considers that a change in the environment has

been detected whenever

θ2fkpnq ą θ2skpnq, (23)

unless the algorithm is still in transient. A flag is used for this purpose, which indicates whether this state

has been entered before or not. Then, if this mode is entered for the first time or if θ2fkpnq ă θ2mk
pnq, θ2vk is

updated as

θ2vkpnq“ζmθ2vkpn ´ 1q ` p1 ´ ζmqθ2mink
pnq. (24)

Otherwise, it is kept fixed until θ2mk
pnq ă θ2skpnq, upon which the algorithm returns to normal mode [48]. A

summary of the algorithm is provided in Table 1 for clarity. The estimate pσ2
vk

pnq can be calculated locally,

since it only uses information available at node k. However, in order to calculate (15), each sampled node

i must send pσ2
vipnq to its neighbors. Nonetheless, if this information is sent bundled with ε2i pnq and ψipnq,

no extra transmissions are required.

10

Table 1: Summary of the noise power estimation algorithm proposed in [48].

% Initialization – for each node i“1, ¨ ¨ ¨ ,V , set θ2fip´1qÐ0, θ2mi
p´1qÐ0, θ2sip´1qÐ0, θ2vi

p´1qÐ0,

flagi Ð false, modei Ð “normal”

% Then, repeat for every iteration ně0 and every node k:

1 θ2fkpnq Ð ζfθ
2
fk

pn ´ 1q ` p1 ´ ζf qe2kpnq

2 θ2mk
pnq Ð ζmθ2mk

pn ´ 1q ` p1 ´ ζmqe2kpnq

3 θ2skpnq Ð ζsθ
2
sk

pn ´ 1q ` p1 ´ ζsqe2kpnq

4 If mode = “normal”, do:

5 θ2vkpnqÐζmθ2vkpn´1q ` p1´ζmqθ2mink
pnq

6 If θ2fk ą θ2sk , do:

7 mode Ð “change”

8 flagi Ð true

9 End

10 Else, do:

11 If θ2mk
ă θ2sk , do:

12 mode Ð “normal”

13 Else, do:

14 If θ2fk ă θ2mk
or flagi = false, do:

15 θ2vkpnqÐζmθ2vkpn´1q`p1´ζmqθ2mink
pnq

16 End

17 End

18 End

19 pσ2
vk

pnq Ð mintθ2vkpnq,θ2fkpnqu

Since we now have a different βkpnq for each node instead of a global parameter β, we make this

replacement in (14), allowing the nodes to have distinct step sizes µskpnq. Moreover, since we do not assume

the prior knowledge of σ2
max in this approach, we replace it by pσ2

Nk
pnq in (14). Using (15), we finally conclude

after some algebraic manipulations that we must choose

µskpnqą
1

pσ2
Nk

pnq

$

’

&

’

%

α`

pγ´1qpϕ1
0´ϕ1

α` q

»

—

–

˜

ϕ1
o

ϕ1
α`

1̧
∆n

´1

fi

ffi

fl

,

/

.

/

-

(25)

if we wish the sampling of the nodes to cease in at most ∆n iterations after the steady state is achieved

in terms of the mean-squared error (MSE). The term between braces in the right-hand side of (25) is a

constant once the filter designer chooses the values for ∆n and γ. Thus, the tuning of µsk only requires one

11

extra division per iteration at each node and one extra sum if a regularization δc term is added to pσ2
Nk

pnq

as in (4).

Incorporating the algorithm of Table 1 as well as (15) and (25) into AS-dNLMS, we obtain an algorithm

where each node k dynamically tunes its own parameters βkpnq and µskpnq. We name the resulting algorithm

as Dynamic-Tuning AS-dNLMS (DTAS-dNLMS). For convenience, a pseudocode is presented in Table 2. It

should be mentioned that the same modifications can be straightforwardly applied to ASC-dNLMS. Finally,

although we considered static combination weights while deriving DTAS-dNLMS, the resulting algorithm

can be used in conjunction with an adaptive rule for the selection of combination weights. In this case,

the update of tcikpnqu should also be included in Table 2. Particularly, if (4) and (5) are considered in

conjunction with DTAS-dNLMS and the sampling of node k ceased for a long period of time, the sampling

mechanism could potentially harm the update of the combination weights. This occurs since in this case

pσ2
kk could tend towards zero in (5) due to ssk being equal to zero in (2a). To avoid this, for j“k, we replace

ψjpn ` 1q in (5) by sψkpn ` 1q fi sskpnqψkpn ` 1q ` r1 ´ sskpnqssψkpnq.

Table 2: Summary of the DTAS-dNLMS algorithm.

% Initialization – for each node i“1, ¨ ¨ ¨ ,V , set αip0qÐα`, ssip0qÐ1, εipnqÐ0, xip0q “ 0, ψip0qÐ

0,wip0qÐ0, θ2fip´1qÐ0, θ2mi
p´1qÐ0, θ2sip´1qÐ0, θ2vip´1qÐ0, flagi Ð false, modei Ð “normal”

% Then, repeat for every iteration ně0 and every node k:

% Adaptation Step

1 If αkpnqě0, do :

2 sskpnqÐ1

3 Update ukpnq and }ukpnq}2

4 µkpnq Ð rµk{rδ ` }ukpnq}2s

5 ekpnq Ð dkpnq ´ uT
kpnqwkpnq

6 εkpnqÐekpnq

7 ψkpn ` 1q Ð wkpnq ` sskpnqµkpnqukpnqekpnq

8 Run lines 1-19 of the algorithm depicted in Table 1, thus obtaining pσ2
vk

pnq

9 Else, do:

10 sskpnq Ð 0

11 εkpnq Ð εkpn ´ 1q

12 pσ2
vk

pnq Ð pσ2
vk

pn ´ 1q

13 ψkpn ` 1q Ð wkpnq

14 End

% Transmission – send ψk, ε
2
k and pσ2

vk
to every node P Nk

% Combination Step

15 pσ2
Nk

pnq “
ř

iPNk
cikpnqpσ2

vi
pnq

16 βkpnq “ γpσ2
Nk

pnq

17 µskpnq“κ{rδc ` pσ2
Nk

pnqs

18 αkpn`1q Ð αkpnq ` µskpnqϕ1
kpnq ˆ r

ř

iPNk
cikpnqε2i pnq´βkpnqsskpnqs

19 wkpn ` 1qÐ
ř

jPNk
cikpnqψipn ` 1q

The DTAS-dNLMS algorithm addresses the need for the prior knowledge of σ2
max and increases the

12

flexibility of the sampling mechanism by allowing different values for the parameters in each node. Thus,

it may be interesting to compare it to AS-dNLMS. For this reason, in Fig. 4 we resume the simulation of

Fig. 2, considering Scenario 2 of Sec. 8. For AS-dNLMS, we consider two sets of parameters. The curves

with diamond-shaped p♦q markers depict the results obtained with β “ 3.8σ2
max and µs “ 0.0045, which

were obtained following the same rules that were used in the simulations of Figs. 1 and 2. On the other

hand, the curves with star-shaped p‹q markers show the results obtained with β “ 0.7σ2
max and µs “ 0.0025,

which were chosen in order to obtain roughly the same number of nodes sampled per iteration as observed

in Fig. 1 and a good performance prior to the abrupt change in the optimal system. It should be noted

that in this case the choice of the step size µs is complicated, since the rule for its selection proposed

in [43] only applies when β ą σ2
max. Moreover, it is interesting to mention that the AS-dNLMS algorithm

is not guaranteed to cease the sampling of the nodes when β ă σ2
max is chosen [43]. For DTAS-dNLMS, we

consider γ “ 9 and ∆n “ 7 ¨ 104. From Fig. 4(a) we observe that, much like AS-dNLMS, DTAS-dNLMS

presents a similar convergence rate to that of dNLMS with every node sampled during the first transient. In

steady-state, we see from Fig. 4(b) DTAS-dNLMS samples roughly the same number of nodes as AS-dNLMS

with β “ 0.7σ2
max, although its computational cost is slightly higher, as seen from Fig. 4(c). On the other

hand, after the abrupt change, DTAS-dNLMS presents a faster convergence rate than AS-dNLMS, albeit

slower than dNLMS with Vs “ 5 nodes sampled per iteration. DTAS-dNLMS outperforms AS-dNLMS

when their parameters are adjusted to obtain the same number of nodes sampled per iteration. This can

be attributed to the capability of DTAS-dNLMS to adjust the values of the local parameters βkpnq at each

node k accordingly, which enables it to maintain and resume the sampling of the noisier nodes faster in

comparison with AS-dNLMS. However, the comparison with dNLMS with Vs “ 5 nodes sampled shows that

further modifications are necessary if we desire to improve the tracking capability of the algorithm. For this

reason, in Sec. 5 we incorporate a reset tool for the sampling mechanism in DTAS-dNLMS, which addresses

this issue. Before that, however, we present in Sec. 4 an analysis on the effects of the parameter γ, thus

aiding the filter designer in its selection.

4. Selection of the parameter γ

In the simulations of Fig. 4, we adopted γ “ 9 in order to achieve an average of two nodes sampled per

iteration in steady-state. However, it is not obvious at first how many nodes will be sampled based on our

choice for γ, or, conversely, how we should select this parameter so that we obtain a certain number of nodes

sampled per iteration. Intuitively, the influence of γ on the behavior of the algorithm comes from the fact

that it controls the penalization of the sampling, similarly to the parameter β in (8). Since β was replaced

by βkpnq “ γpσ2pnq in (16), it is straightforward to see that γ should affect the number of nodes sampled

per iteration. Thus, in this section, we aim to study this influence in detail, which will aid in the selection

13

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0
(a

)
N

M
S

D
(d

B
)

dNLMS (Vs=25)

dNLMS (Vs=5)

AS-dNLMS (β=0.7σ2
max)

AS-dNLMS (β=3.8σ2
max)

DTAS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 4: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-dNLMS and DTAS-dNLMS in

Scenario 2 described in Sec. 8, in which one of the nodes is much noisier than the others. (a) NMSD curves, and (b) number

of nodes sampled per iteration.

of γ. We limit our analysis to stationary environments in the absence of impulsive noise for the sake of

simplicity, but the results can also be useful in nonstationary environments or in the presence of impulsive

noise as well.

For this purpose, we remark that each sskpnq can be viewed as Bernoulli random variable during steady

state that is equal to one with probability psk or to zero with probability 1´psk for k “ 1, ¨ ¨ ¨ ,V , with

0ďpsk ď1. In this case, the expected number Vs of sampled nodes can be calculated as

EtVsu “
řV

k“1 psk . (26)

Thus, we now seek to obtain an estimate ppsk for psk , k “ 1, ¨ ¨ ¨ , V . At this point, it is useful to note that

the sampling mechanism should exhibit a cyclic behavior in steady state. Ideally, when the node is sampled

(i.e., αk ě 0) αk should decrease gradually until it becomes negative, at which point the sampling of node

k ceases. On the other hand, when node k is not sampled (αk ă 0), αk should increase gradually until it

becomes positive once again, thus resuming the sampling of that node. Taking this into consideration, we

could obtain an upper bound for psk by estimating the maximum expected “duty cycle” of the mechanism,

i.e.,

psk ď ppmaxk
fi

ξk

ξk ` ξk
, (27)

where ξk denotes the maximum expected number of iterations per cycle in which node k is sampled and ξk

is the minimum expected number of iterations in which it is not.

For ease of reading, in this section we omit the intermediate steps that have to be taken in order

to estimate ξk and ξk. However, the detailed derivation is provided in Appendix A. Assuming that

14

ř

iPNk
cikEtε2i pnqu“Etpσ2

Nk
pnqu“σ2

Nk
, considering that ϕ1

kpnq « ϕ1
0 in steady state, and taking into account

that the number of iterations during which the nodes are sampled or not are natural numbers greater than

or equal to one, we can estimate ξk by

ξk “ ξ “

R

1

γ ´ 1

V

, (28)

for k “ 1, ¨ ¨ ¨ , V , where r¨s denotes the ceiling function. We should notice that (28) is inherently greater

than one for γą1. Analogously, for ξk, we obtain

ξk “ ξ “ maxt1,tγ ´ 1uu, (29)

where t¨u denotes the floor function. It is worth noting that ξk and ξk only depend on the value of γ, which

is assumed to be the same for every node k in the network. Thus, we conclude that pmaxk
“ pmax for

k “ 1, ¨ ¨ ¨ , V .

Replacing (28) and (29) in (27) and using (26), we finally obtain the following upper bound:

EtVsu ď V ¨

R

1

γ ´ 1

V

R

1

γ ´ 1

V

` maxt1,tγ ´ 1uu

. (30)

Analyzing (30), we observe that limγÑ1 EtVsu “V and limγÑ8 EtVsu “0, which is in accordance with our

expectations. Finally, the expected number of nodes sampled only depends on the total number of nodes V ,

which is known beforehand, and on the value of γ. This is interesting, because it means that the maximum

number of nodes sampled per iteration does not depend on the filter length M , the noise variance σ2
vk

or

the step sizes rµk and µsk at any node k, and so on. We should notice that (30) attests to the simplicity of

the selection of γ, since it suffices to choose γ ą 1 in order to ensure a reduction in the number of nodes

sampled per iteration in steady state. Furthermore, it enables the filter designer to make a well-informed

choice for this parameter, since the maximum number of nodes sampled per iteration in steady state is

known beforehand. It should be mentioned that there is a compromise between tracking capability and

computational cost reduction associated with the choice of EtVsu. For example, if EtVsu ! 1, changes in

the environment will not be detected until a node is sampled, which may take a long time. Nonetheless, a

certain amount of good sense is usually sufficient to achieve satisfactory results.

5. Resetting the Sampling of the Nodes

The incorporation of the algorithm of [48] in the sampling mechanism in Sec. 3 provides a “reset tool”

in the sampling mechanism through Criterion (23). Since we now have access to an estimate of σ2
vk

at every

node k, we can now detect changes in the environment if we observe a significant rise in MSE for a long

enough period of time. In this case, we could reset αk to its original value by making αkpn`1q“α` instead

15

of running (9), in order to ensure the sampling of the nodes while the effects of the change are still observed

by the algorithm. However, this criterion can generate many false positives throughout the operation of the

algorithm, since it is very sensitive to variations in e2kpnq. While this does not harm the estimate pσ2
vk

pnq, it

can lead to unnecessary resetting of the sampling mechanism.

To circumvent this problem, we introduce a second criterion, and only make αkpn`1q“α` if

θ2fkpnq ą λpσ2
vk

pnq (31)

holds for more than M consecutive iterations, where λą1 is a sensitivity threshold that the filter designer

must choose. After this criterion is met for the first time, αkpn`1q“α` is applied until θ2fkpnqďλpσ2
vk

pnq is

detected, in which case the iteration counter is reset to zero. For convenience, a summary of the proposed

reset system for the sampling mechanism is shown in Table 3. The pseudocode presented should be inserted

in the combination step of DTAS-dNLMS, between the lines 14 and 15 of Table 2. In order to differentiate

between the versions of DTAS-dNLMS with and without the proposed reset system, we henceforth call

the former Dynamic-Tuning-and-Resetting AS-dNLMS, or DTRAS-dNLMS for short. We remark that the

activation of the change detection mechanism during the convergence of the DTRAS-dNLMS in terms of

MSE is not a problem, since the algorithm should maintain the sampling of the nodes during this period.

Table 3: Summary of the sampling reset mechanism of DTRAS-dNLMS.

% Initialization – for each node i “ 1, ¨ ¨ ¨ ,V , set counteri Ð 0

% Then, repeat for every iteration ně0 and every node k:

1 If θ2fkpnq ą λpσ2
vk

pnq, do:
2 counterk Ð counterk ` 1
3 Else, do:
4 counterk Ð 0
5 If counterk ą M , do:

6 αkpn`1q Ð α`

7 Go to line 19 of the algorithm in Table 2
8 Else, do:
9 Go to line 15 of the algorithm in Table 2

Ideally, λ must be chosen so that the reset mechanism activates when necessary, but registers as few

“false positives” as possible. Since these goals are conflicting, there is an underlying compromise in the

selection of λ. For this reason, we show next extensive simulation results that aid us in obtaining a practical

rule for the choice of this threshold.

Firstly, we remark that (31) can be recast as

X fi
θ2fkpnq

pσ2
vk

pnq
ą λ, (32)

where we introduced the auxiliary random variable X for compactness of notation. Thus, if we obtain a

reasonable approximation for the probability density function (pdf) fX of X, we can determine the values

16

of λ for which the probability of the Criterion (31) being met during the normal operation of the algorithm

is sufficiently low.

To do so, we ran computer simulations considering different scenarios. In each case, we collected the

values of X for a selected node at every iteration after DTAS-dNLMS achieved steady state, and plotted a

histogram of X. We considered 100 realizations with 2 ¨ 105 iterations in each simulation, which was enough

for DTAS-dNLMS to converge in terms of NMSD. As a base scenario, we considered Scenario 1 in Sec. 8,

and gradually implemented changes in order to analyze different conditions. The resulting histograms for

some of scenarios tested are presented in Fig. 5. In Fig. 5(a), we consider Scenario 1 of Sec. 8 and show

the results obtained for node 1. In Fig. 5(b), we also consider Scenario 1, except that the optimal system

wo is comprised of M “ 10 coefficients instead of M “ 50. In Fig. 5(c), we also consider Scenario 1, but

the step sizes rµk have been divided by ten in comparison with the original case. Finally, in order to test

the validity of the results under different circumstances, in Fig. 5(d) we consider a scenario with a colored

signal as input, i.e., ukpnq “ rkpnq ´ 0.8ukpn ´ 1q, where rkpnq follows a Gaussian distribution with zero

mean and unit variance for k “ 1, ¨ ¨ ¨ ,V . We also consider a network with V “ 20 nodes, different from

that of Scenario 1, and different profiles for the step sizes rµk and noise variance σ2
vk
.

1.0 1.1 1.2 1.3

x

0

1

2

3

4

5

(a
)

O
b

se
rv

at
io

n
s

(×
10

5
)

1.0 1.2 1.4 1.6

x

0

2

4

6

8

10

12

14

(b
)

O
b

se
rv

at
io

n
s

(×
10

5
)

1.0 1.1 1.2 1.3

x

0

1

2

3

4

5

(c
)

O
b

se
rv

at
io

n
s

(×
10

5
)

1.0 1.2 1.4 1.6

x

0

2

4

6

8

10

12

14

(d
)

O
b

se
rv

at
io

n
s

(×
10

5
)

Figure 5: Histograms for X obtained from 100 realizations with 2 ¨ 105 iterations each. Measurements taken in node 1 of the

network depicted in Fig. 3. (a) Scenario 1 described in Sec. 8. (b) M “ 10, noise variance σ2
vk

and step sizes rµk as depicted in

Fig. 8. (c) M “ 50, noise variance σ2
vk

and step sizes rµk as depicted in Fig. 8 but divided by 10. (d) M “ 10, with a colored

input signal and a different network, noise power, and step size profiles in comparison with Scenario 1.

Comparing Figs. 5(a), (b), (c), and (d) we observe that, although the exact distribution ofX changes from

one scenario to the other, its general shape does not vary significantly. Moreover, there are no observations

for x ă 1, and the histograms present a peak at x “ 1. These observations stem from (22), which imposes

that θ2fkpnq ě pσ2
vk

pnq, i.e., X ě 1, and enables θ2fkpnq “ pσ2
vk

pnq whenever θ2fkpnq ď θ2vkpnq.

Approximating the curve for x ą 1 by a scaled and truncated normal distribution with mean a1 and

standard deviation a2, we then estimate the pdf fXpxq as

fXpxq«a3δpx´1q`
a4

a

2πa22
exp

«

´px´a1q2

2a22

ff

Hpx´1q, (33)

where δ and H respectively denote the Dirac delta and Heaviside step functions, a3 “ PrrX “ 1s and a4 is

17

a scaling factor that is a function of a1, a2 and a3.

We are interested in obtaining λ such that PrrX ąλsăpλ, with 0ăpλ !1. Thus, we must have

1 ´ FXpλq ă pλ, (34)

where FXpλq “
şλ

´8
fXpxqdx is the cumulative density function (cdf) of X.

For the sake of brevity, in this section we omit the step-by-step resolution of (34) and skip to the final

solution of this inequality. However, a thorough demonstration for this result is provided in Appendix B.

It can be shown that (34) is satisfied if we choose

λ ą a1 ` a2
?
2 ¨ erf´1

«

pλ
1 ´ a3

¨ erf

ˆ

1 ´ a1

a2
?
2

˙

`
1 ´ pλ ´ a3

1 ´ a3

ff

, (35)

where erfp¨q and erf´1
p¨q denote respectively the error function and the inverse error function.

Let us examine (35) for two special cases: pλ “ 0 and pλ “ 1. The former case corresponds to

PrrX ąλsă0, i.e., we should choose a value for λ that X can never surpass. Making the replacement

pλ “ 0 in (35), we obtain λ Ñ 8, which is in accordance with our expectations. On the other hand, the

case pλ “ 1 corresponds to a situation where PrrX ąλsă1, which should hold for any finite value of λ, since

X is a continuous random variable. Replacing pλ “ 1 in (35), we obtain

λąa1`a2
?
2 ¨ erf´1

$

&

%

1

1´a3

«

erf

ˆ

1´a1

a2
?
2

˙

´ a3

ff

,

.

-

. (36)

For the sake of simplicity, let us initially consider the special case a3 “ 0 in (36). This corresponds to the

case where there is no Dirac delta in the expression for fXpxq in (33). In this case, (36) yields λ ą 1. This

is reasonable, since X ą 1 always holds. Moreover, for 0 ă a3 ď 1, (36) yields even lower values for λ,

which further supports the validity of the obtained expression. Finally, simulation results suggest that, in

stationary environments and in the absence of impulsive noise, pλ “ 5 ¨ 10´4 leads to good results.

In order to successfully apply (35), we must estimate the values of a1, a2 and a3. Simulation results show

that the values of these parameters do not vary significantly (e.g., more than 10%) with the step size rµk,

the network topology or the noise power profile. However, they do depend on the filter length M . In Fig. 6

we present estimates obtained for a1, a2 and a3 considering different values for 10ďM ď100 in Scenario 1.

They were derived by fitting the histogram obtained for X to the Model (33) for each value of M using the

Nonlinear Least Squares method.

Using the values depicted in Fig. 6 and considering (35) with an equality sign and pλ “ 5 ¨ 10´4, it is

possible to plot λ as a function of M , as depicted in Fig. 7. Furthermore, for the sake of simplicity, one

could seek to approximate λpMq from the experimental data as an exponential function. Using once again

the Nonlinear Least Squares method, the resulting approximation is given by

λpMq « 1.2326 ` 0.8603 expp´0.0547 ¨ Mq, (37)

18

20 40 60 80 100

M

1.03

1.04

1.05

(a
)
a

1

20 40 60 80 100

M

0.04

0.13

0.22

(b
)
a

2

20 40 60 80 100

M

0.03

0.065

0.1

(c
)
a

3

Figure 6: Values fit from the experimental data for (a) a1, (b) a2, and (c) a3 for each filter length 10 ď M ď 100 considering

Model (33) and the Nonlinear Least Squares method.

which is also depicted in Fig. 7. As can be seen from the plot, (37) provides a reasonable approximation

for λpMq, greatly facilitating the selection of this parameter after the filter length is set. Although we only

present the results for 10 ď M ď 100, (37) holds as an approximation for M outside of this range as well.

20 40 60 80 100

M

1.2

1.3

1.4

1.5

1.6

1.7

1.8

λ
(M

)

Experimental data

Fit curve

Figure 7: Comparison between the values obtained for λ using (35) with a1, a2 and a3 as depicted in Fig 6 and those yielded

by the Approximation (37).

A few remarks should be made about the scenario considered in Fig. 5(d), with colored noise as input.

If we fit the values of a1, a2 and a3 using the Nonlinear Least Squares method to the experimental data,

we get values quite different from those of Fig. 6, which were obtained considering Scenario 1 of Sec. 8 with

different values for M and white noise as input. However, replacing these values for a1, a2 and a3 in (34), we

get λ“1.622. This represents an 8.4% error in comparison with the results depicted in Fig. 7, and a 6.7%

error in comparison with the value yielded by (37). Thus, despite all the differences between the scenario of

Fig. 5(d) and those of Figs. 5(a), (b) and (c), the final value obtained for λ by the method described in this

section is only slightly affected, which shows that it is robust to certain changes in the scenario. Overall,

the vast number of scenarios considered and experiments conducted render this model reliable as well as

wide-ranging.

In a nutshell, the DTRAS-dNLMS is given by the junction of the algorithms depicted in Tables 1, 2,

and 3. It enables each node to have its own local parameters βk and µsk , which are tuned at each iteration

19

according to (15) and (25). This is made possible by the adaptive estimation of the noise power at each

node and the communication between neighbors. By combining these algorithms, we are able to address all

of the main limitations of AS-dNLMS.

6. Computational Complexity

In this section, we analyze the computational cost of DTRAS-dNLMS and compare it to those of dNLMS

and AS-dNLMS. As can be seen from Tabs. 1 and 3, the number of operations required by DTRAS-dNLMS

can vary from one iteration to another, since some operations are only carried out if certain conditions are

met. Thus, we consider the worst-case scenario in our analysis and assume that the algorithms are used in

conjunction with ACW.

We begin by comparing the costs of DTRAS-dNLMS and AS-dNLMS [43]. For this purpose, we examine

the increase in cost that the modifications proposed in Secs. 3–5 produce. From Tabs. 1 and 2, we can see

that the noise estimation algorithm of [48] is only run when node k is sampled, and its cost can be represented

by 8sskpnq multiplications, 4sskpnq sums, and 3sskpnq comparisons per node at iteration n. Moreover, from the

lines 15 and 16 of Tab. 2, we observe that the computation of βkpnq requires sskpnq ¨ p|Nk|`1q multiplications

and sskpnq ¨ p|Nk| ´ 1q sums per node per iteration, since we do not need to run these lines if node k is not

sampled. From line 17 of the same table, we conclude that the computation of µskpnq demands one extra

sum and one extra division. Finally, line 1 of Tab. 3 adds one multiplication and one comparison to the total

computational cost of the algorithm. Line 5 from the same table contributes with yet another comparison,

and if the condition of line 1 holds, there is one extra sum. Hence, in comparison with AS-dNLMS, DTRAS-

dNLMS requires sskpnq ¨ p|Nk| ` 9q ` 1 more multiplications, sskpnq ¨ p|Nk| ` 3q ` 2 more sums, one extra

division, and 2 ` 3sskpnq more comparisons at each node k and time instant n in the worst-case scenario.

These results are summarized in Tab. 4, in which we show the estimated number of operations required

by each algorithm. For reference, we also show the computational cost of dNLMS with all nodes sampled.

For both AS-dNLMS and DTRAS-dNLMS, we consider an implementation of ϕ1rαkpnqs through a look-up

table, which is not taken into account in Tab. 4.

Table 4: Computational cost comparison between dNLMS, AS-dNLMS and DTRAS-dNLMS with ACW: number of operations

per iteration for each node k.

Cost dNLMS AS-dNLMS DTRAS-dNLMS (worst-case scenario)

Mult. Mp3̀ 2|Nk|q̀ |Nk|`1 sskpnqp3M`4q`2M |Nk|`3|Nk|`1 sskpnqp3M`13`|Nk|q`2M |Nk|`3|Nk|

Sums Mp2̀ 3|Nk|q̀ 2|Nk |́ 1 sskpnqp5M´1q`p|Nk|´1qp3M´1q sskpnqp5M 2̀̀ |Nk|q`p|Nk |́ 1qp3M 1́q̀ 2

Div. 2|Nk| ` 1 2|Nk|`sskpnq 2|Nk|`sskpnq ` 1

Compar. 0 3 5 ` 3sskpnq

20

From the analysis presented, we can see that the computational cost of DTRAS-dNLMS is always higher

than that of AS-dNLMS if both algorithms are adjusted to sample the nodes at the same rate. In other

words, the improvement in the tracking capability of the algorithm from the reset mechanism and the

elimination of the need for a priori knowledge of the noise power come at the inevitable expense of an

increase in computational complexity. However, this rise in the computational cost is mostly concentrated

on the occasions in which node k is sampled, i.e., sskpnq “ 1, especially if node k has many neighbors, in which

case |Nk| is large. In contrast, if node k is not sampled, i.e. sskpnq “ 0, the difference in complexity between

both algorithms comes down to one extra multiplication, two sums, one division, and two comparisons at

that node. Hence, the increase in computational cost generated by the proposed mechanisms tends to be

much more noticeable in the transient than in steady state. Finally, the cost associated with the algorithm

can be lower than depicted in Tab. 4 at several iterations. For example, if the reset mechanism is activated,

i.e., the condition of line 5 of Tab. 3 holds, αkpn ` 1q is set to α` and the lines 15–18 of Tab. 2 do not have

to be run, which saves some computation.

In comparison with dNLMS, we observe from Tab. 4 that DTRAS-dNLMS saves 3M´2|Nk|`1 multi-

plications and sums when node k is not sampled. Thus, the reduction in computational cost provided by

DTRAS-dNLMS becomes more noticeable as M increases. On the other hand, if most nodes have large

neighborhoods, the computational savings tend to be lower. However, the filter length M is usually larger

than the average neighborhood size, especially for sparse and cluster topologies [17, 18, 49–51].

The expressions depicted in Tab. 4 refer to the instantaneous computational cost at each node k and time

instant n. To analyze the expected computational cost of DTRAS-dNLMS in steady state, we should replace

sskpnq with its expected value Etssku “ psk, for which we estimated an upper bound in Sec. 4. Denoting the

savings difference in the number of multiplications required by dNLMS and DTRAS-dNLMS at each node

k by ∆bk, we conclude from Tab. 4 that, in steady state,

Et∆bku “ 3M´2|Nk|`1 ´ pskp3M`13`|Nk|q. (38)

If Et∆bku ą 0, DTRAS-dNLMS saves computation at node k in comparison with dNLMS. On the other

hand, if Et∆bku ă 0, DTRAS-dNLMS is the costlier algorithm. We can see from (38) that lower sampling

probabilities psk lead to greater Et∆bku. In other words, the less nodes are sampled on average, the greater

the expected savings in computational resources, as we expected. On the other hand, if the sampling

probabilities psk are too high, Et∆bku can become negative. Summing Et∆bku for k “ 1, ¨ ¨ ¨ , V , we

obtain the difference in cost for the whole network, given by

Et∆bglobalu “ V p3M ` 1q ´

V
ÿ

k“1

“

2|Nk| ` pskp3M`13`|Nk|q
‰

. (39)

Since psk ď pmaxk
“ pmax for k “ 1, ¨ ¨ ¨ , V , we conclude from (39) that, in order to ensure a reduction in

21

the number of multiplications in steady state in comparison with dNLMS, i.e., Et∆bglobalu ą 0, we must

have

pmax “

R

1

γ ´ 1

V

R

1

γ ´ 1

V

` maxt1,tγ ´ 1uu

ă
V p3M ` 1q ´ 2

řV
k“1 |Nk|

V p3M ` 13q `
řV

k“1 |Nk|
. (40)

Hence, assuming that the network topology is known beforehand, which is a usual practice [1–7], we

can use (40) to determine the minimum value of γ required to ensure that DTRAS-dNLMS has a lower

computational cost than dNLMS in steady state for a certain filter length M . It is worth noting that if

M ă
1

3

¨

˝2 ¨
1

V

V
ÿ

k“1

|Nk| ´ 1

˛

‚, (41)

DTRAS-dNLMS cannot save computation in comparison with dNLMS in the worst-case scenario. If (41)

holds, we must have pmax ă 0 to ensure a reduction in the computational cost in (40), which is impossible.

Nonetheless, we should notice that the condition imposed by (41) is not very restrictive, since M is usually

larger than the average neighborhood size.

Finally, we remark that an analogous procedure could be done to ensure a reduction in the number of

sums, but we focused on the multiplications since they are usually more demanding from a computational

perspective.

7. Overview of the Parameters of DTRAS-dNLMS

In this section, we provide a brief summary of the roles of the parameters of DTRAS-dNLMS and how

to select them. Besides the forgetting factors ζf , ζm and ζf of the algorithm of [48], which are respectively

given by ζf “ 1 ´ 1
5M , ζm “ 1 ´ 1

15M and ζm “ 1 ´ 1
45M , DTRAS-dNLMS has three other parameters:

γ, ∆n and λ. The role of γ is analogous to that of β in the AS-dNLMS algorithm. Both are used to

control the number of nodes sampled in steady state. Furthermore, the parameter ∆n was already present

in AS-dNLMS. In both algorithms, its role is the same: adjusting the speed of the update of αkpnq, and thus

controlling how fast the nodes cease to be sampled. The difference between both solutions resides in the fact

that, in the AS-dNLMS algorithm, ∆n is used to set the step size µs a priori according to (14), whereas

in DTRAS-dNLMS it is used to adjust each local step size µskpnq in an online manner, as can be seen

in (25). Thus, the only additional parameter that DTRAS-dNLMS has in comparison with AS-dNLMS is λ,

which is responsible for tuning the sensitivity of the reset mechanism proposed in Sec. 5. This comparison

is summarized in Tab. 5.

The only condition on the parameter γ to ensure that the nodes cease to be sampled is γ ą 1. Fur-

thermore, (30) allows the filter designer to know how many nodes would be sampled per iteration in the

worst-case scenario. If γ is close to one, the number of nodes sampled per iteration may be high, which

22

Table 5: Comparison between the parameters of DTRAS-dNLMS and AS-dNLMS.

Role AS-dNLMS [43] DTRAS-dNLMS

Controlling the number of nodes sampled in steady state β γ

Controlling the speed of the update of αkpnq ∆n

Controlling the probability of activation of the reset mechanism – λ

undermines the benefits of the sampling mechanism. This can be attested from (40), which can be used to

ensure a reduction in the computational cost of the algorithm. Due to (25) and to the reset mechanism,

the influence of the parameter γ on the tracking capability is reduced. This is in stark contrast with the

parameter β of AS-dNLMS. It was shown in [43] that the higher the β, the more noticeable the deterioration

in the tracking capability of the algorithm, even for moderate β{σ2
max ratios such as β ď 5σ2

max. However,

as mentioned in Sec. 4, selecting γ such that EtVsu ! 1 can be problematic. In this case, changes in the

environment may go unnoticed for extensive periods of time, since the network may not sample any node

for a high number of iterations.

As for the parameter ∆n, adopting a very low value for it can lead to high µskpnq, which may lead to

the lack of sampling during transient. Simulations suggest that the convergence speed of the algorithm in

terms of NMSD should be generally taken into account when selecting ∆n. Nonetheless, it is important to

mention that DTRAS-dNLMS is not very sensitive to moderate variations in its value, so this selection does

not have to be very precise. Simulation results indicate that choosing

∆n « 2M2 ¨
V

řV
k“1 rµk

(42)

leads to good performances by the DTRAS-dNLMS algorithm if the average step size 1
V

řV
k“1 rµk is less than

one. This is a heuristic result that can be interpreted as follows. The values for ∆n should be greater when

the convergence speed in terms of NMSD is slow, which occurs when M is high or the average step size is

low.

Lastly, in stationary environments and in the absence of impulsive noise, λ can be set according to (37).

The model proposed in Sec. 5 for the adjustment of this parameter produced satisfactory results in different

environments. Therefore, DTRAS-dNLMS fully addresses the main weaknesses of AS-dNLMS and the

adjustment of its parameters is simple given the analysis previously presented.

8. Simulation Results

In this section, we present simulation results to showcase the behavior of the proposed algorithms. The

results presented were obtained over an average of 100 independent realizations. For better visualization, we

23

filtered the curves by a moving-average filter with 64 coefficients. In every case, we consider that the order

of the filter is equal to that of the optimal system. The combination weights are updated using the ACW

algorithm with νk “ 0.2 for k “ 1, ¨ ¨ ¨ ,V [45], and we use δ “ 10´5 and δc “ 10´8 as regularization factors.

Although the results obtained with DTAS-dNLMS in the simulations of Fig. 4 are poor, we still include it in

the simulations of this section for the sake of comparison. As a performance indicator, we adopt the NMSD,

given by

NMSDpnq “
1

V

V
ÿ

k“1

Et∥wopnq´wkpnq∥2u. (43)

8.1. Scenario 1 – Base Scenario

We consider the network of Fig. 3 in the simulations. Furthermore, each node k is subject to a different

noise variance σ2
vk
, as shown in Fig. 8(a), and we consider rµk P t0.1, 1u for each node k, as depicted in

Fig. 8(b). For the optimal system wo, we consider a vector with M “ 50 coefficients randomly generated

following a uniform distribution in the range r´1, 1s. The vector thus obtained was then normalized, so that

the resulting wo presents unit norm. To simulate an abrupt change in the environment, in the middle of

each realization we multiply the vector wo by 0.25.

1 5 10 15 20 25

Node k

0.5

5

(a
)
σ

2 v
k

×10−1

1 5 10 15 20 25

Node k

0.1

1

(b
)
µ̃
k

Figure 8: (a) Noise variance σ2
vk

, and (b) normalized step size rµk for k “ 1, ¨ ¨ ¨ , V considered in the simulations.

Firstly, we resume the simulation of Fig. 1 in order to compare DTRAS-dNLMS with the algorithms

previously considered. Its parameter λ was set to 1.298 using the results of Sec. 5 with pλ “5 ¨10´4. In order

to obtain approximately the same number of nodes sampled per iteration in steady state in comparison with

AS-dNLMS and DTAS-dNLMS, γ “ 11 was adopted. Comparing to DTAS-dNLMS in which we adopted

γ “ 9, a higher value of γ is required for DTRAS-dNLMS. This difference is due to spurious resets of the

sampling system, which still occasionally occur in DTRAS-dNLMS even with pλ “ 5 ¨ 10´4. This will be

illustrated in more detail in the sequel. Lastly, the value of µs for AS-dNLMS was chosen using (14) with

an equality sign, whereas DTAS-dNLMS and DTRAS-dNLMS tune µskpnq at each iteration using (25). In

all cases, ∆n “ 7000 was adopted.

In Fig. 9(a) we present the NMSD curves, in Fig. 9(b) the number of nodes sampled and in Fig. 9(c)

the number of multiplications per iteration, respectively. As seen in Fig. 1, the more nodes are sampled

during the transient, the faster the convergence rate. We also observe that, unlike AS-dNLMS and DTAS-

dNLMS, DTRAS-dNLMS resumes the sampling of practically every node after the abrupt change in the

24

environment. For this reason, its convergence rate is similar to that of dNLMS with Vs “ 25 during both

transients. Moreover, as observed in Sec. 1, the sampling of less nodes leads to a slight reduction in steady-

state NMSD. The dNLMS algorithm with Vs “5 presents a steady-state NMSD approximately 2 dB lower

than the one achieved by the version with all nodes sampled, whereas DTRAS-dNLMS reaches a steady-

state NMSD that is 1.3 dB lower than that of the algorithm with five nodes sampled, as well as a faster

convergence rate. One possible interpretation for this is that although the adaptation step is important

for the convergence during the transient and for detecting changes in the environment, in steady state it

introduces noise into the network, which the combination step tends to remove [43, 44]. Thus, by reducing

the sampling rate during steady state, there may be a slight reduction in NMSD. However, this reduction

can be considered marginal in the case of Fig. 9(a). From Figs. 9(b) and 9(c) we observe that during the

transients the computational cost of DTRAS-dNLMS is slightly higher than those of the dNLMS algorithm

with all nodes sampled and AS-dNLMS. Furthermore, during the first iterations, its cost is slightly lower

than that of DTAS-dNLMS, since in this period the activation of the reset mechanism prevents the update of

αk, which saves some computation. After a while, the cost of DTRAS-dNLMS slightly increases as the reset

mechanism ceases to act, becoming close to that of DTAS-dNLMS. However, once steady state is achieved,

the computational cost of DTRAS-dNLMS decreases drastically, becoming much lower than that of dNLMS

and only marginally higher than that of AS-dNLMS. This is in line with the discussion presented in Sec. 6.

In comparison with the worst-case scenario depicted in Tab. 4, DTRAS-dNLMS actually performed, on

average, 18.6 less multiplications per iteration throughout the entire network. This discrepancy is mostly

concentrated in the transients, rather than the steady state. For instance, between iterations 50 ¨ 103 and

60 ¨ 103, the average difference comes down to 1.4 multiplication per iteration.

In order to verify (30), we also tested the DTAS-dNLMS and DTRAS-dNLMS algorithms in a stationary

environment with different values of γ ě 1. For γ “ 1, a fixed step size µsk was adopted for k “ 1, ¨ ¨ ¨ , V in

order to avoid division by zero in (25). Furthermore, λ “ 1.298 was adopted for DTRAS-dNLMS. In each

experiment, we considered 4 ¨ 104 iterations and calculated the average number of nodes sampled during the

last 4 ¨ 103, which guaranteed that the algorithm had achieved steady state in terms of NMSD and number

of nodes sampled. The results are shown in Fig. 10. Along with the experimental data, we also present the

result yielded by (30) for each γ. Firstly, we observe that the greater the γ, the less nodes are sampled, as

expected. Furthermore, it can be seen that the simulation results obtained with DTAS-dNLMS lie below the

theoretical upper bound for every value of γ ą 1, while they coincide for γ “ 1, which validates (30). It is

interesting to notice that, as γ increases, the simulation results obtained with both algorithms approach the

theoretical upper bound, whereas they remain far below it for small γ ą 1. In the case of DTRAS-dNLMS,

the number of nodes sampled per iteration lies below the theoretical upper bound for γ ă 30. For γ ě 30,

the results yielded by (30) slightly surpass the theoretical upper bound due to spurious resets of the sampling

system. Nonetheless, this difference between the simulation results and the values yielded by (30) are so

25

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0
(a

)
N

M
S

D
(d

B
)

dNLMS (Vs=25) dNLMS (Vs=5) AS-dNLMS DTAS-dNLMS DTRAS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 9: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-dNLMS (β “ 1.9, µs “ 0.0045),

DTAS-dNLMS (γ “ 9), and DTRAS-dNLMS (γ “ 11, λ “ 1.298). For DTAS-dNLMS and DTRAS-dNLMS, µsk pnq was set

using (25) with ∆n“7000. (a) NMSD curves, (b) number of nodes sampled and (c) multiplications per iteration.

slim in these cases that it can be neglected. Moreover, we observe that DTRAS-dNLMS in general samples

slightly more nodes per iteration than DTAS-dNLMS for the same reason. However, we remark that the

difference between both algorithms is less than 1 node per iteration for all values of γ. From Fig. 10, we

can see that (30) enables a well-informed selection of γ, since it allows the filter designer to know how many

nodes would be sampled per iteration in a worst-case scenario.

1 10 100

γ

0

5

10

15

20

25

E
{V

s
}

DTAS-dNLMS

DTRAS-dNLMS

Theoretical Upper Bound

Figure 10: Theoretical results yielded by (30) and average number of nodes sampled by DTAS-dNLMS and DTRAS-dNLMS

(λ“1.298) as a function of γ ě 1.

8.2. Scenario 2 – Network with a Noisy Node

We now analyze a scenario in which one of the nodes is much noisier than the remainder of the network.

Thus, starting from the base scenario, we increase the noise power σ2
max of the noisiest node from Fig. 8(a)

by tenfold.

Hence, in Fig. 11, we resume the simulations of Figs. 2 and 4, with the addition of the DTRAS-dNLMS

26

algorithm. In Fig. 11(a) we present the NMSD curves, in Fig. 11(b) the number of nodes sampled and

in Fig. 11(c) the number of multiplications per iteration. The parameters of the AS-dNLMS and DTAS-

dNLMS algorithms are the same as those used in Figs. 2 and 4, whereas for DTRAS-dNLMS we consider

γ “ 11, ∆n “ 7 ¨ 104, and λ “ 1.298. Moreover, we also show results obtained by the dNLMS algorithm

with Vs “ 25 and Vs “ 5 nodes sampled per iteration.

We observe from Fig. 11(a) that, unlike AS-dNLMS and DTAS-dNLMS, the DTRAS-dNLMS algorithm

was able to roughly maintain the convergence rate of dNLMS with Vs “ 25 nodes sampled per iteration

even after the abrupt change, while sampling the same number of nodes per iteration as AS-dNLMS with

β “ 0.7σ2
max and DTAS-dNLMS in steady state, as we can see from Fig. 11(b). Hence, we observe from this

simulation that DTRAS-dNLMS addresses the main limitations of AS-dNLMS and DTAS-dNLMS when an

abrupt change occurs in the optimal system. Moreover, much like DTAS-dNLMS, its online estimation of

the measurement noise power eliminates the need for a priori knowledge of this information.

0 1 2 3 4 5 6

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25)

dNLMS (Vs=5)

AS-dNLMS (β=0.7σ2
max)

AS-dNLMS (β=3.8σ2
max)

DTAS-dNLMS

DTRAS-dNLMS

0
5

10
15
20
25

(b
)
V
s
(n

)

0 1 2 3 4 5 6

Iterations (×104)

18

20

22

(c
)
⊗
×

10
3

Figure 11: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-dNLMS (β “ 19 “ 3.8σ2
max,

µs “ 0.0045, and β “ 3.5 “ 0.7σ2
max, µs “ 0.0025), DTAS-dNLMS (γ “ 9, ∆n“ 7000), and DTRAS-dNLMS (γ “ 11, λ“ 1.298,

∆n“7000) in a scenario where σ2
max is increased by tenfold in comparison with Fig. 8(b). (a) NMSD curves, and (b) number

of nodes sampled per iteration.

8.3. Scenario 3 – Random-Walk Tracking

In this section, we investigate the behavior of the proposed algorithms in nonstationary environments

following a random-walk model. Starting from Scenario 1, we consider that the optimal solution wopnq

varies according to

wopnq “ wopn ´ 1q ` qpnq, (44)

where qpnq is a zero-mean iid Mˆ1 vector with autocovariance matrix Q“EtqpnqqTpnqu independent from

any other signal [52]. We consider a Gaussian distribution for qpnq with Q “ σ2
qI, where I denotes the

27

identity matrix.

In Fig. 12, we present the results obtained with the AS-dNLMS, DTAS-dNLMS and DTRAS-dNLMS

algorithms for different values of TrrQs. For comparison, we also show results obtained by dNLMS with

Vs “ 25 and Vs “ 2. Moreover, for DTRAS-dNLMS, we considered two values of λ: 1.3 and 1.2. The other

parameters of the aforementioned algorithms were maintained from the simulations of Fig. 9. In Fig. 12(a),

we present the steady-state levels of NMSD, and in Fig. 12(b) the average number of sampled nodes per

iteration. The results presented were obtained by averaging the data over the last 70 ¨ 103 iterations of each

realization, after all the algorithms achieved steady state.

We observe from Fig. 12(a) that higher values for TrrQs lead to worse steady-state performances by all

algorithms, which was expected. However, the rate at which the steady-state NMSD deteriorates as we

increase TrrQs varies from one solution to another. The dNLMS algorithm with Vs “25 presents a slightly

higher steady-state NMSD for TrrQs“10´8, but a better performance for TrrQsě10´6 in comparison with

the other solutions. A possible interpretation for this is that, in the former case, the scenario is similar

to that of Fig. 9. However, as TrrQs increases, it becomes more important to sample the nodes because

it allows the algorithm to keep better track of the changes in the environment. Comparing Figs. 12(a)

and 12(b), we observe that the more nodes are sampled, the better the performances of the algorithms for

TrrQsě10´6. Furthermore, dNLMS with Vs “2 and DTAS-dNLMS present similar results and the highest

NMSD for higher values of TrrQs. As for AS-dNLMS and DTRAS-dNLMS with λ“1.3, we observe that their

performances are similar to those of DTAS-dNLMS for TrrQs ď 10´6, but are superior for TrrQs“10´5 and

TrrQs“10´4. For TrrQs“10´4, DTRAS-dNLMS with λ “ 1.3 performs noticeably better than AS-dNLMS.

By changing the value of λ, we can control the behavior of the proposed algorithm, since for TrrQs ě 10´7

DTAS-dNLMS with λ “ 1.2 performs better than AS-dNLMS and DTAS-dNLMS, as well as dNLMS with

Vs “ 2 and DTRAS-dNLMS. From Fig. 12(b) we observe that the DTRAS-dNLMS with λ “ 1.2 samples

more nodes per iterations than all other solutions, except for dNLMS with Vs “25. Thus, it is able to keep

better track of the changes in the optimal system, which explains the improvement in the performance.

The sampling mechanism of DTRAS-dNLMS algorithm presents a cyclic behavior in the case of TrrQs “

10´4. In Figs. 13(a) and 13(b), we respectively present the NMSD and number of nodes sampled per

iteration under these circumstances. The number of nodes sampled per iteration by the DTRAS-dNLMS

algorithm with λ “ 1.3 oscillates intensely during the first 2 ¨ 105 iterations. Consequently, the NMSD

also fluctuates greatly after the initial convergence. As time goes by, both of these oscillations decrease in

amplitude, but never cease completely. An interpretation for this phenomenon lies in the reset system of

the sampling mechanism. Since the variations in the optimal system are swift when TrrQs “ 10´4, the lack

of sampling heavily impacts the performance and, consequently, the error magnitude in each node. Thus,

the reset mechanism is activated, which resumes the sampling of the nodes. This, in its turn, improves the

tracking capability of the algorithm and decreases the magnitude of the error. However, such decrease leads

28

10−8 10−7 10−6 10−5 10−4

Tr[Q]

−30

−20

−10

0
(a

)
N

M
S

D
(d

B
)

dNLMS (Vs = 25)

dNLMS (Vs = 2)

AS-dNLMS

DTAS-dNLMS

DTRAS-dNLMS (λ = 1.3)

DTRAS-dNLMS (λ = 1.2)

10−8 10−7 10−6 10−5 10−4

Tr[Q]

0

5

10

15

20

25

(b
)
V
s
(n

)
Figure 12: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-dNLMS (β “ 1.9, µs “ 0.0045),

DTAS-dNLMS (γ “ 9, ∆n “ 7000), and DTRAS-dNLMS (γ “ 11, ∆n “ 7000, and different values for λ) in a nonstationary

environment following Model (44). (a) steady-state NMSD, and (b) average number of nodes sampled per iteration.

to a reduction in the number of nodes sampled once again due to (9). Hence, the oscillations in the number

of sampled nodes arise. Over time, they stabilize, but do not die out. From Figs. 13(a) and 13(b), we can

see that the DTRAS-dNLMS algorithm with λ “ 1.2 also presents fluctuations, but these are much slighter

in comparison. The adoption of a lower value for λ makes the reset system activate much more easily, which

reduces the impact of oscillations in the error magnitude on the number of nodes sampled.

0 1 2 3

Iterations (×105)

−20

−15

−10

−5

0

5

(a
)

N
M

S
D

(d
B

)

dNLMS (Vs=25)

dNLMS (Vs=2)

AS-dNLMS

DTAS-dNLMS

DTRAS-dNLMS (λ = 1.3)

DTRAS-dNLMS (λ = 1.2)

0 1 2 3

Iterations (×105)

0

5

10

15

20

25

(b
)
V
s
(n

)

Figure 13: Comparison between dNLMS with Vs nodes randomly sampled per iteration, AS-dNLMS (β “ 1.9, µs “ 0.0045),

DTAS-dNLMS (γ“9, ∆n“7000), and DTRAS-dNLMS (γ“11, λ“1.298, ∆n“7000) in a scenario with random-walk tracking

as in (44) with TrrQs“10´4. (a) NMSD curves, and (b) number of nodes sampled per iteration.

Finally, in the simulations of Fig. 14, we repeat the experiments of Fig. 12 considering only the DTRAS

29

algorithm with 1.15ďλď1.45. The lower the value of λ, the more nodes are sampled for all values of TrrQs,

as expected. By selecting λ“ 1.15, the reset mechanism maintained the sampling of all nodes. Moreover,

for λ ě 1.3, the differences in performance and number of nodes sampled are slight for TrrQs ď 10´6. As

TrrQs increases, these disparities become more noticeable. When the changes in the optimal system are

slow, choosing λě1.3 prevents the reset mechanism from resetting spuriously. This is beneficial in the cases

of stationary environments and of TrrQs “ 10´8, but deteriorates the performance as the variations in the

optimal system become faster, e.g., TrrQsě10´7. As these changes become even swifter, e.g. TrrQsě10´5,

the reset mechanism begins to act more noticeably. Thus, the selection of different values for λ leads to

prominent discrepancies in the sensitivity of the reset system, which impacts the number of nodes sampled

per iteration and the performance. In contrast, by selecting 1.2 ď λ ď 1.25, the reset mechanism activates

for all values of TrrQsě10´8. This is especially noticeable for λ“1.2, and, similarly to what was observed

in Fig. 12, leads to more nodes sampled per iteration and a lower steady-state NMSD for TrrQsě10´8.

10−8 10−7 10−6 10−5 10−4

Tr[Q]

-5

-10

-15

-20

-25

-30

(a
)

N
M

S
D

(d
B

)

λ = 1.15

λ = 1.20

λ = 1.25

λ = 1.30

λ = 1.35 λ = 1.40 λ = 1.45

10−8 10−7 10−6 10−5 10−4

Tr[Q]

0

5

10

15

20

25

(b
)
V
s
(n

)

Figure 14: Simulation results obtained in a nonstationary environment following Model (44) with DTRAS-dNLMS (γ “ 11,

∆n“7000 and different values for λ). (a) Steady-state NMSD, and (b) Number of nodes sampled per iteration.

In the presence of impulsive noise, higher values for λ lead to lower computational costs as well as

improved performance, whereas in nonstationary environments lower values are required to maintain the

performance. Moreover, in this case, there is a trade-off between computational cost and NMSD. Nonetheless,

it should be noted that the parameter λ grants the DTRAS-dNLMS algorithm a great degree of flexibility,

which makes it suitable for different scenarios and applications.

8.4. Scenario 4 – Colored Input and diffusion Affine Projection Algorithm

In the simulations of this section, we consider a colored input signal ukpnq at each node k, given by

ukpnq “ rkpnq ´ 0.8ukpn ´ 1q, (45)

30

where rkpnq is white Gaussian with zero mean and unit variance for k “ 1, ¨ ¨ ¨ , V . Furthermore, we consider

a filter length of M “150. As in Sec. 8.1, the coefficients of the optimal system wo were randomly generated

following a uniform distribution in the range r´1, 1s, and then normalized to ensure that wo has unit norm.

In the middle of each realization, we multiply wo by 0.25 to simulate an abrupt change in the environment.

The noise variances and step sizes are the same as in Fig. 8.

In order to illustrate how the proposed sampling mechanism can be used in conjunction with other

types of diffusion algorithms aside from dNLMS, we apply it to the diffusion Affine Projections Algorithm

(dAPA) [7]. Its adaptation step is given by

ψkpn ` 1q“wkpnq`rµkUkpnqrδI ` UT
k pnqUkpnqs´1ekpnq, (46)

whereUkpnq “ rukpnq ukpn´1q ¨ ¨ ¨ ukpn´L`1qs, ekpnq “ dkpnq´UT
k pnqwkpnq, and dkpnq “ rdkpnq dkpn´

1q ¨ ¨ ¨ dkpn ´ L ` 1qsT, with L ď M being a parameter that the filter designer must choose [7, 52]. The

adoption of greater values for L usually increases the convergence speed, but also deteriorates its steady-

state performance [7]. If L “ 1 is chosen, the algorithm coincides with dNLMS. Finally, the combination

step of dAPA is also given by (2b) [7].

To incorporate the sampling mechanisms into dAPA, we introduce the binary sampling variable sskpnq

in the correction term of (46) analogously to (2a). Hence, if sskpnq “ 0, UT
k pnqwkpnq, ekpnq, UT

k pnqUkpnq,

rδI ` UT
k pnqUkpnqs´1, and rµkUkpnqrδI ` UT

k pnqUkpnqs´1ekpnq do not have to be calculated. If sskpnq “

1, (46) is computed as usual. Unlike in the dNLMS adaptation, we consider that the desired signal dkpnq

is sampled even if sskpnq “ 0, since its value may be necessary to form the vector dk at future iterations.

Furthermore, we continue to use the instantaneous error ekpnq given by (3) for the adaptation of the sampling

mechanisms, rather than the error vector ekpnq.

In Fig. 15 we present a comparison between DTRAS-dAPA, DTAS-dAPA, AS-dAPA and dAPA with

Vs “ 3 nodes sampled randomly, as well as dAPA with all Vs “ 25 nodes sampled. We adopted L “ 4 for

all of the aforementioned algorithms. In Fig. 15 (a) we show the NMSD curves, in Fig. 15(b) the number of

nodes sampled and in Fig. 15(c) the number of multiplications per iteration, respectively. The parameters

of the sampling mechanisms of each algorithm were selected so as to obtain roughly the same steady-state

NMSD for every solution. In the case of dAPA with every node sampled, we can see from Fig. 15 (a) that

the steady-state NMSD is about 10 dB higher in comparison with the other algorithms, even though the

step sizes are the same for every solution. Thus, we observe that the difference in steady-state performance

entailed by the sampling of less nodes is more pronounced in comparison with the simulations using the

dNLMS algorithm, such as in Fig. 9. We adopted β “ 4σ2
max “ 2 and µs “ 0.0098 for AS-dAPA, γ “ 9.5

and ∆n “ 103 for DTAS-dAPA, and γ “ 9.5, ∆n “ 500, and λ “ 1.2328 for DTAS-dAPA. The value for

λ was obtained by replacing M “ 150 in (37). In this case, DTRAS-dNLMS sampled on average 2.1 nodes

per iteration, whereas AS-dAPA and dAPA respectively sampled 2.2 and 2.6 nodes per iteration.

31

Before the abrupt change in the environment, we can see from Fig. 15 (a) that DTRAS-dAPA converges

to a steady-state NMSD of ´30dB faster than dAPA with Vs “3, albeit slower than AS-dAPA and DTAS-

dAPA. This occurs since it maintains the sampling of all the nodes for a longer period of time, during which

it behaves similarly to dAPA with every node sampled, as can be attested from Figs. 15 (a) and (b). On the

other hand, it resumes to an NMSD level of ´30dB faster than any other solution after the abrupt change,

which shows that it has a better tracking capability than the other sampling algorithms. In terms of the

computational cost, we can see from Fig. 15 (c) that DTRAS-dAPA, AS-dAPA, DTAS-dAPA and dAPA

with with Vs “3 demanded a similar number of multiplications per iteration in steady state. Although the

cost of DTRAS-dAPA is higher than that of dAPA with all nodes sampled during the transient, the difference

in this case is negligible in comparison with the overall cost of both algorithms. This contrasts with Fig. 9

(c), in which the difference in cost between DTRAS-dNLMS and dNLMS with all nodes sampled during the

transient is more noticeable, since the dNLMS algorithm is less costly overall than dAPA with Lą1.

0 2.5 5 7.5 10

Iterations (×104)

−30

−20

−10

0

(a
)

N
M

S
D

(d
B

)

dAPA (Vs=25) dAPA (Vs=3) AS-dAPA DTAS-dAPA DTRAS-dAPA

0
5

10
15
20
25

(b
)
V
s
(n

)

0 2.5 5 7.5 10

Iterations (×104)

5

10

15

(c
)
⊗
×

10
4

Figure 15: Comparison between dAPA with Vs nodes randomly sampled per iteration, AS-dAPA (β “ 2, µs “ 0.0098), DTAS-

dAPA (γ “ 9.5), and DTRAS-dAPA (γ “ 9.5, λ “ 1.2328). For DTAS-dAPA and DTRAS-dAPA, µsk pnq was set using (25)

with ∆n “ 1000 and ∆n “ 500, respectively. (a) NMSD curves, (b) number of nodes sampled and (c) multiplications per

iteration.

9. Conclusions

In this paper, building from our previous works, we proposed an algorithm for adaptive sampling over

diffusion networks. The DTRAS-dNLMS algorithm addresses the main limitations of the previously proposed

AS-dNLMS. It eliminates the need for a priori knowledge of the maximum noise variance in the network,

features increased robustness to the presence of noisy nodes, and presents better tracking capabilities than

AS-dNLMS, which was one of the main weakness of the latter [43]. In addition to the simulations results, we

32

also derived analytic expressions that aid in the selection of the parameters of DTRAS-dNLMS, and which

were validated by our experiments.

For future work, we intend to obtain more theoretical results for DTRAS-dNLMS, e.g., by presenting

convergence and steady-state NMSD analysis, and to test it in other scenarios, possibly using real-world data.

Furthermore, we intend to investigate its behavior in environments with impulsive noise and analyze how

this would affect the choice of the parameter λ. It should be noted that the AS-dNLMS algorithm also has

a counterpart that can be used for censoring over diffusion networks, named ASC-dNLMS algorithm [43].

Although in this paper we focused on the role of DTRAS-dNLMS algorithm for sampling, it could be

straightforwardly extended to operate as a censoring mechanism as well, which is yet another topic of

interest for future research. Finally, we also intend to run computer simulations comparing the proposed

algorithm to other state-of-the-art solutions for sampling and censoring in the future.

Acknowledgment

This work was supported in part by CAPES under Grant 88887.512247/2020-00 and Finance Code 001

and in part by the São Paulo Research Foundation (FAPESP) under Grant 2021/02063-6.

Appendix A. Deriving (28) and (29)

In order to estimate ξk and ξk, we must study the behavior of αk once the algorithm achieves the steady

state in terms of MSE. For simplicity, we assume static and deterministic weights tciku and the statistical

independence between ϕ1
kpnq and the terms between brackets in (16). Simulation results suggest that this

approximation is reasonable. Since αk ě 0 and ssk “ 1 when node k is sampled, taking expectations from

both sides of (16) in this case yields

Etαkpn`1q|αkpnqě0u“ Etαkpnqu ` µsEtϕ1
kpnqu ˆ

”

ř

iPNk
cikEtε2i pnqu´γEtpσ2

Nk
pnqu

ı

. (A.1)

In contrast, since αk ă0 and ssk “0 when node k is not sampled, we conclude from (16) that, in this case,

Etαkpn`1q|αkpnqă0u “ Etαkpnqu ` µsEtϕ1
kpnqu ˆ

ř

iPNk
cikEtε2i pnqu. (A.2)

Since αk keeps oscillating around the point αk “ 0 in steady state, we replace ϕ1
k in (A.1) and (A.2) with

its first-order Taylor expansion around αk “ 0, which is equal to the constant ϕ1
0. Using (12) and making

these replacements in (A.1) and (A.2), we then obtain

Etαkpn ` 1q|αkpnqě0u“Etαkpnqu`µsϕ
1
0σ

2
Nk

p1´γq (A.3)

and

Etαkpn ` 1q|αkpnqă0u“Etαkpnqu`µsϕ
1
0σ

2
Nk

. (A.4)

33

Defining ∆αkpnq “ αkpn ` 1q ´ αkpnq, we get

Et∆αkpnq|αkpnqě0u “ ´µsϕ
1
0σ

2
Nk

pγ´1q, (A.5)

where we have rearranged the expression since 1 ´ γ ă 0, and

Et∆αkpnq|αkpnqă0u “ µsϕ
1
0σ

2
Nk

. (A.6)

Analyzing (A.3) to (A.6), it is possible to determine the minimum and maximum values that αk can assume

in the mean during steady state. Let us consider that, at a certain iteration n, αk is positive but very close

to zero. Denoting this situation by αkpnq “ 0`, we conclude from (A.3) and (A.5) that

Etαkpn ` 1q|αkpnq“0`u“´µsϕ
1
0σ

2
Nk

pγ´1q. (A.7)

Thus, we observe that αkpn ` 1q ă 0. On the other hand, from (A.6) we conclude that Et∆αkpn ` 1qu ą 0,

meaning that αk will begin to increase in the following iteration. Hence, (A.7) provides the minimum value

that αk can achieve in the mean during steady state, i.e. Etαs.s.
kmin

u“´µsϕ
1
0σ

2
Nk

pγ´1q.

Analogously, if we assume that at a certain iteration n, αk is negative but close to zero, which we denote

by αkpnq “ 0´, we obtain from (A.4) and (A.6) that

Etαs.s.
kmax

u“Etαkpn ` 1q|αkpnq“0´u“ µsϕ
1
0σ

2
Nk

(A.8)

is the maximum value αk can assume in the mean during steady state.

Hence, in order to estimate the expected number sξk of iterations per cycle in which node k is sampled,

we can divide Etαs.s.
kmax

u by the absolute value of Et∆αkpnq|αkpnq ě 0u, which will provide the number of

iterations needed for Etαku to become negative after achieving its peak value. Using (A.5), we thus obtain

ξk “
µsϕ

1
0σ

2
Nk

µsϕ1
0σ

2
Nk

pγ´1q
“

1

γ ´ 1
. (A.9)

In order to obtain ξk, we follow an analogous procedure for Etαs.s.
kmin

u. Taking (A.6) into account, we

arrive at

ξk “
µsϕ

1
0σ

2
Nk

pγ´1q

µsϕ1
0σ

2
Nk

“ γ ´ 1. (A.10)

However, taking into account the fact that ξk and ξk represent a certain number of iterations, we should

expect them to be natural numbers. Since we are interested in the maximum value that ξk can assume, we

replace it by its ceiling. Analogously, since we seek the minimum value that ξk can assume, we replace it

by its floor. Moreover, taking into account that ξk and ξk should be greater than or equal to one, we arrive

at (28) and (29).

34

Appendix B. Obtaining λ from pλ

Analyzing (33) and using the definition of cumulative distribution function, we conclude that, for x ą 1,

FXpxq “ a3 `

ż x

1

a4
a

2πa22
exp

«

´pρ´a1q2

2a22

ff

dρ. (B.1)

If we denote the pdf of a Normal random variable with mean a1 and standard deviation a2 by gXpxq, i.e.,

gXpxq “
1

a

2πa22
exp

«

´px´a1q2

2a22

ff

, (B.2)

and its cdf by

GXpxq “

ż x

´8

1
a

2πa22
exp

«

´pρ´a1q2

2a22

ff

dρ, (B.3)

we may recast (B.1) as

FXpxq “ a3 ` a4
“

GXpxq ´ GXp1q
‰

. (B.4)

Since limxÑ8 FXpxq “1, we can write a4 in terms of a1, a2 and a3. Analyzing (B.4) for xÑ 8, we get

1 “ a3 ` a4
“

1 ´ GXp1q
‰

, from which we conclude that

a4 “
1 ´ a3

1 ´ GXp1q
. (B.5)

Thus, (B.1) can be recast as

FXpxq “ a3 `
a3 ´ 1

2
“

1 ´ GXp1q
‰

“

GXpxq ´ GXp1q
‰

. (B.6)

Finally, since GXpxq“
1

2

«

1`erf

ˆ

x´a1

a2
?
2

˙

ff

, where erfp¨q denotes the error function, we may recast (B.6)

as

FXpxq “ a3 `
p1 ´ a3q

1 ´ erf
´

1´a1

a2

?
2

¯

«

erf

ˆ

x ´ a1

a2
?
2

˙

´ erf

ˆ

1 ´ a1

a2
?
2

˙

ff

. (B.7)

Replacing (B.7) in (34) and making x “ λ, we finally get

erf

ˆ

λ´a1

a2
?
2

˙

ą
1́ pλ´a3
1´a3

«

1´erf

ˆ

1´a1

a2
?
2

˙

ff

`erf

ˆ

1´a1

a2
?
2

˙

“
pλ

1´a3
¨erf

ˆ

1´a1

a2
?
2

˙

`
1´pλ´a3
1´a3

. (B.8)

It should be noted that if

pλ
1´a3

¨erf

ˆ

1´a1

a2
?
2

˙

`
1´pλ´a3
1´a3

“
1 ´ a3 ´ pλerfc

´

1´a1

a2

?
2

¯

1 ´ a3
ď ´1, (B.9)

35

where erfc denotes the complementary error function, any value of λ satisfies (B.8). Moreover, there is

always a solution to (B.8). The only case in which this would not happen is if

1 ´ a3 ´ pλerfc
´

1´a1

a2

?
2

¯

1 ´ a3
ą 1, (B.10)

i.e.,

pλerfc

ˆ

1 ´ a1

a2
?
2

˙

ă 0, (B.11)

which is impossible since pλ ě 0 and erfcpxq ą 0, @x. Thus, assuming that (B.9) does not hold, (35) can be

straightforwardly obtained from (B.8). If (B.9) does hold, then any choice for λ is equally fitting.

References

[1] A. H. Sayed, Adaptation, Learning, and Optimization over Networks, vol. 7, Foundations and Trends in Machine Learning,

now Publishers Inc., Hanover, MA, 2014.

[2] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares over adaptive networks: Formulation and performance

analysis,” IEEE Transactions on Signal Processing, vol. 56, no. 7, pp. 3122–3136, Jul. 2008.

[3] F. S. Cattivelli and A. H. Sayed, “Diffusion LMS strategies for distributed estimation,” IEEE Transactions on Signal

Processing, vol. 58, no. 3, pp. 1035–1048, Mar. 2009.

[4] F. S. Cattivelli, C. G. Lopes, and A. H. Sayed, “Diffusion recursive least-squares for distributed estimation over adaptive

networks,” IEEE Transactions on Signal Processing, vol. 56, no. 5, pp. 1865–1877, May 2008.

[5] Z. Zheng, Z. Liu, and M. Huang, “Diffusion least mean square/fourth algorithm for distributed estimation,” Signal

Processing, vol. 134, pp. 268–274, May 2017.

[6] L. Lu and H. Zhao, “Diffusion leaky LMS algorithm: Analysis and implementation,” Signal processing, vol. 140, pp.

77–86, Nov. 2017.

[7] M. S. E. Abadi and M. S. Shafiee, “Distributed estimation over an adaptive diffusion network based on the family of

affine projection algorithms,” IEEE Transactions on Signal and Information Processing over Networks, vol. 5, no. 2, pp.

234–247, Jun. 2019.

[8] J. Chen, C. Richard, and A. H. Sayed, “Multitask diffusion adaptation over networks,” IEEE Transactions on Signal

Processing, vol. 62, no. 16, pp. 4129–4144, Aug. 2014.

[9] P. Di Lorenzo, S. Barbarossa, and A. H. Sayed, “Distributed spectrum estimation for small cell networks based on sparse

diffusion adaptation,” IEEE Signal Processing Letters, vol. 20, no. 12, pp. 1261–1265, Dec. 2013.

[10] A. Hajihoseini and S. A. Ghorashi, “Distributed spectrum sensing for cognitive radio sensor networks using diffusion

adaptation,” IEEE Sensors Letters, vol. 1, no. 5, pp. 1–4, Oct. 2017.

[11] W. Xia, G, Xia, and J, Li, “Collaborative beamforming via diffusion adaptation based on tensor over array networks,”

Digital Signal Processing, vol. 106, pp. 102825, Nov. 2020.

[12] F. S. Cattivelli and A. H. Sayed, “Modeling bird flight formations using diffusion adaptation,” IEEE Transactions on

Signal Processing, vol. 59, pp. 2038–2051, May 2011.

[13] F. Chen, L. Hu, P. Liu, and M. Feng, “A robust diffusion estimation algorithm for asynchronous networks in IoT,” IEEE

Internet of Things Journal, vol. 7, no. 9, pp. 9103–9115, Sept. 2020.

[14] J. Fernandez-Bes, , J. Arenas-Garćıa, M. T. M. Silva, and L. A. Azpicueta-Ruiz, “Adaptive diffusion schemes for hetero-

geneous networks,” IEEE Transactions on Signal Processing, vol. 65, pp. 5661–5674, Nov. 2017.

36

[15] R. Nassif, C. Richard, J. Chen, and A. H. Sayed, “Distributed diffusion adaptation over graph signals,” in 2018 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018, pp. 4129–4133.

[16] F. Hua, R. Nassif, C. Richard, H. Wang, and A. H. Sayed, “A preconditioned graph diffusion LMS for adaptive graph

signal processing,” in 2018 26th European Signal Processing Conference (EUSIPCO). IEEE, 2018, pp. 111–115.

[17] P. Di Lorenzo, P. Banelli, E. Isufi, S. Barbarossa, and G. Leus, “Adaptive graph signal processing: Algorithms and optimal

sampling strategies,” IEEE Transactions on Signal Processing, vol. 66, no. 13, pp. 3584–3598, Jul. 2018.

[18] P. Di Lorenzo, P. Banelli, S. Barbarossa, and S. Sardellitti, “Distributed adaptive learning of graph signals,” IEEE

Transactions on Signal Processing, vol. 65, no. 16, pp. 4193–4208, Aug. 2017.

[19] N. Takahashi and I. Yamada, “Link probability control for probabilistic diffusion least-mean squares over resource-

constrained networks,” in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

IEEE, 2010, pp. 3518–3521.

[20] R. Arroyo-Valles, S. Maleki, and G. Leus, “A censoring strategy for decentralized estimation in energy-constrained

adaptive diffusion networks,” in 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications

(SPAWC). IEEE, 2013, pp. 155–159.

[21] J. Fernandez-Bes, R. Arroyo-Valles, J. Arenas-Garćıa, and J. Cid-Sueiro, “Censoring diffusion for harvesting WSNs,” in

2015 IEEE 6th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

IEEE, 2015, pp. 237–240.

[22] R. Arablouei, S. Werner, Y.-F. Huang, and K. Doğançay, “Distributed least mean-square estimation with partial diffusion,”

IEEE Transactions on Signal Processing, vol. 62, no. 2, pp. 472–484, Jan. 2014.

[23] S. Xu, R. C. De Lamare, and H. V. Poor, “Dynamic topology adaptation for distributed estimation in smart grids,” in

2013 5th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

IEEE, 2013, pp. 420–423.

[24] S. Chouvardas, K. Slavakis, and S. Theodoridis, “Trading off complexity with communication costs in distributed adaptive

learning via krylov subspaces for dimensionality reduction,” IEEE Journal of Selected Topics in Signal Processing, vol.

7, no. 2, pp. 257–273, Apr. 2013.

[25] M. O. Sayin and S. S. Kozat, “Compressive diffusion strategies over distributed networks for reduced communication

load,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5308–5323, Oct. 2014.

[26] S. Xu, R. C. De Lamare, and H. V. Poor, “Distributed compressed estimation based on compressive sensing,” IEEE

Signal Processing Letters, vol. 22, no. 9, pp. 1311–1315, Sept. 2015.

[27] S. Gupta, A. K. Sahoo, and U. K. Sahoo, “Partial diffusion over distributed networks to reduce inter-node communication,”

in 2017 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS). IEEE, 2017,

pp. 1–6.

[28] I. E. K. Harrane, R. Flamary, and C. Richard, “On reducing the communication cost of the diffusion LMS algorithm,”

IEEE Transactions on Signal and Information Processing over Networks, vol. 5, no. 1, pp. 100–112, Mar. 2018.

[29] C. G. Lopes and A. H. Sayed, “Diffusion adaptive networks with changing topologies,” in 2008 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2008, pp. 3285–3288.

[30] S. Werner, Y.-F. Huang, M. L. R. De Campos, and V. Koivunen, “Distributed parameter estimation with selective

cooperation,” in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,

2009, pp. 2849–2852.

[31] X. Zhao and A. H. Sayed, “Single-link diffusion strategies over adaptive networks,” in 2012 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2012, pp. 3749–3752.

[32] S. Xu, R. C. de Lamare, and H. V. Poor, “Adaptive link selection algorithms for distributed estimation,” EURASIP

Journal on Advances in Signal Processing, vol. 2015, no. 1, pp. 86, 2015.

37

[33] R. Arablouei, S. Werner, K. Doğançay, and Y.-F. Huang, “Analysis of a reduced-communication diffusion LMS algorithm,”

Signal Processing, vol. 117, pp. 355–361, Dec. 2015.

[34] F. Chen and X. Shao, “Broken-motifs diffusion LMS algorithm for reducing communication load,” Signal Processing, vol.

133, pp. 213–218, Apr. 2017.

[35] A. Rastegarnia, “Reduced-communication diffusion RLS for distributed estimation over multi-agent networks,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 1, pp. 177–181, Jan. 2020.

[36] O. N. Gharehshiran, V. Krishnamurthy, and G. Yin, “Distributed energy-aware diffusion least mean squares: Game-

theoretic learning,” IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 5, pp. 821–836, Oct. 2013.

[37] D. K. Berberidis, V. Kekatos, G. Wang, and G. B. Giannakis, “Adaptive censoring for large-scale regressions,” in 2015

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015, pp. 5475–5479.

[38] C.-K. Yu, M. Van Der Schaar, and A. H. Sayed, “Information-sharing over adaptive networks with self-interested agents,”

IEEE Transactions on Signal and Information Processing over Networks, vol. 1, no. 1, pp. 2–19, Mar. 2015.

[39] Z. Wang, Z. Yu, Q. Ling, D. Berberidis, and G. B. Giannakis, “Distributed recursive least-squares with data-adaptive

censoring,” in 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2017,

pp. 5860–5864.

[40] Z. Wang, Z. Yu, Q. Ling, D. Berberidis, and G. B. Giannakis, “Decentralized RLS with data-adaptive censoring for

regressions over large-scale networks,” IEEE Transactions on Signal Processing, vol. 66, no. 6, pp. 1634–1648, Mar. 2018.

[41] L. Yang, H. Zhu, K. Kang, X. Luo, H. Qian, and Y. Yang, “Distributed censoring with energy constraint in wireless sensor

networks,” in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018,

pp. 6428–6432.

[42] L. Yang, H. Zhu, H. Wang, K. Kang, and H. Qian, “Data censoring with network lifetime constraint in wireless sensor

networks,” Digital Signal Processing, vol. 92, pp. 73–81, Sept. 2019.

[43] D. G. Tiglea, R. Candido, and M. T. M. Silva, “A low-cost algorithm for adaptive sampling and censoring in diffusion

networks,” IEEE Transactions on Signal Processing, vol. 69, pp. 58–72, Jan. 2021.

[44] J.-W. Lee, J.-T. Kong, W.-J. Song, and S.-E. Kim, “Data-reserved periodic diffusion LMS with low communication cost

over networks,” IEEE Access, vol. 6, pp. 54636–54650, Sep. 2018.

[45] S.-Y. Tu and A. H. Sayed, “Optimal combination rules for adaptation and learning over networks,” in 2011 4th IEEE

International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP). IEEE, 2011, pp.

317–320.

[46] J. Arenas-Garcia, L. A. Azpicueta-Ruiz, M. T. M. Silva, V. H. Nascimento, and A. H. Sayed, “Combinations of adaptive

filters: Performance and convergence properties,” IEEE Signal Process. Mag., vol. 33, no. 1, pp. 120–140, Jan. 2016.

[47] M. Lázaro-Gredilla, L. A. Azpicueta-Ruiz, A. R. Figueiras-Vidal, and J. Arenas-Garcia, “Adaptively biasing the weights

of adaptive filters,” IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3890–3895, Jul. 2010.

[48] T. Strutz, “Estimation of measurement-noise variance for variable-step-size NLMS filters,” in 2019 27th European Signal

Processing Conference (EUSIPCO). IEEE, 2019, pp. 675–679.

[49] S. Chen, R. Varma, A. Sandryhaila, and J. Kovacevic, “Discrete signal processing on graphs: Sampling theory,” IEEE

Transactions on Signal Processing, vol. 63, no. 24, pp. 6510–6523, Dec. 2015.

[50] A. Anis, A. Gadde, and A. Ortega, “Efficient sampling set selection for bandlimited graph signals using graph spectral

proxies,” IEEE Transactions on Signal Processing, vol. 64, no. 14, pp. 3775–3789, Jul. 2016.

[51] M. Tsitsvero, S. Barbarossa, and P. Di Lorenzo, “Signals on graphs: Uncertainty principle and sampling,” IEEE

Transactions on Signal Processing, vol. 64, no. 18, pp. 4845–4860, May 2016.

[52] A. H. Sayed, Adaptive Filters, John Wiley & Sons, NJ, 2008.

Daniel G. Tiglea received the B.S. degree in 2018 and the M.S. degree in 2020, both in Electrical

38

Engineering from Escola Politécnica, Universidade de São Paulo, Brazil. Since August 2020, he has been

pursuing his PhD at the same institution. His research interests include linear and nonlinear adaptive

filtering, and distributed signal processing.

Renato Candido received the B.S. degree in 2006 from Universidade Presbiteriana Mackenzie, São

Paulo, Brazil and the M.S. and Ph.D. degrees in 2009 and 2014 from Escola Politécnica, Universidade de São

Paulo, Brazil, all in Electrical Engineering. From 2015 to 2017, he worked as a Postdoctoral Researcher at the

Department of Electronic Systems Engineering, Escola Politéncia, Universidade de São Paulo and currently

he collaborates as a researcher at the same university. His research interests include signal processing,

adaptive filtering, and machine learning.

Magno T. M. Silva (M’05) received the B.S. degree in 1999, the M.S. degree in 2001, and the Ph.D.

degree in 2005, all in Electrical Engineering from Escola Politécnica, Universidade de São Paulo, Brazil. Since

August 2006, he has been with the Department of Electronic Systems Engineering at Escola Politécnica,

Universidade de São Paulo, where he is currently an Associate Professor. From January to July 2012, he

worked as a Postdoctoral Researcher at Universidad Carlos III de Madrid, Leganés, Spain. From 2015 to

2018, he served as Associate Editor for the IEEE Signal Processing Letters. His research interests include

linear and nonlinear adaptive filtering, distributed estimation, and machine learning for signal processing.

39

