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Abstract—We extend the analysis presented in [1] for the affine
combination of two least mean-square (LMS) filters to allow for colored
inputs and nonstationary environments. Our theoretical model deals, in
a unified way, with any combinations based on the following algorithms:
LMS, normalized LMS (NLMS), and recursive-least squares (RLS).
Through the analysis, we observe that the affine combination of two
algorithms of the same family with close adaptation parameters (step-
sizes or forgetting factors) provides a 3 dB gain in relation to its best
component filter. We study this behavior in stationary and nonstationary
environments. Good agreement between analytical and simulation results
is always observed. Furthermore, a simple geometrical interpretation of
the affine combination is investigated. A model for the transient and
steady-state behavior of two possible algorithms for estimation of the
mixing parameter is proposed. The model explains situations in which
adaptive combination algorithms may achieve good performance.

Index Terms—Adaptive filters, affine combination, steady-state analy-
sis, transient analysis, LMS algorithm.

I. INTRODUCTION

Recently, an affine combination of two least mean-square (LMS)
adaptive filters was proposed and its transient performance analyzed
[1]. This method combines linearly the outputs of two LMS filters
operating in parallel with different step-sizes. The purpose of the
combination is to obtain an adaptive filter with fast convergence and
reduced steady-state excess mean-square error (EMSE). Since the
mixing parameter is not restricted to the interval [0, 1], this method
can be interpreted as a generalization of the convex combination of
two LMS filters of [2], [3].

In this paper, we extend the results of [1] by providing a unified
analysis, which is valid for colored inputs, nonstationary environ-
ments, and combinations based on LMS, NLMS, and RLS algorithms.
To explain the behavior of the affine combination of two algorithms,
we present a simple geometrical interpretation. Furthermore, we
also explain why fast-adaptation of the mixing parameter in general
leads to a quite large variance around the optimum value. Then,
we find a model for the transient and steady-state behavior of two
possible algorithms for estimation of the mixing parameter. In order
to simplify the arguments, we assume that all quantities are real.

II. PROBLEM FORMULATION

A combination of two adaptive filters is depicted in Figure 1. In
this scheme, the output of the overall filter is given by

y(n) = η(n)y1(n) + [1− η(n)]y2(n), (1)

where η(n) is the mixing parameter, yi(n), i = 1, 2 are the outputs
of the transversal filters, i.e., yi(n) = uT (n)wi(n−1), u(n) ∈ R

M

is the common regressor vector, and wi(n−1) ∈ R
M are the weight

vectors of each length-M component filter.
We focus on the affine combination of two adaptive algorithms of

the following general class

wi(n) = wi(n− 1) + ρi(n)Mi(n)u(n)ei(n), i = 1, 2, (2)
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where ρi(n) is a step-size, Mi(n) is a symmetric non-singular
matrix, ei(n) = d(n)−yi(n) is the estimation error, and d(n) is the
desired response. The LMS, NLMS, and RLS algorithms employ the
step-sizes ρi(n) and the matrices Mi(n) as in Table I. In this table,
μi, μ̃i and ε are positive constants, ‖ · ‖ is the Euclidian norm, I is
the M ×M identity matrix, and 0 � λi < 1 is a forgetting factor.
For RLS, Mi(n) = R̂−1

i (n) is obtained via the matrix inversion
lemma [4, Eq.(2.6.4)] applied to R̂i(n), which is an estimate (with
forgetting factor λi) of the autocorrelation matrix of the input signal,
i.e., R � E{u(n)uT (n)}, where E{·} is the expectation operator.

We assume that d(n) and u(n) are related via a linear regression
model, that is, d(n) = uT (n)wo(n− 1) + v(n), where wo(n− 1)
is the time-variant optimal solution and v(n) is an i.i.d. (independent
and identically distributed) and zero mean random process with
variance σ2

v = E{v2(n)}, which plays the role of a disturbance
independent of u(n) [4, Sec. 6.2.1]. Furthermore, the sequences
{u(n)} and {v(n)} are assumed stationary.

In the affine combination, the mixing parameter η(n) is not
restricted to the interval [0, 1] and can be adapted via

η(n + 1) = η(n) + μηe(n)[y1(n)− y2(n)], (3)

where μη is a step-size, and e(n) = d(n) − y(n) is the estimation
error of the overall filter. The recursion (3) was obtained in [1], using
a stochastic gradient search to minimize the instantaneous mean-
square error (MSE) cost function. In [1], η(n) was constrained to
be less than or equal to 1 for all n, to ensure stability of (3). In
this paper, we applied this constraint when using (3). The constraint
was not necessary when the normalized version of (3) was used (see
Sec. V).
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Fig. 1. Affine combination of two transversal adaptive filters.

III. STEADY-STATE PERFORMANCE OF ADAPTIVE FILTERS

We assume that in a nonstationary environment, the variation in the
optimal solution wo follows a random-walk model [4, p. 359], that is,
wo(n) = wo(n− 1) + q(n). In this model, q(n) is an i.i.d. vector
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TABLE I
PARAMETERS OF THE CONSIDERED ALGORITHMS.

Alg. ρi(n) M
−1
i (n)

LMS μi
I

NLMS μ̃i/
(
ε + ‖u(n)‖2

)
RLS 1 R̂i(n) =

n∑
l=1

λn−l
i u(l)uT (l)

with positive-definite autocorrelation matrix Q = E{q(n)qT (n)},
independent of the initial conditions {wo(−1),w(−1), η(−1)} and
of {u(l), d(l)} for all l [4, Sec. 7.4].

One measure of the performance of each component filter is given
by the excess MSE (EMSE), defined as

ζi(n) � E{e2
a,i(n)}, ζi � lim

n→∞
ζi(n),

where ζi is the steady-state value of ζi(n), ea,i(n) = uT (n)w̃i(n−
1), and w̃i(n − 1) = wo(n − 1) −wi(n − 1). On the other hand,
the overall filter performance can be measured by

ζ(n) � E{e2
a(n)}, ζ � lim

n→∞
ζ(n),

where
ea(n) = η(n)ea,1(n) + [1− η(n)]ea,2(n). (4)

To obtain analytical expressions for ζ, we need expressions for ζi,
i = 1, 2 and for the cross-EMSE [3], [5]

ζ12(n) � E{ea,1(n)ea,2(n)}, ζ12 � lim
n→∞

ζ12(n).

There have been several works in the literature on the tracking
performance of adaptive algorithms (see, e.g., [4], [6]–[10] and their
references). Analytical expressions for the EMSE of LMS [4], [9],
NLMS [4], [7], and RLS [6] algorithms can be obtained from the
first three lines in Table II, using μ2 = μ1, μ̃2 = μ̃1 or λ̃2 = λ̃1 �

(1 − λ1), where Tr(A) stands for the trace of matrix A, αu �

E
{‖u(n)‖−2

}
, γ = var{u2(n)}/(var{u(n)})2, and var{·} is the

variance. For gaussian inputs, γ = 2 and αu can be approximated
by 1/[var{u(n)}(M−2)] [11].

The cross-EMSE for the combination of two LMS filters was
estimated in [3] using energy conservation arguments. Using the
traditional analysis method1, analytical expressions for ζ12 for the
combinations of two RLS filters and of one RLS with one LMS
were obtained in [5]. For the combination of two RLS filters, another
expression for ζ12 can be obtained using similar assumptions to those
of [6]. Since the resulting expression is more accurate than that of
[5], mainly for smaller forgetting factors, we use it here. Analytical
expressions for ζ12 considering the combination of two NLMS filters
are given, for white regressors, in [12]. We give here a straightforward
extension for correlated inputs. All these results are summarized in
Table II, where Σ � [λ̃1I + μ2R]−1R.

IV. A STEADY-STATE ANALYSIS OF AFFINE COMBINATIONS

To obtain an analytical expression for the optimum mixing param-
eter ηo(n) at the steady-state2, we differentiate the mean-square error
cost function E{e2(n)} with respect to η(n) and set the derivative
equal to zero, i.e.,

E{e(n) [e1(n)− e2(n)]} = 0. (5)

1In the traditional method, one computes a recursion for the autocorrelation
matrix of the weight-error vector of a filter.

2Note that we use the subscript “o” in ηo(n) to denote the optimum mixing
parameter. It is optimum in the mean-square error sense.

TABLE II
ANALYTICAL EXPRESSIONS FOR CROSS-EMSE OF THE CONSIDERED

COMBINATIONS.

Combination ζ12

μ1-LMS and μ2-LMS
μ1μ2σ2

vTr(R) + Tr(Q)

μ1 + μ2 − μ1μ2Tr(R)

μ̃1-NLMS and μ̃2-NLMS
Tr(R)

[
μ̃1μ̃2σ2

vαu +Tr(Q)
]

μ̃1+μ̃2−μ̃1μ̃2

λ1-RLS and λ2-RLS

λ̃1λ̃2

[
1+

λ̃1λ̃2

1−λ1λ2
γ

]
Mσ2

v+Tr(QR)

λ̃1 + λ̃2 − λ̃1λ̃2

λ1-RLS and μ2-LMS μ2λ̃1 σ2
v Tr

(
Σ

)
+ Tr

(
QΣ

)

Using the linear regression model for d(n), the estimation errors
ei(n), i = 1, 2 are related to the a priori errors ea,i(n) via

ei(n) = ea,i(n) + v(n). (6)

Then, using (1) and (6), (5) can be rewritten as

E{ηo(n)[ea,1(n)−ea,2(n)]2}=E{ea,2(n)[ea,2(n)−ea,1(n)]}. (7)

To proceed, we assume that
A1. ηo(n) is independent of ea,i(n), i = 1, 2 at the steady-state.

This assumption requires the optimum mixing parameter to be
independent of the a priori errors when n →∞.

Thus, using A1 and taking the limit for n → ∞ of both sides of
(7), we arrive at

η̄o(∞) � lim
n→∞

E{ηo(n)} ≈ Δζ2

Δζ1 + Δζ2
, (8)

where Δζi = ζi− ζ12, i = 1, 2. The accuracy of (8) depends on the
the accuracy of the analytical expressions of ζi, i = 1, 2 and ζ12. A
similar expression was also obtained in [3, Eq.(29)] for the convex
combination of two LMS filters. The difference is that in the convex
combination, η(n) and consequently η̄o(∞) are restricted to the
interval [0, 1]. The expressions of Table II were obtained without the
assumption of white inputs. Thus, (8) is an extension of [1, Eq. (26)]
since it allows for colored inputs, nonstationary environments, and
holds for combinations of algorithms of the form (2).

Now we obtain an analytical expression for the steady-state EMSE
of an affine combination. By squaring both sides of (4) with η(n) =
ηo(n), taking expectations, and using A1, we arrive at

E{e2
a(n)}=E{η2

o(n)}E{e2
a,1(n)}+ E{[1− ηo(n)]2}E{e2

a,2(n)}
+ 2E{ηo(n)[1−ηo(n)]}E{ea,1(n)ea,2(n)}. (9)

To proceed, we assume for now that
A2. the variance of ηo(n) is sufficiently small at the steady-state

such that limn→∞ E{η2
o(n)} ≈ η̄o

2(∞).
Using A2 and taking the limit of both sides of (9) for n → ∞, we
arrive at

ζ ≈ ζ12 +
Δζ1Δζ2

Δζ1 + Δζ2
. (10)

This expression was obtained in [3, Eq. (33)] for the convex
combination of two LMS filters, but also holds for different affine
combinations of algorithms of the form (2).
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A. Stationary environments

In an stationary environment (Q = 0), the expressions (8) and (10)
for the combinations of two LMS or two NLMS filters are shown
in Table III, where δ � μ2/μ1 with 0 < δ < 1, and δ̃ � μ̃2/μ̃1

with 0 < δ̃ < 1. The expressions of Table III show two interesting
properties:

i) η̄o(∞) for both combinations is negative, since to ensure the
stability of the μ1-LMS and μ̃1-NLMS, the step-sizes are
chosen respectively in the following ranges 0 < μ1 < 2/Tr(R)
and 0 < μ̃1 < 2;

ii) δ≈1 (resp., δ̃≈1) yields ζ≈ζ2/2 for the combination of two
LMS filters (resp., NLMS). Since ζ2 < ζ1 for both combina-
tions, the affine combination provides a 3dB gain in relation to
the best component filter. In this case, ηo(∞)→−∞.

Property i) was observed in [1] for the combination of two LMS
filters, assuming gaussian, white inputs, and the LMS step-size for
maximum convergence speed. Note that, if we also consider the LMS
step-size for maximum speed, i.e., μ1 = 1/Tr(R) in the expression
of Table III, the steady-state optimum mixing parameter for the
combination of two LMS filters will reduce to η̄o(∞) = δ/[2(δ−1)],
which coincides to the result of [1, Eq.(26)]. Although we exemplify
these properties for the combinations of two LMS or two NLMS
algorithms, they also hold for all the combinations considered here.
For the combinations of two RLS or one RLS with one LMS, (8)
and (10) do not reduce to simple expressions as those of Table III
even for stationary environments, and are not presented here for lack
of space.

TABLE III
ANALYTICAL EXPRESSIONS FOR η̄o(∞) AND ζ IN THE STATIONARY CASE.

Combination η̄o(∞) ζ

μ1-LMS and μ2-LMS
δ[2 − μ1Tr(R)]

2(δ − 1)

1

2

[
μ2σ2

vTr(R)

δ+1−μ2Tr(R)

]

μ̃1-NLMS and μ̃2-NLMS
δ̃[2 − μ̃1]

2(δ̃ − 1)

1

2

[
Tr(R)μ̃2σ2

vαu

δ̃ + 1 − μ̃2

]

In order to explain the behavior of the affine combination when the
adaptation parameters are close (e.g., μ1 ≈ μ2), the overall steady-
state error is written as

e(n)=ea,2(n) + v(n)︸ ︷︷ ︸
d(n)

+η(n) [w2(n)−w1(n)]T u(n)︸ ︷︷ ︸
−x(n)

. (11)

From the point of view of the computation of η(n), d(n) represents
the signal which has to be estimated, and x(n) plays the role of input
signal. Assuming that wi, i = 1, 2 vary slowly compared to η, (11)
has a simple geometric interpretation as shown in Fig. 2. The affine
combination seeks the best weight vector in the line w2+η(w1−w2).
In Fig. 2-(a), the best linear combination of w1 and w2 is w. In the
case of close adaptation parameters (e.g., μ1 ≈ μ2 or λ1 ≈ λ2), we
also have w1 ≈ w2 (Fig. 2-(b)), and η has to assume a large value
to take the combined vector close to w, since the input signal x(n)
depends on the difference between w1 and w2. Thus, if (w1−w2)→
0, |η| → ∞.

B. Nonstationary environments

In a nonstationary environment, the largest EMSE reduction of
the affine combination in relation to its components occurs when
ζ1 ≈ ζ2. This can happen in two situations: (i) when Tr(Q) = q12

1w

2w

w

ow

(a)
1w

2w

w

ow

(b)
Fig. 2. Geometric interpretation of the affine combination.

or when (ii) the component filters have close adaptation parameters.
In Table IV, we show the analytical expressions for q12 and ζ for the
combinations of two LMSs or two NLMSs3. From these expressions,
we can observe that the EMSE reduction in both cases is limited by
3 dB. A reduction close to 3 dB will occur when δ → 0 (or δ̃ → 0) in
case (i) or when the environment tends to be stationary (Tr(Q) ≈ 0)
in case (ii).

TABLE IV
ANALYTICAL EXPRESSIONS FOR q12 AND ζ FOR THE CASES (i) AND (ii) IN

A NONSTATIONARY ENVIRONMENT.

Combination (i) (ii)
q12 ζ ζ

μ1-LMS μ1μ2σ2
v ζ2/2 ζ2/2

and μ2-LMS ×Tr(R) +
2δζ2

(1 + δ)2
+

σ2
vTr(R)Tr(Q)

2ζ2

μ̃1-NLMS μ̃1μ̃2σ2
v ζ2/2 ζ2/2

and μ̃2-NLMS ×αu +
2δ̃ζ2

(1 + δ̃)2
+

σ2
v [Tr(R)]2Tr(Q)αu

2ζ2

V. TRANSIENT ANALYSIS

At each instant, the combination parameter η is adapted based
on the projections y1 and y2 of w1 and w2 in the direction of the
regressor u. If one tries to adapt η quickly, e.g., using the normalized
LMS algorithm instead of (3), a problem arises when u is close to
orthogonal to (w1−w2), as shown in Fig. 3. We show in the figure
the situation for two possible values of the optimum solution, wo

and w′o. Note that for both values of the optimum solution, the best
value of η is 1/2. However, looking at the projections on u, in one
case one would choose η ≈ 0 and for the other case, η ≈ −ρ, where
ρ is a positive number. This example explains why fast-adaptation of
the combination parameter in general leads to a quite large variance
around ηo.

  

1w
2w

ow
u

o′w� 0≈

� �≈ −

Fig. 3. Updating of η(n) when the regressor u is close to orthogonal to
(w1 − w2).

We now find a model for the transient behavior of the combination.
Assuming that η(n) is independent of the a priori errors, we can show

3Again, expressions for combinations which involve the RLS algorithm are
not shown due to space reasons.
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that (10) still holds, and E{η(n)} = η̄o(n) and

E{e2(n)} = σ2
o(n) + σ2

η(n)[ζ1(n) + ζ2(n)− 2ζ12(n)], (12)

where we have defined

σ2
o(n) = E{e2(n)|η(n)=η̄o(n)} = σ2

v + ζ(n), and (13)
σ2

η(n) = E{η2(n)} − η̄2
o
(n). (14)

To simplify the notation, we sometimes omit the time index n in the
following discussion.

Note that the largest MSE reduction will occur when E{e2(n)} →
σ2

o(n). This happens, for example, when the adaptation parameters
are close (e.g., μ1 ≈ μ2 or λ1 ≈ λ2), since in this case ζ1 ≈ ζ12 ≈
ζ2, and the effect of a possibly large σ2

η is reduced. On the other
hand, if ζ1 � ζ12 � ζ2 (or vice-versa), the second term of the r.h.s.
of (12) will be approximately proportional to the largest of ζ1, ζ2,
and σ2

η will have to be smaller than min{ζ1, ζ2}/ max{ζ1, ζ2} to
make the combination competitive with the best filter.

A recursion for σ2
η can be found by subtracting ηo from both sides

of (3), and squaring the result. In the following, we assume that wo

is constant. Defining δη(n) = η̄o(n)− η(n), we obtain

δη(n + 1) =
[
1− μη(ea,2(n)− ea,1(n))2

]
δη(n)

+ μη η̄o(n)(ea,2(n)− ea,1(n))2 − μηea,2(n)(ea,2(n)− ea,1(n))

− μηv(n)(ea,2(n)− ea,1(n)). (15)

Taking the expected value of (15), it can be shown that E{δη(n)} →
0. On the other hand, squaring (15) and taking expected values we
obtain, assuming that ea,1(n) and ea,2(n) are Gaussian,

σ2
η(n + 1) =

[
1− 2μη (Δζ1(n) + Δζ2(n)) (16)

+ 3μ2
η (Δζ1(n) + Δζ2(n))2

]
σ2

η(n) + μ2
ησ2

v (Δζ1(n) + Δζ2(n))

+ μ2
η

[
3ζ12(n) (Δζ1(n) + Δζ2(n))− 2

(
ζ1(n)ζ2(n)− ζ2

12(n)
)]

.

For stability, we need

μη <
2

3[Δζ1(n) + Δζ2(n)]
, (17)

and the steady-state variance is

lim
n→∞

σ2
η =μη

3ζ12 (Δζ1 + Δζ2)− 2
(
ζ1ζ2 − ζ2

12

)
+σ2

v (Δζ1+Δζ2)

2 (Δζ1+Δζ2)−3μη (Δζ1+Δζ2)
2 .

The adaptation law (3) is usually not fast enough to follow the
necessary quick variations on η, and at the same time avoid a large
excess mean-square error. As Fig. 3 shows, using an instantaneous
normalization, i.e., replacing the step-size by μη(n) = μ̃η/[ea,2(n)−
ea,1(n)]2, will lead to a very large σ2

η , or even divergence (see
[13]). On the other hand, some form of normalization is necessary,
otherwise (3) will either be too slow when both component filters
have converged (and ea,2(n) − ea,1(n) is small), or will converge
too fast (and diverge) when ea,2(n)−ea,1(n) is large (e.g., when the
fast filter has already converged, but the slow filter has still a large
misadjustment). One possible solution is to normalize the filter using
an estimate of E

{
[ea,2(n)− ea,1(n)]2

}
, as in [14].

Another possibility is to employ a partial instantaneous normal-
ization, using μη(n) = μ̃η/|y1(n) − y2(n)| as step-size (note that
y1(n) − y2(n) = ea,2(n) − ea,1(n)). With this choice, the update
rule (3) reduces to

η(n + 1) = η(n) + μ̃ηe(n) sign |y1(n)− y2(n)|. (18)

It can be shown that this recursion also leads to an unbiased estimate
of the optimum ηo, with variance

σ2
η(n+1)=

[
1−2μ̃η

√
2/π

√
Δζ1+Δζ2+μ̃2

η (Δζ1+Δζ2)
]

× σ2
η(n)+μ̃2

η

ζ1ζ2−ζ2
12

Δζ1+Δζ2
+ μ̃2

ησ2
v. (19)

For large step-sizes, (18) leads to smaller σ2
η than (3). The situation

reverses for small step-sizes. Through simulations, we noticed that
recursion (18) is less sensitive to variations in the input power and
the value of the step-size.

In order to further improve the convergence speed of the algo-
rithms, we estimated

p(n + 1) = λpp(n) + (1− λp)[y1(n)− y2(n)]2,

where 0 � λp < 1 is a forgetting factor, and used as step-sizes
μ̄η = μ̃η/(ε+p(n)) for (3), where ε > 0 is a regularization constant,
and ¯̄μη = μ̃η/(ε+

√
p(n)) for (18). The algorithm (3) with μη = μ̄η

is called power-normalized LMS (PN) and the algorithm (18) with
μ̃η = ¯̄μη is called normalized signed regressor LMS (NSR).

VI. SIMULATIONS

We consider a system identification application with the initial
optimal solution formed with M = 7 independent random values
between 0 and 1, and given by

w
T

o (0)=[+0.90 −0.54 +0.21 −0.03 +0.78 +0.52 −0.09] .

The input signal u(n) is generated with a first-order autoregressive
model, whose transfer function is

√
1− α2/(1 − αz−1), with α =

0.8. This model is fed with an i.i.d. Gaussian random process, whose
variance is such that Tr(R) = 1. Moreover, additive i.i.d. noise v(n)
with variance σ2

v = 0.01 is added to form the desired signal. To
obtain the results shown in Figs. 4 and 5, the algorithm (3) is used
to update the mixing parameter η(n).

Fig. 4 shows the EMSE and mixing parameter along the iterations
for the combination of two RLS filters in the stationary case. The
curves were estimated from the ensemble-average of 500 independent
runs and filtered by a moving-average filter with 512 coefficients. The
dashed lines in the figure show the steady-state predicted values of ζ
for each algorithm and their combination. Since the component filters
are adapted with close forgetting factors, i.e., (1−λ2) = 0.9(1−λ1),
the affine combination provides an EMSE reduction of approximately
3 dB as predicted by the analysis. In this case, the mixing parameter
tends to -7.55, which also agrees with the analysis.

0 1 2 3 4 5
−28

−26

−24

−22

−20

E
M

S
E

 (d
B

)

(a)
λ1−RLS
λ2−RLS
Combination

0 1 2 3 4 5

x 105

−7

−3.5

0

iterations

E
{η

(n
)}

(b)

Fig. 4. (a) Theoretical and experimental EMSE for the combination of two
RLS filters with λ1 = 0.9, λ2 = 0.91, and μη = 1 (b) Ensemble-average of
η(n), and theoretical value of η̄o(∞); ensemble-average of 500 independent
runs; the theoretical values are indicated by dashed lines.
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To illustrate the accuracy of the analysis in a nonstationary
environment, we show in Fig. 5 the theoretical and experimental
values of the ratio ζ/min{ζ1, ζ2}, as a function of δ = μ2/μ1 with
fixed μ1 = 0.1, considering the combination of two LMS filters
and Q = σ2

qI. As predicted by the expressions of Table IV, the
largest EMSE reduction occurs when Tr(Q) = μ1μ2σ

2
vTr(R) or

when δ ≈ 1, and is limited in both cases by 3 dB. Moreover, for
each curve of Fig. 5, there is a value of δ for which ζ = min{ζ1, ζ2}.
At this point, the combination performs as its best component, which
is adapted with the optimum step-size μo [4, p. 369]. Although the
affine combination can provide an EMSE reduction in relation to
its components, its minimum EMSE coincides with that of LMS
with the optimum step-size μo. These properties can be exploited
to improve the tracking capability of adaptive filters, extending the
convex combination of variable step LMS algorithms (CVS-LMS)
proposed in [3] to the affine combinations considered here (we intend
to pursue this matter elsewhere).
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Fig. 5. Theoretical and experimental values of ζ/min{ζi}, i = 1, 2 for
the combination of two LMS filters with μ1 = 0.1, μ2 = δμ1, μη = 1,
and Q = σ2

qI. The experimental values are indicated by ©, �, and �;
ensemble-average of 50 independent runs.

Fig. 6 shows the EMSE and mixing parameter for the combination
of two LMS filters. We consider a system identification application
with the initial optimal solution formed with M = 10 independent
Gaussian random values with zero mean and unit variance. The
optimum solution is kept constant, except for a change at n = 75000
(by adding a vector of random Gaussian variables with variance 0.01).
The input signal u(n) is generated as before (again with α = 0.8).
The experimental curves were estimated from the ensemble-average
of 100 independent runs. The mixing parameter is adapted with
the PN and NSR algorithms. Both algorithms provide an adequate
behavior for the combination, with E{η(n)} following η̄o(n) closely.
As predicted by the analysis, the combined scheme attains the lower
stationary EMSE of the μ2-LMS and presents the faster convergence
of the μ1-LMS. The variance of the mixing parameter is usually
larger for NSR than for PN. However, the mixing parameter adapted
with PN may exhibit peaks at the beginning and when the optimum
solution changes. This effect is less pronounced when NSR is used.
In addition, NSR is less sensitive to variations in the simulation
parameters (such as input and noise power, step-sizes, regularization).

VII. CONCLUSION

We extended the analysis of [1] and [12] to allow for colored
inputs and nonstationary environments, considering affine combina-
tions based on LMS, NLMS, and RLS algorithms. Good agreement
between analytical and simulation results is always observed. A
simple geometrical interpretation of the affine combination allowed
us to explain its behavior in different situations, including when
the component filters are adapted with close step-sizes or forgetting
factors. Furthermore, we proposed and analysed two new normalized
algorithms for updating the mixing parameter. The theoretical model
explains situations in which the adaptive combination algorithms may
achieve good performance.
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Fig. 6. (a) Experimental and theoretical EMSE for the combination of
two LMS filters with μ1 = 10−2, μ2 = 10−3, using PN (μ̃η = 0.01,
ε = 6 × 10−4, λp = 0.99) or NSR (μ̃η = 0.0125, ε = 0.1, λp = 0.99);
(b) Ensemble-average of η(n) and η̄o(n); M = 10, σ2

v = 10−3, correlated
regressor with var{u(n)} = 1 and α = 0.8, ensemble-average of 100
independent runs.
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